Journal of Software Engineering Research and Development, 2025, 13:1, doi: 10.5753/jserd.2025.4803

© This work is licensed under a Creative Commons Attribution 4.0 International License.

Understanding How Feature Dependent Variables Affect

Configurable System Comprehensibility

Djan Santos ® [Federal Institute of Bahia | djan.santos@ifba.edu.br |
Marcio Ribeiro ® [Federal University of Alagoas | marcio@ic.ufal.br |
Claudio Sant’Anna @ [Federal University of Bahia | claudionsa@ufba.br |

Abstract Background: #ifdefs allow developers to define source code related to features that should or should
not be compiled. A feature dependency occurs in a configurable system when source code snippets of different
features share code elements, such as variables. Variables that produce feature dependency are called dependent
variables. The dependency between two features may include just one dependent variable or more than one. It is rea-
sonable to suspect that a high number of dependent variables and their use make the analysis of variability scenarios
more complex. In fact, previous studies show that #ifdefs may affect comprehensibility, especially when their use
implies feature dependency. Aims: In this sense, our goal is to understand how feature dependent variables affect
the comprehensibility of configurable system source code. We conducted two complementary empirical studies. In
Study 1, we evaluate if the comprehensibility of configurable system source code varies according to the number of
dependent variables. Testing this hypothesis is important so that we can recommend practitioners and researchers
the extent to which writing #ifdef code with dependencies is harmful. In study 2, we carried out an experiment
in which developers analyzed programs with different degrees of variability. Our results show that the degree of
variability did not affect the comprehensibility of programs with feature dependent variables. Method: We executed
a controlled experiment with 12 participants who analyzed programs trying to specify their output. We quantified
comprehensibility using metrics based on time and attempts to answer tasks correctly, participants’ visual effort, and
participants’ heart rate. Results: Our results indicate that the higher the number of dependent variables the more
difficult it was to understand programs with feature dependency. Conclusions: In practice, our results indicate that
comprehensibility is more negatively affected in programs with higher number of dependent variables and when

these variables are defined at a point far from the points where they are used.

Keywords: Feature dependency, Program comprehension, Configurable Systems, Dependent variable, Eye-tracking,

Heart rate monitor

1 Introduction

Configurable systems address variability by means of fea-
tures that can be enabled or disabled (Garvin and Cohen,
2011). One of the techniques most used to allow variabi-
lity is conditional compilation. By means of preprocessor di-
rectives, like #ifdef, conditional compilation uses feature
expressions to allow developers to include or exclude code
fragments that will or will not be compiled (Liebig et al.,
2010; Garvin and Cohen, 2011). Thus, conditional compila-
tion forces developers to consider multiple scenarios of en-
abled and disabled features while trying to understand source
code. We call these scenarios as variability scenarios.

Previous studies have shown that the presence of #ifdef
may hinder code comprehensibility (Melo et al., 2017;
Schulze et al., 2013; Spencer and Collyer, 1992). For in-
stance, Melo et al. (Melo et al., 2017) compared pieces
of source code with and without #ifdef and found that
#ifdefs increase debugging time and require higher visual
effort from developers. In addition, studies have identified
bugs that occur due to the use of preprocessor directives
(Garvin and Cohen, 2011; Medeiros et al., 2013; Tartler et al.,
2014; Abal et al., 2014).

Configurable systems usually include a high number of
features. Thus, two or more features are likely to share code
fragments. When different features refer to the same program
element, such as a variable, we have an occurrence of fea-

ture dependency (Rodrigues et al., 2016). Variables which
are shared by features and, as consequence, make those fea-
tures dependent to each other are called dependent variables
(Rodrigues et al., 2016).

A configurable system can contain different numbers of
features and varying amounts of #ifdef usages to define
the code segments of those features. In this context, feature
dependencies may occur (when features share variables with
each other) or not. A study by Melo et al. (2016) identified
that the increase of the number of features and #ifdefs hin-
dered comprehensibility. However, they were not concerned
with whether there were feature dependencies in the source
code they analyzed. In addition, our previous study (Santos
and Sant’Anna, 2019) found that different types of feature de-
pendencies affected comprehensibility in distinct ways. We
analyzed the three types of feature dependencies defined by
Rodrigues et al. (2016): intraprocedural, interprocedural and
global. These types differ from each other according to the
scope of the dependent variables (Rodrigues etal., 2016). For
example, global dependency occurs when different features
refer to the same global variable and intraprocedural depen-
dency occurs when different features inside a function refer
to the same local variable (Rodrigues et al., 2016).

In our previous study, we observed that intraprocedural de-
pendencies impaired comprehensibility less than global and
interprocedural dependencies (Santos and Sant’ Anna, 2019).
In intraprocedural dependencies, the usages of dependent

https://orcid.org/0000-0002-9845-4857
mailto:djan.santos@ifba.edu.br
https://orcid.org/0000-0002-4293-4261
mailto:marcio@ic.ufal.br
https://orcid.org/0000-0002-6005-5463
mailto:claudionsa@ufba.br

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

variables, although occurring across different features, are
close to each other as they are located within the same func-
tion. This led us to hypothesize that analyzing the content
of dependent variables, which is changed by different fea-
tures, may be the reason that makes the developers’ task of
understanding source code with #ifdef more difficult. To
investigate this hypothesis, we carried out the two controlled
experiments we report in this paper. We decided to separately
investigate the impact of the number of dependent variables
(and their usages) (Study 1 in Section 2) and the impact of
the number of features and #ifdef (Study 2 in Section 3).
We reported Study 1 in (Santos et al., 2023) and described
and discussed it again here together with Study 2. Therefore,
this paper is an extension of our previous conference paper
(Santos et al., 2023). In summary, the three studies (includ-
ing our previous study (Santos and Sant’ Anna, 2019) provide
a detailed analysis of how different characteristics of source
code with #ifdef can affect comprehensibility.

In Study 1, we study how the number of dependent vari-
ables affects the comprehensibility of configurable systems
implemented with #ifdefs. We executed our experiment
with 12 participants who analyzed programs trying to specify
their output.

In Study 2, We investigated how the comprehensibility of
configurable systems was affected by degrees of variability
taking into account dependent variables. We define two de-
grees of variability: We considered programs with more vari-
ability all the programs implemented with 6 feature expres-
sions and 3 feature constants, and programs with less vari-
ability all the programs implemented with 3 feature expres-
sions and 1 feature constant. A feature constant is used in fea-
ture expressions for conditional compilation. In study 2, we
fixed the number of feature dependencies and the number of
dependent variables on all programs and varied degrees of
variability.

Our experiments are multifaceted in terms of the metrics
we collected to analyze comprehensibility. In particular, we
collected time and number of attempts the participants had
taken to finish tasks and we used two equipment: (i) eye track-
ing, to measure a variety of visual efforts and cognitive pro-
cesses of participants, such as fixations, gaze transition dia-
grams, scan paths, and heat maps, and (ii) a heart rate monitor
on a smartwatch, to measure a variety of physiological pro-
cesses of participants, such as heart rate variability (HRV).
HRYV measures the variation in time between heartbeats, pro-
viding information on the balance between the sympathetic
and parasympathetic branches of the autonomic nervous sys-
tem. HRV is often associated with stress and emotion regula-
tion (Walter and Porges, 1976; Fritz et al., 2014; Hijazi et al.,
2021).

Our findings show that feature dependency affects com-
prehensibility in different ways. We observed that: (i) partic-
ipants spent more time to analyze programs with more depen-
dent variables, (ii) programs with more dependent variables
required more visual effort. On the other hand, we could
not find significant difference in the number of participants’
stressful moments when trying to understand programs with
different numbers of dependent variables. Also, the number
of dependent variables did not affect the number of attempts
needed to specify program outputs and the degree of vari-

Santos, Ribeiro and Sant’Anna, 2025

ability did not affect the comprehensibility of programs with
feature dependency. In a nutshell, our experiment results sup-
port that dependent variables may hinder the comprehensi-
bility of configurable systems. Therefore, if a program has
a high number of dependent variables, developers need to
direct their attention to these variables more frequently, in-
creasing the time and effort required for comprehension. We
recommend that, whenever possible, developers should use
few dependent variables.

Listing 1: Program 1: Sale of real estate domain

struct Properties {
float salesPrice = 0;
int available = 1;

1
2
3
4
5 #ifdef COMMISSION
6 float commissionValue = 0;
7 #endif

8

9 #ifdef TAX

10 float taxes = 0;

11 #endif

12 } property;

13

14 float calculatePropertyValue(float costPrice) {

15 float serviceFee = 0;

16

17 if (property.available == 0) {

18 printf ("Property blocked! Sale not made!");

19 property.salesPrice = 0;

20 return property.salesPrice;

21 } else {

22

23 #ifdef SERVICE_FEE_DISCOUNT

24 if (costPrice > 5000) {

25 serviceFee = 100;

26 } else {

27 serviceFee = 50;

28 }

29 #endif

30

31 #ifdef TAX

32 property.taxes = costPrice / 10;

33 serviceFee += property.taxes;

34 printf ("Property taxes = J.f", property.
taxes);

35 #endif

36

37 #ifdef COMMISSION

38 property.commissionValue = costPrice /

20;
39 serviceFee += property.commissionValue;
40 printf ("Commission = %f", property.
commissionValue) ;

41 #endif

42

43 property.salesPrice = costPrice +
serviceFee;

44

45 return property.salesPrice;

46 }

47

48

49 int main() {

50 float costPrice = 0;

51 scanf ("%f", &costPrice);

52 printf ("Sales price = %f",
calculatePropertyValue (costPrice));

53 %

Conditional compilation implies feature dependency
whenever a developer defines a variable in a feature and

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

uses it in another feature or when two or more features use
the same variable (Baniassad and Murphy, 1998; Ribeiro
et al., 2010, 2014; Rodrigues et al., 2016). For instance, in
Listing 1, the serviceFee variable is defined outside any
#ifdef, meaning that it is defined in a mandatory feature,
which, in this example, we can call as the sale of real es-
tate feature. In addition, serviceFee is used in features
SERVICE_FEE_DISCOUNT (lines 25 and 27), TAX (line 33),
and COMMISSION (line 39). Therefore, there is feature de-
pendency between (i) SERVICE_FEE_DISCOUNT and TAX,
(i) SERVICE_FEE_DISCOUNT and COMMISSION and (iii) TAX
and COMMISSION. Also, there are feature dependencies be-
tween the mandatory feature and each of the other three fea-
tures. In this example, the serviceFee variable is called de-
pendent variable as it is the element that causes the depen-
dency.

Variability is the concept that allows deriving software
systems (program variants) from a common source code by
setting configuration options as enabled or disabled (Melo
et al., 2017). Degrees of variability in configurable systems
refer to the number of different program variants from com-
mon source code (Melo et al., 2017). In source code with
#ifdef, we can quantify degrees of variability by the num-
ber of different feature constants and the number of different
feature expressions. Taking Listing 1 as a motivating exam-
ple, this program has 5 feature expressions (lines 5, 9, 23,
31, and 37) and 3 feature constants (COMMISSION, TAX, and
SERVICE_FEE_DISCOUNT). Considering the programs used
in this study, Listing 1 is a program with more variability.

In Listing 1, we can see that, to understand the behav-
ior of serviceFee dependent variable, the developer
should at least consider: (i) SERVICE_FEE_DISCOUNT,
TAX, and COMMISSION features enabled, (ii)
SERVICE_FEE_DISCOUNT, TAX, and COMMISSION fea-
tures disabled, (iii) SERVICE_FEE_DISCOUNT feature
enabled and TAX, and COMMISSION features disabled, (iv)
TAX feature enabled and SERVICE_FEE_DISCOUNT, and
COMMISSION features disabled, (v) COMMISSION feature
enabled and SERVICE_FEE_DISCOUNT and TAX features
disabled, (vi) SERVICE_FEE_DISCOUNT and TAX features en-
abled and COMMISSION feature disabled, (vii) COMMISSION
and SERVICE_FEE_DISCOUNT features enabled and TAX fea-
ture disabled, and (viii) SERVICE_FEE_DISCOUNT feature
disabled and TAX and COMMISSION features enabled.

In this case, we considered a piece of source code with
only one dependent variable. Mentally simulating all these
scenarios with a larger number of dependent variables and
feature dependencies may increase the program comprehen-
sion effort. Also, we can see that, for programs with less vari-
ability, i.e. fewer number of features, the developer has fewer
possible scenarios to analyze. For programs with more vari-
ability, the developer needs to analyze more features and con-
sequently a greater number of possible scenarios.

The main goal of our experiments is to evaluate how de-
pendent variables impact the comprehensibility of config-
urable systems. A dependent variable is what imposes a de-
pendency relationship between features. The variation in the
amount of variable definition and variable usage can affect
the comprehensibility of configurable systems. In this sense,
the following research question guides our study 1:

Santos, Ribeiro and Sant’Anna, 2025

Square 1 Square 1
Rt Rt
&= 2pv &= 2pv
1 Domain 1 Domain 2 11| Domain2 Domain 1
@ (4
N 4DV N 4DV
2 Domain 1 Domain 2 12 Domain 2 Domain 1

4DV = 4 Dependent Variables

Figure 1. Latin Square design (2x2).

RQ1 — How does the number of dependent variables affect
the comprehensibility of configurable system source code?
Other aspects also need to be considered when referring
to feature dependent variables, like degrees of variability. In
this context, we decided to complement our investigation by
Study 2 by answering the following research question:
RQ2 — How do degrees of variability affect the comprehen-
sibility of configurable system?

2 Study 1: How the number of depen-
dent variables affects comprehensi-
bility.

To answer our research question one (RQ1), we carried out
a controlled experiment with 12 developers who analyzed
programs trying to specify their output.

2.1 Experiment Settings

We implemented four programs for the experiment. They are
similar to each other in terms of number of lines of code
and cyclomatic complexity. As we were only concerned with
the number of dependent variables, we fixed the number of
features, number of feature expressions and the number of
feature dependencies. All programs have three features and
seven feature dependencies.

In order to avoid learning effect, two of the programs are
on the sale of real estate domain (Domain 1) and the other two
are on the grade calculation domain (Domain 2). For each do-
main, one program has two dependent variables and the other
one has four dependent variables. In summary, for each do-
main, we implemented two programs with different numbers
of dependent variables.

We compared the comprehension effort the developers
spent to analyze each program. We quantified comprehen-
sion effort from different perspectives: (i) time until the de-
velopers provide the correct answer for the tasks, (ii) number
of attempts until the developers provide the correct answer,
(ii1) visual effort, and, (iv) heart-related biometrics. We quan-
tified visual effort by means of different metrics collected by
the use of an eye-tracking device. And we quantified heart-
related biometrics collected by the use of a smartwatch.

We designed our experiment as a standard Latin Square,
which is a common solution for this kind of experiment (Bai-
ley, 2008; Melo et al., 2017). The Latin square design con-
trols one factor and its variations, ensuring that no row or
column contains the same treatment twice. Figure 1 explains
our 2x2 Latin Square. The rows represent developers. In its

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

columns, we have the different domains. The acronyms in
the cells represent the treatments: 4DV represents a program
with 4 dependent variables, and 2DV represents a program
with 2 dependent variables. Developer 1 first analyzed a pro-
gram with 4 dependent variables and, afterward, a program
with 2 dependent variables. Developer 2 also analyzed pro-
grams with 4 and 2 dependent variables but in reverse order.

Listing 2: Program 2: Sale of real estate domain with 4 de-
pendent variables

struct Properties {
float salesPrice = 0;
int available = 1;

1

2

3

4

5 #ifdef COMMISSION

6 float commissionValue = 0;
7 #endif

8

9 #ifdef TAX

10 float taxes = 0;

11 #endif
12 } property;
13

14 float calculatePropertyValue(float costPrice) {
15 float serviceFee = 0;
16 float extraFee = 0;

17

18 if (property.available == 0) {

19 printf ("Property blocked! Sale not made!");

20 property.salesPrice = 0;

21 return property.salesPrice;

22} else {

23

24 #ifdef SERVICE_FEE_DISCOUNT

25 if (costPrice > 5000) {

26 serviceFee = 100;

27 } else {

28 serviceFee = 50;

29 }

30 #endif

31

32 #ifdef TAX

33 property.taxes = costPrice / 10;

34 property.salesPrice += property.taxes;

35 printf ("Value of property taxes = %f",
property.taxes);

36 #endif

37

38 #ifdef COMMISSION

39 property.commissionValue = costPrice / 20;

40 extraFee += property.commissionValue;

41 printf ("Comission = %f", property.
commissionValue);

42 #endif

43

44 property.salesPrice += costPrice +
serviceFee + extraFee;

45

46 return property.salesPrice;

47 %

48 }

49

50 int main() {

51 float costPrice = 0;

52 scanf ("%f", &costPrice);

53 printf ("Sales price = Jf",
calculatePropertyValue (costPrice));

54 }

To avoid learning effects due to repetition of domains we
distribute the domains along our Latin square columns. Each
column has a different domain. Therefore, each developer

Santos, Ribeiro and Sant’Anna, 2025

analyzed two different programs with different numbers of
dependent variables and different domains.

We counted on 12 participants to run our experiment: six
programming professors, and six developers from the in-
dustry. We selected professors from the Federal Institute of
Bahia, a university in Brazil, and developers from three com-
panies in the same country. No compensation was provided
for the participants. All participants had experience with the
C language and were already familiar with #ifdef, as shown
in Table 1.

Table 1. Participants’ experience summary

Programming Developer
professor from the industry
Participants 6 6
Gender 3 male and 3 female 5 male and 1 female
Degree 4 Masters and 2 Ph.D. | 1 Master and 5 Graduates

4: more than 15 years
2: between 10-15 years

1: more than 15 years
3: between 10-15 years
2: between 5-10 years

6 6

C Experience

Prior Experience
with #ifdef

2.2 Programs

We implemented the programs for our experiment inspired
by real configurable systems (Abal et al., 2014; Melo et al.,
2017). We avoided pieces of code from real programs (like
the ones from Linux) because their complexity could af-
fect comprehensibility. Furthermore, to facilitate understand-
ing and to widen the audience of potential participants, we
wrote our programs in Portuguese, the participant’s native
language.

We used an eye-tracking device on a 32-inch screen to
record all gaze movements of participants. Our programs
should fit on a 50-line display window so that the eye-
tracking device could record all gaze movements of partic-
ipants.

Table 2. Metrics

Domain Program | LOC | CC | NFE | NOFC | NDV | NFD
Domain 1 Program 1 53 6 6 3 2 7
Program2 | 54 6 6 3 4 7
Domain 2 Program 3 | 49 7 8 3 2 7
Program4 | 46 8 8 3 4 7

In the same domain, the programs are similar in terms of
number of lines of code (LOC) (Lanza and Marinescu, 2007),
McCabe cyclomatic complexity (CC) (McCabe, 1976), num-
ber of feature expressions (NFE) (Liebig et al., 2010), num-
ber of features (NOFC) (Liebig et al., 2010) and number of
feature dependencies (NFD), as shown in Table 2. All pro-
grams have three features and seven feature dependencies. In
this case, we were particularly concerned with the variation
in the number of dependent variables (NDV). In the follow-
ing, we describe each program.

Program 1: sale of real estate with 2 dependent
variables. Listing 1 (Section 1) shows Program 1
source code. It has three features: COMMISSION, TAX
and SERVICE_FEE_DISCOUNT feature. COMMISSION cal-
culates the value of commission of a property sale. TAX

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

calculates the value of Government taxes and the fea-
ture SERVICE_FEE_DISCOUNT calculates the service fee.
This program has 2 dependent variables: costPrice and
serviceFee. The variable costPrice is defined in a
mandatory feature in line 14 and service- Fee is also
defined in a mandatory feature but in line 15. The variable
costPrice had 3 uses that generate dependencies: (i) in line
24 it is used within SERVICE_FEE_DISCOUNT feature, (ii) in
line 32 it is used within TAX feature and (iii) in line 38 it is
used within COMMISSION feature. The variable serviceFee
had 4 uses that generate dependencies, already described in
Section 1.

Program 2: sale of real estate with 4 dependent vari-
ables. Listing 2 shows Program 2. We rewrote the pro-
gram shown in Listing 1 by including 2 dependent variables:
salesPrice, defined in line 2, and extraFee, defined in
line 16.

The variable salesPrice is defined within a mandatory
feature. It causes a dependency because it is used within TAX
feature in line 34. The variable extraFee is also defined
within a mandatory feature. It causes a dependency because
it is used within COMMISSION feature in line 40.

Program 3 and Program 4: We replicated the same cha-
racteristics of Programs 1 and 2 in Programs 3 and 4. They
are available at our research share website.! Grade calcula-
tion is the domain of these programs.

2.3 Experiment Procedures

This study was conducted in accordance with the ethical
guidelines and regulations established by the Federal Insti-
tute of Bahia Ethics Committee. Approval for the study was
obtained from the committee before data collection.

We performed each trial of the experiment with each par-
ticipant individually. Before starting the experiment tasks,
we cleaned all material and equipment with alcohol gel and
asked the participants to fill out a consent form. All partici-
pants signed the consent form.

Then, the participant put on the smartwatch and we cali-
brated the eye-tracking device and the smartwatch. We also
synced the clock of the smartwatch with the time of the eye-
tracking computer. Before the participant started analyzing
the first program, we asked her or him to watch a two-minute
full-screen video of a fish swimming in an aquarium. We did
the same before the participants started analyzing the second
program. The video was intended to help participants relax
and allow us to record a baseline of her or his heart rate. We
learned, from previous studies, that a person’s biometric fea-
tures drop back to a baseline after about a minute of watching
the video (Fritz et al., 2014; Miiller and Fritz, 2015).

After the video, the participant analyzed the programs as
we planned in our Latin square design described in Section 2.
We observed the participant and monitored the time that she
or he spent completing each task. The participant had three
tasks per program. We give more details about the tasks in
Section 2.4. We used the tool that record the gaze data to
record the time. For each new task, the tool reset the timer.
We checked when the participant correctly specified the out-

Uhttps://zenodo.org/records/13308778

Santos, Ribeiro and Sant’Anna, 2025

put of the program and then stopped recording the time. The
participant was not allowed to proceed to the next task until
she or he correctly answered the task in progress. We counted
and registered the number of attempts the participant needed
to correctly answer each task.

We presented each program to the participants as static im-
ages displayed on a screen. Participants did not have access
to tools, IDEs, or browsers. For each participant, we recorded
x and y coordinates (fixations) via an eye tracker, and heart-
related biometrics via a smartwatch.

We performed each experiment trial individually in the
same lab using the same monitor to avoid unintended ef-
fects from different software and hardware environments.
The screen resolution was set to 1920 by 1080 pixels into a
32-inch LCD screen. We recorded all of the eye tracking data
using the open-source tool OGAMA (VoBkiihler et al., 2008).
We used the Tobii Eye tracker 5 device? and the Garmin
Fenix 5s smartwatch?.

2.4 Tasks

Each participant received a task instruction form that ex-
plained the experiment. Each participant had to understand
and realize the mental execution of two programs, one with
four dependent variables and the other with two dependent
variables. The order of programs depends on the Latin square.
Each participant also had to answer three tasks about each
program. We motivated the participant not to direct their eyes
off the screen while performing the task.

We explained to the participant the proposed scenarios and
initial values of each task before she or he started. The partici-
pant could also find these same instructions in the instruction
form. The three tasks force the participant to mentally sim-
ulate different configurations involving dependent variables.
To ensure the same difficulty level in all sets of tasks, we de-
fined the same three feature configuration scenarios for all
programs: (i) Task 01: all features enabled, (ii) Task 02: one
feature disabled and two features enabled, (iii) Task 03: all
features disabled.

For example, the first task about the two programs on Do-
main 1 (one with 2 dependent variables, the other with 4)
should be answered considering all features enabled as fol-
lows:

TASK 1: Consider:

FEATURES ENABLED:
COMMISSION and TAX.

FEATURES DISABLED: none.

INITIAL VALUES: costPrice = 2000 in line 52.

QUESTION: "What will be printed on line 50 when the
int main() function on line 39 is executed?”

SERVICE_FEE_DISCOUNT,

2.5 Experimental Results

In this section, we test our hypotheses and discuss the results.
In this study, we use Analysis of Variance (ANOVA) for hy-
pothesis testing. ANOVA is a statistical test used to analyze
the difference between the means of more than two groups.
We used p-value < 0.05 as the probability for rejecting null

Zhttps://gaming.tobii.com/product/eye-tracker-5/
3https://www.garmin.com/en-US/p/552237/

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

hypotheses. We ran our tests with the support of R.# In the
following, we present the results regarding each metric.

2.6 Time to provide the correct answer

We measured the time (in seconds) each participant took to
analyze each program. Our null hypothesis about this metric
is:

Hyt: There is no significant difference in the time to pro-
vide the correct answer to the tasks when comparing pro-
grams with different numbers of dependent variables.

Table 3. Mean time to provide the correct answer (in seconds)

With 2 dependent variables With 4 dependent variables
Program 1 ‘ Program 3 ‘ all programs | Program 2 ‘ Program 4 ‘ all programs
66 | 74 70 81 | 128] 105

Table 3 shows the mean time spent by participants for each
program. We had 6 participants who answered 3 tasks for
each program, which summed up a total of 18 answers per
program. In total, for four programs we had 72 observations.
Shapiro test confirmed that the data about time was normally
distributed.

Table 3 shows the mean time spent by all participants for
programs with 2 and 4 dependent variables. They spent a
mean time of 70 seconds analyzing programs with 2 depen-
dent variables and 105 seconds for programs with 4 depen-
dent variables. Our data revealed that there was a significant
difference in time for the participants to analyze programs
with different numbers of dependent variables (p-value =
0.04373). We, thus, reject our null hypothesis (Hot).

Result 1: Programs with four dependent variables re-
quired more time for the participants to answer the tasks
correctly than programs with two dependent variables.

2.7 Number of attempts needed until correct
answer

We measured the total number of attempts needed for the par-
ticipants until they specified the correct output of the pro-
grams. The participant scored one for each attempt for each
task correctly answered. This metric sums the total of at-
tempts for all participants for each program. Our null hypoth-
esis about this metric is:

Hya: There is no significant difference in number of at-
tempts needed until correct answer when comparing pro-
grams with different numbers of dependent variables.

Table 4. Total number of attempts needed until correct answer

With 2 dependent variables With 4 dependent variables
Program 1 [Program 3 | all programs | Program 2 | Program 4 [all programs
s | 1 | 3 s | 20 | 38

Table 4 shows the total number of attempts needed to spec-
ify the output correctly by all participants. They needed 37
attempts for programs with 2 dependent variables and 38 at-
tempts for programs with 4 dependent variables. Our data

“http://www.r-project.org/

Santos, Ribeiro and Sant’Anna, 2025

revealed no significant difference between the number of at-
tempts needed to specify the output correctly for programs
with 2 and 4 dependent variables. The p-value is 0.56163.
Based on this, we cannot reject our null hypothesis Hya.

This result confirms previous studies that showed that
most participants correctly executed tasks in programs with
#ifdef (Melo et al., 2016, 2017; Santos and Sant’Anna,
2019).

Result 2: We could not find significant difference in
the number of attempts needed for the participants un-
til giving the correct answer when comparing programs
with two and four dependent variables.

2.8 Visual effort

Regarding visual effort, we quantified the total number of fix-
ations executed by the participants. Also, we analyzed their
gaze transitions and attention maps.

2.8.1 Total number of fixations

The number of fixations increases when a text is difficult to
comprehend (Rayner, 2009). We counted the number of fix-
ations per program. Our null hypothesis about this metric is:

Hy f: There is no significant difference in the number of fix-
ations needed until providing the correct answer when com-
paring programs with different numbers of dependent vari-
ables.

Table 5. Number of fixations

With 2 dependent variable With 4 dependent variable
Program 1 [Program 3 | all programs | Program 2 | Program 4 [all programs
195 | 151 | 346 218 | 219] 437

Table 5 shows the total number of fixations the partici-
pants executed when analyzing the programs in order to spec-
ify their correct output. They executed 346 fixations in pro-
grams with 2 dependent variables and 437 fixations in pro-
grams with 4 dependent variables. Our data revealed that
the number of fixations was significantly different between
programs with different numbers of dependent variables (p-
value = 0.04479). We reject our null hypothesis (Hg f).

Result 3: Participants made more fixations to analyze
programs with four dependent variables.

2.8.2 Gaze transitions and attention maps

Gaze transitions (saccades) are rapid eye movements from
one place to another separated by pauses (Rayner, 2009). A
larger number of saccades in both directions indicates dif-
ficulty associated with understanding (Rayner, 1998, 2009).
An attention map is a heat map that displays an aggregation
of fixations.

Figure 2a and Figure 2b show our gaze transitions dia-
grams and attention maps related to programs 1 and 2 re-
spectively. Figure 3a and Figure 3b show our gaze transitions

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

Gaze transition diagram | attention map

(a) Program 1 with 2 dependent variables

Gaze transition diagram | attention map

(b) Program 2 with 4 dependent variables
Figure 2. Gaze transitions diagram and attention map of programs 1 and 2.

Gaze transition diagram | attention map

(a) Program 3 with 2 dependent variables

Gaze transition diagram attention map

(b) Program 4 with 4 dependent variables
Figure 3. Gaze transitions diagram and attention map of programs 3 and 4.

diagrams and attention maps related to programs 3 and 4 re-
spectively. We superimposed all individual gaze transitions
and attention maps of each participant. Each gaze transition
diagram and attention map is, thus, composed by the overlap-
ping of six individual gaze transitions and attention maps.

The gaze transitions diagrams reveal that participants ex-
ecuted more transitions on Program 2 (Figure 2b), which
has four dependent variables, than on Program 1 (Figure 2a)
which has two dependent variables. Program 1 and Program
2 are programs developed in the same domain 1. It is possible
to observe in Figure 2b a higher number of transitions toward
the top of the source code than in Figure 2a. We hypothe-
size that this occurs because programs with more dependent
variables force the participant to examine more parts of the
source code because dependencies are distributed to more
variables.

The attention map of Program 1 (Figure 2a) reveals
that participants’ attention was directed to the usages of
finalGrade variable. We hypothesize that this occurs be-
cause finalGrade variable concentrated most of dependen-
cies in this program generating more cognitive effort. The
attention map of Program 2 (Figure 2b) reveals that partic-

Santos, Ribeiro and Sant’Anna, 2025

ipants executed more transitions closed to the finalGrade
variable. Participants’ attention was directed to the usages
and definition of finalGrade variable. We hypothesize that
this occurs because, for programs with more dependent vari-
ables, the developer needs to look at more variable defini-
tions.

For programs in Domain 2, the gaze transitions diagrams
reveal that participants executed more transitions on Program
4 (Figure 3b), which has four dependent variables, than Pro-
gram 3 (Figure 3a), which has two dependent variables. This
scenario is the same as Domain 1. We observed in Figure 3b
a higher number of transitions toward the top of the source
code than in Figure 3a. Again, we hipothetize that programs
with more dependent variables force developers to look more
times at the region of variable definitions.

The attention map of Program 3 (Figure 3a) reveals
that participants’ attention was directed to the usages of
serviceFee variable. The attention maps show the two red
regions in the dependent variable. We hypothesize that this
occurs because serviceFee variable concentrated most of
dependencies in this program attracting more attention to this
area.

In summary, programs with more dependent variables
force the developer to direct their attention to more regions,
causing a more spread distribution of attention and transition
over distinct parts of source code.

2.9 Heart-related biometrics

Previous research has shown that heart-related biometrics
can be linked to difficulty in comprehending small code snip-
pets (Walter and Porges, 1976; Fritz et al., 2014; Nakagawa
et al., 2014; Miiller and Fritz, 2015). The general concept
behind these studies is that heart-related biometrics can be
used to determine the cognitive or mental effort required to
perform a task. The more difficult a task is, the higher the cog-
nitive effort, and the higher the heart rate variability (Hijazi
etal.,2021). A Heart Rate Variation (HRV) measures the vari-
ation in time between heartbeats (Walter and Porges, 1976).
In our study, we identified the total number of stressful mo-
ments experienced by the participants. To identify partici-
pants’ stressful moments, we monitored participants’ heart-
beats during task execution and recorded the moments when
there were variations in the heart rate.

We counted the number of stressful moments for programs
with 2 and 4 dependent variables. Our null hypothesis about
this metric is:

Hyh: There is no significant difference in the number of
stressful moments to specify the output of the programs when
comparing programs with different numbers of dependent
variables.

To test this hypothesis, we used a low-cost smartwatch in
our study. The Garmin Fenix 5s smartwatch does not pro-
vide raw data of heartbeats. We performed our analyzes only
based on calculating averages, variance, and standard devia-
tion according to the graphs collected by the smartwatch.

Figure 4 shows an example of data captured by the smart-
watch. Visually, in Figure 4a we detected a variation (stress-
ful moments) in the heart rate of one of the participants. Be-
tween 10:22 AM and 10:24 AM the participant registered

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

10:22 AM - 10:24 AM

@ 103 bpm 1
Heart Rate

10:21 AM - 10:24 AM
70 Medium

Zone Stress

N

(a) HRV (b) Stress Level
Figure 4. Stressful moments collected by smartwatch

Table 6. Total number of stressful moments

With 2 dependent variables With 4 dependent variables
Programs Program 1 | Program 3 | all programs | Program 2 | Program 4 | all programs
stressful moments 2 2 4 4 4

total of 2 2 4 3 3 6
participants

103 heartbeats per minute. Then, we check if this value is
above the mean and standard deviation.

All stressful moments measurements were normalized us-
ing the baseline measurements that we collected during the
second minute of the two-minute swimming fish video. In
summary, the period evaluated for each participant for each
program was from the last minute of the video until the end
of the third task of each program.

Table 6 shows the sum of number of stressful moments
of all participants during the tasks and the total number of
different participants accounted for these stressful moments.
Four participants had 4 stressful moments for programs with
2 dependent variables and six participants had 8 stressful mo-
ments for programs with 4 dependent variables. Our data
revealed no significant difference between the number of
stressful moments needed to specify the output correctly in
programs with 2 and 4 dependent variables. The p-value
0.5381. Based on this, we cannot reject our null hypothesis
Hoh.

Result 4: We could not find significant difference in
the number of stressful moments when comparing pro-
grams with two and four dependent variables.

2.10 Gaze Movements Analysis

Our Result 4 shows that there was no significant difference
in terms of the number of stressful moments while partici-
pants analyzed programs with different numbers of depen-
dent variables. Despite this, we decided to investigate what
was happening in terms of gaze movements during stressful
moments.

An scan path is the sequence of all fixations points of a
participant as a “connect-the-dots” visualization. We gener-
ated individual scan paths of all participants when happened
a variation in the heart rate. Figure 4 shows an example of
stressful moments of one of the participants. Based on Fig-
ure 4, we tried to identify what could have caused a variation

Santos, Ribeiro and Sant’Anna, 2025

in the participant’s heart rate during source code analysis. For
that, we used a scan path to identify where he or she was look-
ing at the moment of the stressful moments and why it might
have generated cognitive effort.

Table 6 shows that 2 participants had 2 stressful moments
analyzing Program 1 (2 dependent variables). We generated
two scan paths, each one for each moment when each of the
two stressful moments happened. In both cases, the partici-
pants were executing tasks with all features enabled. Figure
Sa shows the two scan paths. The participants looked for in-
formation about variable definitions at the top of the code.
After that, participants followed the normal flow of reading.
In Figure 5b we superimposed the two individual scan paths
corresponding to stressful moments. We also generated at-
tention maps corresponding to the participants’ stressful mo-
ments. Figure 5b shows the gaze movements of participants
were concentrated in the region of variable definitions and
variable usages when stressful moments occurred. Three red
regions indicate that participants’ attention was directed to
the definition and usages of finalGrade variable. We hy-
pothesize that this occurs because f inalGrade variable con-
centrated the most of dependencies in this program generat-
ing more cognitive effort.

Figure 6a represents scan paths of participants analyzing
Program 3, another program with 2 dependent variables. Two
participants register stressful moments. In the first scan path,
the participant was considering all features disabled. We ob-
served that the participant realized long saccades and re-
gressions to the bottom of the screen, exceeding the lim-
its of the screen. We suppose that the participant did not
well understand the task and had to look to the instructions
in the paper sometimes. This may have caused the stress-
ful moments. In the second scan path, the participant was
considering the TAX feature disabled. The participant navi-
gated along the source code trying to resolve the task. Fig-
ure 6b is composed by the overlapping of the two individual
scan paths and attention maps during stressful moments. The
red region on COMISSION feature indicates that participants’
attention was directed to the definition and usages of the
variables of the enabled feature. We hypothesize the stress-
ful moments occurred because analyzing programs with dis-
abled features is not a trivial task. Participants concentrated
their gaze movements in #ifdef of COMISSION feature and
around serviceFee dependent variable.

Figure 5c shows four scan paths participants performed in
Program 2 (4 dependent variables) during stressful moments.
The participants performed long saccades and regressions be-
tween variable definitions and variable usages. In Figure 5d,
we have the overlapping of the four individual scan paths
and attention maps corresponding to participants’ gaze move-
ments during the four stressful moments occurrences. Figure
5d confirms that gaze movements concentrated in the region
of variable definitions and variable usages when stressful mo-
ments occurred. The red region indicates that participants’
attention was directed to the usage of finalGrade variable.
Figure 5d shows only one red region in programs with 4 de-
pendent variables, and Figure 5b shows four red regions in
programs with 2 dependent variables. We hypothesize that
this occurs because programs with more dependent variables
force the participant to examine more parts of the source code

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

Participant A Participant B

(a) Individual scan path of participants analyzing Program 1.

(b) Gaze movements of participants analyzing Program 1.

Participant A Participant B

Participant C Participant D

(c) Individual scan path of participants from Program 2 with 4 de-
pendent variables.

(d) Gaze movements diagram of Program 2 with 4 dependent vari-
ables.
Figure 5. Gaze movements of Program 1 and 2 at the moment of stressful
moments

Santos, Ribeiro and Sant’Anna, 2025

because dependencies are distributed to more variables. The
same happens in Program 4 also with 4 dependent variables.
Participants performed long saccades and regressions caus-
ing a higher distribution of attention over distinct parts of
source code as shown in Figures 6¢ and 6d.

In summary, participants seem to have performed long sac-
cades and regressions during stressful moments. Also, stress-
ful moments concentrated fixations in the region of variable
definitions and variable usages. However, it is important to
highlight that these findings were based on limited observa-
tions of only few participants.

2.11 Threats to Validity
2.11.1 External validity

Programs. Due to limitations of the eye-tracking device, we
used small programs. But, our programs were inspired by real
configurable systems. For this reason, our results may hold
to other programs. However, for programs over 50 lines of
code and more than three features, there may be additional
effects that we have not observed.

Lab settings. Our results are also limited to the environ-
ment we adopted. Participants did not interact with the source
code or use tools or IDEs. This is different from a usual real
work environment. However, we had this limitation because
the source code should fit on the screen to properly work with
our eye-tracking device.

Participants. This study had a relatively small number of
participants. However, we took steps to minimize threats to
validity and ensure reliable results. First, we selected partici-
pants with programming experience. We collected data from
professional developers and professors of programming lan-
guages. Additionally, participants were evaluated under con-
trolled conditions. This helped to minimize unexpected ef-
fects and ensure that the results were accurate.

Experimental context. Heart rate data were collected in
a simulated programming environment, where participants
worked on small-scale programming tasks. These tasks were
constrained in terms of the number of lines of code to com-
ply with the requirements of the eye-tracking device, which
imposed limitations on session duration. Consequently, it is
possible that these tasks did not generate sufficient cognitive
load or emotional engagement to elicit measurable variations
in heart rate. This limitation may affect the generalizability
of our findings to real-world programming scenarios, where
tasks are typically more complex and prolonged.

2.11.2 Internal validity

Programming language. We wrote our programs in C, be-
cause most of the studies and repositories of programs con-
taining #ifdef are in C language. The knowledge of partic-
ipants in C could influence our results. To minimize that, we
only admitted participants with previous experience on C.
Participants’ experience. We controlled confounding fac-
tors via the Latin square design and randomization. We se-
lected 12 participants experts in language C. They are pro-
gramming language professors and developers from indus-

try.

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

Participant A Participant B

(a) Individual scan path of participants analyzing Program 3.

(b) Gaze movements of participants analyzing Program 3.

Participant A Participant B

e

Participant C Participant D

(c) Individual scan path of participants from Program 4 with 4
dependent variables.

(d) Gaze movements diagram of Program 4 with 4 dependent
variables.
Figure 6. Gaze movements of Program 3 and 4 at the moment of stressful
moments

Santos, Ribeiro and Sant’Anna, 2025

Lab settings. All experiment trials were done in the same
lab and with our supervision. We observed temperature and
brightness conditions. At the moment of the execution of the
experiment, the lab had only the participant and one of the
authors.

2.11.3 Construct validity

Comprehensibility measurement. Measuring comprehensi-
bility is not trivial because it involves human factors. There-
fore, it is always a threat to construct validity. To minimize
this threat, we quantified comprehensibility by means of dif-
ferent metrics, all of them already been used in previous stud-
ies.

3 Study 2 - How degrees of variability
affect program comprehensibility

To answer our research question two (RQ2), we carried out
a controlled experiment with 12 developers, who analyzed
programs trying to specify their output.

3.1 Experiment Settings

We performed this experiment with the same participants of
Study 1 (Section 2). We took advantage of the availability of
the participants and also executed the tasks of this experiment
just after the tasks of Study 1. So, we controlled confounding
factors using the same experimental design and procedures
of Study 1 (Section 2.1).

Developers analyzed 4 similar programs in terms of lines
of code, cyclomatic complexity, and number of feature de-
pendencies. The differences between the programs were the
domain and degrees of variability. We implemented different
degrees of variability with variations in the number of feature
expressions and feature constants. We considered programs
with more variability all the programs implemented with 6
feature expressions and 3 feature constants, and programs
with less variability all the programs implemented with 3 fea-
ture expressions and 1 feature constant. We used programs
with a maximum of 6 feature expressions due to display lim-
itations of the code on the screen.

We quantified participant comprehension effort by means
of: (i) time to analyze each program, (ii) the number of at-
tempts until developers provide the correct answer, (iii) vi-
sual effort, and, (iv) heart-related biometrics. Participants
used eye-tracking and a smartwatch to collect data. In order
to avoid learning effect, we selected two different domains:
sale of products (Domain 1) and game of hit the target (Do-
main 2). We fixed the number of feature dependencies (6
dependencies) and the number of dependent variables (3 de-
pendent variables) as the same for all programs. Then, we
implemented programs with different degrees of variability.
Two programs were implemented with less variability and
the other two were implemented with more variability. In
summary, for each domain, we had two programs with dif-
ferent degrees of variability.

We designed our experiment as a standard Latin Square.
Study 1 discusses Latin Square design (Section 2.1). Figure

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

Square 1 Square 1
S °
lﬁ— +VAR | -VAR ﬁé +VAR | -VAR
1 Domain 1 s 11 Domain 1
lﬁi -VAR [+VAR 2 |-VAR [+VAR
2 Domain 1 !ﬁ Domain 1

12

+ VAR = More variability. Programs with 6 feature expressions and 3 feature constants
- VAR = Less variability. Programs with 3 feature expressions and 1 feature constants

Figure 7. Latin Square design (2x2).

7 explains our 2x2 Latin Square. In its cells, we have the treat-
ment, in this case, the degree of variability. The acronyms in
the cells represent the program characteristics: +VAR repre-
sents a program with more variability and -VAR represents a
program with less variability. The lines represent developers.
Developer 1 firstly analyzed a program with more variability,
and, afterwards, a program with less variability. Developer 2
also analyzed both programs but in reverse order.

Listing 3: Program 1: Sale of products domain with 3 feature
expressions and 1 feature constant

1 struct Products {
2 int totalProductsForSale = 10;
3 #ifdef PRODUCT_CONTROL
4 int totalProductsPurchased = 20;
5 int minimumNumberProducts = 5;
6 #endif
7 int totalProductsSold = 0;
8 } product;
9 float sellProduct (int numberOfProducts)
{
10 float unitaryValue = 5.0;
11 #ifdef PRODUCT_CONTROL
12 if (product.totalProductsForSale -
number0fProducts < 0) {
13 printf ("Insufficient number of
products!");
14 return O;
15 } else {
16 if (product.totalProductsForSale <
product.minimumNumberProducts
) Ao
17 printf ("Last units!
Readjusted price");
18 unitaryValue = unitaryValue +
2.0;
19 product.totalProductsForSale +=
product.
totalProductsPurchased;
20 }
21 #endif
22 printf ("Product sold.");
23 product.totalProductsForSale -=
number0fProducts;
24 product.totalProductsSold +=
number0fProducts;
25 #ifdef PRODUCT_CONTROL
26 }
27 #endif
28 return numberOfProducts * unitaryValue;
29 }
30 int main() {
31 int numberOfProducts = 0;
32 scanf ("%d", &numberOfProducts);
33 printf ("Sale price = %f", sellProduct (

number0fProducts));
34 }

To avoid learning effects due repetition of domains we dis-
tributed the domains along our Latin square column as in our

Santos, Ribeiro and Sant’Anna, 2025

Study 1 (Section 2.1). Thus, each developer analyzed two dif-
ferent programs, each one in a domain different to the other.
In total 12 participants ran our experiment, the same individ-
uals who participated in Study 1 (Section 2.1).

3.2 Programs

Within the same domain, the programs are similar in terms of
number of lines of code (LOC) (Lanza and Marinescu, 2007),
McCabe cyclomatic complexity (CC) (McCabe, 1976), num-
ber of dependent variables (NDV) and and number of fea-
ture dependencies (NFD). All programs have three depen-
dent variables and six feature dependencies, as shown in Ta-
ble 7. In this case, we were particularly concerned with the
variation in the number of feature expressions (NFE) (Liebig
et al., 2010) and number of features (NOFC) (Liebig et al.,
2010).

Table 7. Metrics

Domain Program | LOC | CC | NFE | NOFC | NDV | NFD
Domain 1 Program 1 34 6 3 1 3 6
Program2 | 40 6 6 3 3 6
. Program 3 | 40 7 3 1 3 6
Domain2 |\ joram4 | 44 | 8 | 6 3 3 6

Listing 4: Program 2: Sale of products domain with 6 feature
expressions and 3 feature constant

1 struct Products {

2 int totalProductsForSale = 10;

3 #ifdef BUY_PRODUCT

4 int totalProductsPurchased = 20;
5 #endif

6 #ifdef MINIMUN_NUMBER_PRODUCTS

7 int minimumNumberProducts = 5;

8 #endif

9 int totalProductsSold = 0;

10 } product;

11 float sellProduct (int numberOfProducts) {

12 float unitaryValue = 5.0;

13 #ifdef PRODUCT_CONTROL

14 if (product.totalProductsForSale -

number0fProducts < 0) {

15 printf ("Insufficient number of
products!");

16 return 0;

17 } else {

18 #endif

19 product.totalProductsForSale -=
number0fProducts;

20 #ifdef MINIMUN_NUMBER_PRODUCTS

21 if (product.totalProductsForSale <
product.minimumNumberProducts) {

22 printf ("Last units! Readjusted

price");

23 unitaryValue = unitaryValue + 2.0;

24 #ifdef BUY_PRODUCT

25 product.totalProductsForSale +=

product.totalProductsPurchased;

26 #endif

27 }

28 #endif

29 printf ("Product sold.");

30 product.totalProductsSold +=
numberOfProducts;

31 #ifdef PRODUCT_CONTROL

32 }

33 #endif

34 return numberOfProducts * unitaryValue;

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

35 %}

36 int main() {

37 int numberOfProducts = 0;

38 scanf ("%d", &numberOfProducts);

39 printf ("Sale Price = %f", sellProduct (
number0fProducts));

40 ¥

We implemented the programs for this experiment in-
spired by our previous study (Santos and Sant’Anna, 2019)
and by common programming tasks. In the following, we de-
scribe each program.

Program 1: sale of products with less variability. List-
ing 3 shows the source code of Program 1. It has only
one feature constant labeled PRODUCT_CONTROL. The feature
PRODUCT_CONTROL verifies the minimum number of prod-
ucts available for sale, controls the number of products avail-
able for sale, and increases products for sale. This program
has 3 feature expressions. The first one is in line 3, the second
one in line 11, and the last one in line 25.

Program 2: sale of products with more vari-
ability. Listing 4 shows the source code of Pro-
gram 2. It has three feature constants: BUY_PRODUCT,
PRODUCT_CONTROL, and MINIMUN_NUMBER_PRODUCTS.
The feature BUY_PRODUCT increases products for sale.
The feature MINIMUN_NUMBER_PRODUCTS verifies the
minimum number of products available for sale, and the
feature PRODUCT _CONTROL controls the number of products
available for sale. This program has 6 feature expressions
defined in lines 3, 6, 13, 20, 24, and 31.

Program 3 and Program 4: We replicated the same cha-
racteristics of Programs 1 and 2 in Programs 3 and 4. They
are available at our research share website.> Calculate a
player’s score is the domain of these programs.

3.3 EXPERIMENT PROCEDURES

The procedures of this study are the same of Study 1, de-
scribed in Section 2.3.

3.4 Tasks

This experiment was carried out together with the experiment
of Study 1 (Section 2). Thus, the tasks of both experiments
should be similar to avoid confounding factors. For example,
different types of tasks could have generated discomfort or
apprehension in participants, demanding more time for new
tasks and more explanations of new procedures. Thus, we
decided to also have three tasks for this study in which par-
ticipants should specify the output for each program.

Each participant had to understand and realize the mental
execution of two programs: one program with more variabil-
ity and the other with less variability. The order of programs
depended on the Latin Square.

The programs with one feature constant have only two sce-
narios to be analyzed: (i) with the feature enabled and (ii)
with the feature disabled. Thus, to ensure the same difficulty
level in all sets of tasks, we defined three tasks for all pro-
grams as follows:

Shttps://zenodo.org/records/13308778

Santos, Ribeiro and Sant’Anna, 2025

(i) Task O1: all features enabled, (ii) Task 02: all features
enabled and new initial variables values, (iii) Task 03: all fea-
tures disabled.

We explained the proposed scenarios and initial values of
each task to each participant before he or she started the task.
The participant could also find similar instructions in the in-
struction form. For example, the first task about the two pro-
grams should be answered considering all features enabled.
The task was presented to the participants as follows:

TASK 1: Consider:

FEATURE ENABLED: PRODUCT _CONTROL.

FEATURES DISABLED: none.

INITIAL VALUES: number0fProducts = 6 in line 32.

QUESTION: ”What will be printed on line 33 when the
int main() function on line 30 is executed?”

Tasks of Program 1 (with less variability) and of Program
2 (with more variability) were similar. The difference is only
the names of features enabled and disabled. And, according
to our Latin Square, we allocated half of the participants to
execute the tasks based on Program 1, and the other half to
execute the tasks based on Program 2.

All artifacts used in our experiment are available at our re-
search share website. In the following, we present the results
regarding each metric.

3.5 Experimental Results
3.5.1 Time to provide the correct answer

We measured the time (in seconds) each participant took to
analyze each program. Our null hypothesis about this metric
is:

Hyt: There is no significant difference in the time to pro-
vide the correct answer to the tasks when comparing pro-
grams with different degrees of variability.

Table 8. Mean time to provide the correct answer (in seconds)

With less variability ‘With more variability
Program 1 [Program 3 | all programs | Program 2 | Program 4 [all programs
% | 12 | 5 | 93 | o4

Rows in Table 8 show the mean time spent by participants
for each program. Shapiro test confirmed that the data about
the time to specify output was normally distributed. Table 8
shows the mean time spent by all participants for programs
with different degrees of variability. They spent a mean time
of 83 seconds analyzing programs with less variability and
94 seconds for programs with more variability. Our data re-
vealed that was no significant difference in time for develop-
ers to analyze programs with different degrees of variability
(p-value = 0.3735). We, thus, cannot reject our null hypothe-
sis (Hot).

Result 1: Programs with more variability did not
require more time for participants to answer the
tasks correctly than programs with less variability.

Shttps://zenodo.org/records/13308778

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

3.6 Number of attempts needed until correct
answer

We counted the total number of attempts participants needed
to specify the output of the programs correctly, he or she
scored one for each attempt for each task. Our null hypothe-
sis about this metric is:

Hya: There is no significant difference in the number of at-
tempts needed until the correct answer when comparing pro-
grams with different degrees of variability.

Table 9. Total number of attempts needed until correct answer

With less variability With more variability
Program 1 [Program 3 | all programs | Program 2 | Program 4 [all programs
R N U T 9 | 2 |

Table 9 shows the total number of attempts needed to spec-
ify the output correctly by all participants. They needed 38 at-
tempts for programs with less variability and 39 attempts for
programs with more variability. The x? test (Pearson’s Chi-
squared test) (Camilli and Hopkins, 1978) revealed no sig-
nificant difference between the number of attempts needed
to specify the output correctly in programs with different de-
grees of variability. The p-values is 1. Based on this, we can-
not reject our null hypothesis Hya.

Result 2: There was no significant difference in the
number of attempts needed for participants until giv-
ing the correct answer when comparing programs
with different degrees of variability.

3.7 Visual effort

Regarding visual effort, as in study 1 (Section 2), we quanti-
fied the total number of fixations executed by the participants.
Also, we analyzed their gaze transitions and attention maps.

Total number of fixations

We counted the number of fixations per program. Our null
hypothesis about this metric is:

Hy f: There is no significant difference in the number of fix-
ations to specify the output when comparing programs with
different degrees of variability.

Table 10. Number of fixations

With less variability ‘With more variability
Program 1 [Program 3 | all programs | Program 2 | Program 4 [all programs
195 | 151 | 346 218 [219] 437

Table 10 shows the total number of fixations the partici-
pants executed when analyzing the programs in order to spec-
ify their correct output. They executed 171 fixations for pro-
grams with less variability and 213 fixations for programs
with more variability. Our data revealed that the number of
fixations was not significantly different between programs
with different degrees of variability (p-value = 0.11485). We
cannot reject our null hypothesis (Hy f)

Result 3: Developers did not make more fixations
to understand programs with different degrees of
variability.

Santos, Ribeiro and Sant’Anna, 2025

Gaze transition diagram | attention map

(a) Program 1 with less variability

Gaze transition diagram attention map

YT v I

P i

\{”‘JH x'1 % h‘-«r "l» ‘._.‘ }

(b) Program 2 with more variability

Figure 8. Gaze transitions diagram and attention map of programs 3 and 4.

Gaze transitions and attention map

Figure 8a and Figure 8b show our gaze transitions dia-
grams and attention maps related to programs 1 and 2 re-
spectively. Figure 9a and Figure 9b show our gaze transitions
diagrams and attention maps related to programs 3 and 4 re-
spectively. We superimposed all individual gaze transitions
and attention maps of each participant. Each gaze transition
diagram and attention map are, thus, composed by the over-
lapping of six individual gaze transitions and attention maps.

The gaze transitions diagrams reveal that participants exe-
cuted more transitions on Program 2 (Figure 8b), which has
more variability, than Program 1 (Figure 8a), which has more
variability. Program 1 and Program 2 are programs devel-
oped in the same domain 1. It is possible to observe in Figure
8b a greater distribution of transitions toward the top of the
source code than in Figure 8a. We hypothesize that this oc-
curs because programs with more variability force the partici-
pant to simulate different configurations of enabled/disabled
features.

The attention map of Program 1 (Figure 8a) reveals
that participants’ attention was directed to the usages of
roundPoints variable. In this case, participants did not con-
centrate their attention on #ifdef clauses. We hypothesize
that this occurs because roundPoints variable concentrated
the most of dependencies in this program generating more
cognitive effort. The attention map of Program 2 (Figure
8b) reveals that participants, when analyzing programs with
more variability, needed to navigate overall source code, and,
as a consequence, the attentions are more distributed along
the source code. Programs with more variability force the par-
ticipant to simulate different configurations of enabled/dis-
abled features.

For programs in domain 2, the gaze transitions diagram
reveals that participants executed more transitions on Pro-
gram 4 (Figure 9b), which has more variability, than Pro-
gram 3 (Figure 9a) which has less variability. This scenario
is the same as domain 1. We observed in Figure 9b a greater
distribution of transitions toward the top of the source code
than transitions in Figure 9a. When analyzing programs with
more variability, participants navigated between feature ex-
pression regions, and, as a consequence, the gaze transitions

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

attention map

Gaze transition diagram |

(a) Program 3 with less variability

Gaze transition diagram |

attention map

(b) Program 4 with more variability
Figure 9. Gaze transitions diagram and attention map of programs 3 and 4.

were more distributed along the source code. In these cases,
participants needed to realize long transitions to feature ex-
pression regions and variable definitions regions.

The attention map of Program 3 (Figure 9a) reveals
that participants’ attention was directed to the usages of
totalProductsForSale variable. We hypothesize that this
occurs because totalProductsForSale variable concen-
trated most of the dependencies of this program generating
more attention in this area. The attention map of Program 4
(Figure 3b), also shows that participants’ attention was di-
rected to the usages of totalProductsForSale variable.
The attention maps show a more widespread distribution of
attention overall source codes. This leads to the following
result.

In summary, programs with more variability forced devel-
opers to direct their attention to more regions, causing a more
widespread distribution of attention and transition over dis-
tinct parts of source code.

3.8 Heart-related biometrics

We counted the number of stressful moments for programs
with different degrees of variability, as in study 1 (Section 2).
Our null hypothesis about this metric is:

Hyh: There is no significant difference in the number of
stressful moments to specify the output of the programs when
comparing programs with different degrees of variability.

Table 11. Total number of stressful moments

With less variability With more variability
Programs Program 1 | Program 3 | all programs | Program 2 | Program 4 | all programs
stressful moments 1 4 5 3 5
total of
participants 1 3 4 3 3 6

Table 11 shows the total number of stressful moments of
participants during the tasks. Four participants had 5 stress-
ful moments for programs with less variability and six par-
ticipants had 8 stressful moments for programs with more
variability. The x? test revealed no significant difference be-
tween the number of stressful moments needed to specify
the output correctly in programs with different degrees of
variability. The value x?2 is 0.375, and the p-values are 0.54.
Based on this, we cannot reject our null hypothesis Hyh.

Santos, Ribeiro and Sant’Anna, 2025

Result 4: There was no significant difference in the
number of stressful moments until giving the correct
answer when comparing programs with different de-
grees of variability.

3.9 GAZE MOVEMENTS ANALYSIS

Our Result 4 shows that there was no significant difference
in terms of stressful moments while partici-pants analyzed
programs with different degrees of variability. However, as
in study 1 (Section 2), we decided to investigate what was
happening in terms of gaze movements during stressful mo-
ments.

1 struct Pr

#itde " CONTROL ' Participant A

product juctsSold %= numberOfProducts
#ifdef PRODUCT CONTROL

2 #endif
8 return numberOfProducts * unitaryValue;
e = 1Prod

Figure 10. Individual scan path of participants from program 1 (less vari-
ability).

Figure 11. Gaze movements diagrams of Program 1 (less variability).

We generated scan paths of all participants’ stressful mo-
ments to identify what happened when they had a variance
in Heart Rate and Stress Level.

Figure 10 shows a scan path of the only participant who
had stressful moments while analyzing Program 1. We gen-
erated a scan path at the moment the stressful moments hap-
pened. This heart variation happened while he/she answered
the third task, which had the program with all features dis-
abled. In Figure 11 we have the scan path image and the at-
tention map during the stressful moment. Figure 11 shows
that the gaze movements were concentrated in the region of
CONTROL_PRODUCT feature. We did not expect the partici-
pant’s gaze movements to focus on a disabled feature. We
hypothesized that stressful moments happened when the par-
ticipant perceived that he or she was analyzing a piece of
code that contained a disabled feature. Analyzing programs

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

Participant A Participant B

Participant C Participant D

(a) Individual scan path of participants from program 3 (less variabil-
ity).

(b) Gaze movements diagram of Program 3 (less variability).

Figure 12. Gaze movements of Program 3 in the moment of stressful mo-
ments

Participant A Partcipant 8 Participant C

(a) Individual scan path of participants from Program 2 (more variabil-
ity).

(b) Gaze movements diagram of Program 2 (more variability).

Figure 13. Gaze movements of Program 2 in the moment of stressful mo-
ments

with disabled features is not a trivial task. The participant
concentrated their gaze movements, during the stressful mo-
ments, in a disabled feature.

Figure 12a represents scan paths of participants that ana-
lyzed Program 3, another program with less variability. Four

Santos, Ribeiro and Sant’Anna, 2025

Participant A Partcipant B Participant C

Participant D Participant E

(a) Individual scan path of participants from Program 4 (more vari-
ability).

(b) Gaze movements diagram of Program 4 (more variability).

Figure 14. Gaze movements of Program 4 in the moment of stressful mo-
ments

participants registered stressful moments. Similarly to what
we found in Study 1 (Section 2.5), most of the moments that
participants had a stressful moment they were executing long
gaze transitions. In this case, Figure 12a shows participants
B, C, and D executing long gaze transitions. Two of the four
participants had stressful moments while they were answer-
ing the third task, which has all features disabled. Figure 12b
is composed of the overlapping of the four individual scan
paths and attention maps during the heart variation of the four
participants. The red regions indicate that participants’ atten-
tion was directed to the usages of roundPoints variable. We
hypothesize that this occurs because roundPoints variable
concentrated most of the dependencies of this program gen-
erating more cognitive effort.

Figure 13a shows scan paths of participants that analyzed
Program 2, which has more variability. Participants per-
formed long gaze transitions with fixations distributed over
distinct parts of the source code. In Figure 13b we had the
overlapping of the four individual scan paths and attention
maps that occurred during stressful moments. Figure 13b
confirms the gaze movements distributed in the feature ex-
pressions region and dependent variables region. The same
happens in Program 4 also with more variability. Participants
performed long gaze transitions causing a widespread distri-
bution of attention over distinct parts of source code as shown
in Figures 14a and 14b. Again, most of participants were an-
swering the third task, which has all features disabled while
having a stressful moment.

In summary, participants seem to have performed long
gaze transitions during stressful moments and have made fix-
ations distributed over distinct parts of the source code. Also,

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

analyzing programs with disabled features is not a trivial task.
Some participants were analyzing programs with all features
disabled when they had stressful moments occurrence. How-
ever, it is important to highlight again that these findings
were based on limited observations and information.

3.10 Threats to Validity

Study 1 and 2 procedures were the same, described in sec-
tion 2 and 3. The programs and tasks were also similar, thus,
the threats to validity of these studies are the same. In addi-
tion, Study 2 includes further threats to validity, which are
described below.

3.10.1 Internal validity

Programs. Program 1 has an undisciplined #ifdef. We be-
came aware of this inclusion only after completing the stud-
ies. Although the literature suggests that such undisciplined
code may hinder comprehensibility, our findings indicate
that the presence of this undisciplined #ifdef did not have a
significant impact on comprehension. The metrics presented
in our results demonstrate no significant difference in com-
prehension between Program 1 and Program 2.

Fatigue. All participants began Study 2 immediately af-
ter completing Study 1, meaning any potential fatigue would
have affected all participants equally. In Study 1, each par-
ticipant performed two tasks, with an average duration of 1.5
minutes per task and a 2-minute break between them. These
short sessions were designed to minimize the risk of fatigue.
Additionally, in Study 2, we counterbalanced the order of
tasks to further reduce the potential effects of fatigue.

Learning. Participants may have gained experience while
performing the tasks in Study 1, potentially making the tasks
in Study 2 easier to complete. To mitigate this effect, we se-
lected participants who had prior experience with #ifdef.
Additionally, we implemented a 2-minute distraction task be-
tween activities, where participants were instructed to watch
avideo of fish in an aquarium. This task served to help partic-
ipants relax and allowed us to record their baseline heart rate,
while also minimizing the immediate transfer of learning be-
tween tasks. Additionally, we counterbalanced the tasks in
Study 2, varying their order among participants to further re-
duce learning effects.

4 Related Work

Previous research has indicated that #ifdef is considered
harmful to the comprehensibility of configurable system
source code (Spencer and Collyer, 1992; Feigenspan et al.,
2013; Medeiros et al., 2017). In this context, numerous stud-
ies have focused on identifying possible causes and effects
of this relation (Santos and Sant’Anna, 2019; Fenske et al.,
2020).

A group of researchers investigated the types of errors and
bugs in the source code of configurable systems. Medeiros et
al. found and identified syntax errors in releases and commits
of configurable systems (Medeiros et al., 2013). In another
study, Medeiros et al. performed an empirical study with 15

Santos, Ribeiro and Sant’Anna, 2025

systems and identified some types of errors that developers
have made in source code containing #ifdefs (Medeiros
et al., 2015). Abal et al. performed a qualitative study about
42 bugs collected from bug-fixing commits of the Linux ker-
nel repository, a large configurable system. They provided
insights into the nature and occurrence of what they call vari-
ability bugs, i.e. bugs caused by the use of #ifdefs (Abal
etal., 2014).

A variety of studies have focused on investigating prob-
lems when developers use the #ifdefs in undisciplined
ways. Malaquias et al. analyzed the importance of disci-
plined use of #ifdefs to facilitate the maintenance of con-
figurable systems (Malaquias et al., 2017). Medeiros et al.
proposed a catalog of refactorings to convert undisciplined
#ifdef usages into disciplined ones (Medeiros et al., 2017).
Da Costa et al. conducted a controlled experiment with the
use of eye tracker to compare comprehensibility of programs
with disciplined and undisciplined use of #ifdefs (da Costa
et al., 2021).

Other previous studies performed empirical studies related
to comprehensibility and maintainability of configurable sys-
tems. Melo et al. used an eye-tracking device to evaluate
the impact of #ifdefs in the comprehensibility of config-
urable systems (Melo et al., 2017). Another previous study
showed that feature dependencies impacted the comprehen-
sibility of programs with #ifdefs (Santos and Sant’Anna,
2019). Additionally, they showed that different types of fea-
ture dependencies may impact comprehensibility in differ-
ent degrees (Santos and Sant’Anna, 2019). Medeiros et al.
performed an empirical study to evaluate a technique of de-
tecting configuration-related weaknesses in configurable sys-
tems (Medeiros et al., 2020). Fenske et al. showed that func-
tions with #ifdefs generally changed more frequently and
more profoundly than other functions (Fenske et al., 2017).

Despite providing important contributions, none of these
studies analyzed their data taking dependent variables into
account. This is the main difference from our study, which
explicitly analyzed in detail how the number of dependent
variables affects the comprehensibility of configurable sys-
tems.

5 Conclusion

Here we answer our research questions.

RQI - How do different numbers of dependent variables
affect the comprehensibility of configurable system source
code?

Programs with more dependent variables were more
difficult to understand. Our results 1 and 3 show that pro-
grams with more dependent variables demanded more com-
prehension effort from participants. Developers spent more
time and more fixations when analyzing the programs with
four dependent variables. We hypothesize that this occurred
because, with more dependent variables, the developer needs
to look at more variable definitions. Furthermore, if the local
of dependent variables definitions are far from their usage
participant realize longer gaze transitions.

In practice, our results indicate that comprehensibility is
more negatively affected when the program increases the

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

number of dependent variables and when these variables are
defined at a point far from the points where they are used.
We encourage researchers and practitioners, whenever possi-
ble, to use fewer dependent variables in their code. For fu-
ture work, we suggest replicating this study with more par-
ticipants and including real environments and source codes.

RQ?2 - How do different degrees of variability affect the
comprehensibility of configurable system? by discussing dif-
ferent aspects of our findings.

Degrees of variability did not affect comprehensibility.

Our results 1, 2, 3, and 4 show that programs with more
variability did not demand more comprehension effort from
participants. Developers did not spend more time or make
more fixations when compared with programs with less vari-
ability. It is important to note that, in this study, we fixed
the number of dependent variables, i.e. all programs had the
same number of dependent variables and usages of them.
Therefore, the result is somehow aligned with the results of
Study 1 (Sections 2) in which comprehensibility was hin-
dered when we increased the number of dependent variables.
This result contradicts a previous study that says that more
variability increases debugging time (Melo et al., 2017). It is
important to say that, in their study, Melo et al. did not fix
the number of dependent variables, their task was debugging,
and the programs were not implemented with #ifdef.

Result 2 revealed that the number of attempts needed for
participants until giving the correct answer was not affected
by different degrees of variability. This result confirms pre-
vious studies that showed that most participants answer the
tasks correctly in programs with #ifdef (Melo et al., 2016,
2017; Santos and Sant’ Anna, 2019).

Based on our findings and observations during the experi-
ments, we see potential strategies to address feature depen-
dencies in configurable systems that may impact research
and practice and, thus, deserve to be further investigated.

From a research perspective, complexity metrics based on
the quantity of dependent variables should be defined and
studied. Furthermore, these metrics can be integrated into
software development tools to help developers identify func-
tions or features with a high number of dependent variables.
Such tools could highlight sections of code that require care-
ful testing, including test cases designed to examine how dif-
ferent features interact with or change the contents of depen-
dent variables. This identification could help developers pri-
oritize their efforts and improve system reliability and main-
tainability. Tools or IDE plugins may also provide develop-
ers with visualizations of feature dependencies and depen-
dence variables without the need for excessive code naviga-
tion.

Developers can also try to minimize the number of de-
pendent variables in their code. This can involve refactoring
source code to reduce unnecessary dependencies or define de-
pendent variables closer to their usage points. Such practices
may reduce the cognitive load required to understand the de-
pendent variables. By combining those strategies with fur-
ther empirical studies, researchers and practitioners can im-
prove their understanding about how useful it is to be aware
of the existence of feature dependencies and dependent vari-
ables in configurable systems.

In summary, we concluded that feature dependency may

Santos, Ribeiro and Sant’Anna, 2025

affect the comprehensibility of configurable system source
code when the source code contains a high number of depen-
dent variables. We hypothesize that this happens because de-
velopers need to direct more attention to dependent variables.
Also, comprehensibility is more negatively affected when a
dependent variable is defined at a point far from the points
where it is used.

The insights obtained from our studies can, in the future,
support developers of configurable systems to know the parts
of the source code they should take more care about. These
parts would be the ones with dependent variables that cause
a certain type of feature dependency.

Acknowledgements

This study was supported by the Brazilian National Council for Sci-
entific and Technological Development (CNPq) and Foundation to
the state of Bahia (FAPESB).

References

Abal, 1., Brabrand, C., and Wasowski, A. (2014). 42 vari-
ability bugs in the linux kernel: a qualitative analysis. In
29th ACM/IEEE international conference on Automated
software engineering.

Bailey, R. A. (2008). Design of comparative experiments,
volume 25. Cambridge University Press.

Baniassad, E. and Murphy, G. (1998). Conceptual module
querying for software reengineering. In 20¢th International
Conference on Software Engineering.

Camilli, G. and Hopkins, K. D. (1978). Applicability of chi-
square to 2 x 2 contingency tables with small expected cell
frequencies. Psychological Bulletin.

da Costa, J. A. S., Gheyi, R., Ribeiro, M., Apel, S., Alves, V.,
Fonseca, B., Medeiros, F., and Garcia, A. (2021). Evalu-
ating refactorings for disciplining# ifdef annotations: An
eye tracking study with novices. Empirical Sofiware En-
gineering.

Feigenspan, J., Kastner, C., Apel, S., Liebig, J., Schulze, M.,
Dachselt, R., Papendieck, M., Leich, T., and Saake, G.
(2013). Do background colors improve program compre-
hension in the# ifdef hell? Empirical Software Engineer-
ing.

Fenske, W., Kriiger, J., Kanyshkova, M., and Schulze, S.
(2020). # ifdef directives and program comprehension:
The dilemma between correctness and preference. In 2020
IEEE International Conference on Software Maintenance
and Evolution (ICSME).

Fenske, W., Schulze, S., and Saake, G. (2017). How prepro-
cessor annotations (do not) affect maintainability: a case
study on change-proneness. ACM SIGPLAN Notices.

Fritz, T., Begel, A., Miiller, S. C., Yigit-Elliott, S., and Ziiger,
M. (2014). Using psycho-physiological measures to assess
task difficulty in software development. In 36th Interna-
tional Conference on Software Engineering (ICSE).

Garvin, B. J. and Cohen, M. B. (2011). Feature interaction
faults revisited: An exploratory study. In 22nd Interna-

Understanding How Feature Dependent Variables Affect Configurable System Comprehensibility

tional Symposium on Software Reliability Engineering (IS-
SRE).

Hijazi, H., Couceiro, R., Castelhano, J., De Carvalho, P.,
Castelo-Branco, M., and Madeira, H. (2021). Intelligent
biofeedback augmented content comprehension (tellback).
IEEFE Access.

Lanza, M. and Marinescu, R. (2007). Object-oriented met-
rics in practice: using software metrics to characterize,
evaluate, and improve the design of object-oriented sys-
tems. Springer Science & Business Media.

Liebig, J., Apel, S., Lengauer, C., Késtner, C., and Schulze,
M. (2010). An analysis of the variability in forty
preprocessor-based software product lines. In 32nd
ACM/IEEE International Conference on Software Engi-
neering (ICSE).

Malaquias, R., Ribeiro, M., Bonifacio, R., Monteiro, E.,
Medeiros, F., Garcia, A., and Gheyi, R. (2017). The dis-
cipline of preprocessor-based annotations-does# ifdef tag
n’t# endif matter. In 25th International Conference on
Program Comprehension (ICPC).

McCabe, T. J. (1976). A complexity measure. /[EEE Trans-
actions on Software Engineering.

Medeiros, F., Ribeiro, M., and Gheyi, R. (2013). Investigat-
ing preprocessor-based syntax errors. In ACM SIGPLAN
Notices.

Medeiros, F., Ribeiro, M., Gheyi, R., Apel, S., Késtner, C.,
Ferreira, B., Carvalho, L., and Fonseca, B. (2017). Dis-
cipline matters: Refactoring of preprocessor directives in
the# ifdef hell. IEEE Transactions on Software Engineer-
ing.

Medeiros, F., Ribeiro, M., Gheyi, R., Braz, L., Késtner, C.,
Apel, S., and Santos, K. (2020). An empirical study on
configuration-related code weaknesses. In XXXV Brazil-
ian Symposium on Software Engineering.

Medeiros, F., Rodrigues, 1., Ribeiro, M., Teixeira, L., and
Gheyi, R. (2015). An empirical study on configuration-
related issues: Investigating undeclared and unused identi-
fiers. ACM SIGPLAN Notices.

Melo, J., Brabrand, C., and Wasowski, A. (2016). How does
the degree of variability affect bug finding? In 38tk Inter-
national Conference on Software Engineering (ICSE).

Melo, J., Narcizo, F. B., Hansen, D. W., Brabrand, C., and
Wasowski, A. (2017). Variability through the eyes of the
programmer. In 25th International Conference on Pro-
gram Comprehension (ICPC).

Miiller, S. C. and Fritz, T. (2015). Stuck and frustrated
or in flow and happy: Sensing developers’ emotions and
progress. In 37th IEEE International Conference on Soft-
ware Engineering (ICSE).

Nakagawa, T., Kamei, Y., Uwano, H., Monden, A., Mat-
sumoto, K., and German, D. M. (2014). Quantifying pro-
grammers’ mental workload during program comprehen-
sion based on cerebral blood flow measurement: A con-
trolled experiment. In 36th international conference on
software engineering.

Rayner, K. (1998). Eye movements in reading and informa-
tion processing: 20 years of research. Psychological bul-
letin.

Rayner, K. (2009). Eye movements and attention in reading,

Santos, Ribeiro and Sant’Anna, 2025

scene perception, and visual search. The quarterly journal
of experimental psychology.

Ribeiro, M., Borba, P., and Késtner, C. (2014). Feature main-
tenance with emergent interfaces. In 36th International
Conference on Software Engineering (ICSE).

Ribeiro, M., Pacheco, H., Teixeira, L., and Borba, P. (2010).
Emergent feature modularization. In International confer-
ence companion on Object-oriented programming systems
languages and applications companion.

Rodrigues, 1., Ribeiro, M., Medeiros, F., Borba, P., Fonseca,
B., and Gheyi, R. (2016). Assessing fine-grained feature
dependencies. Information and Software Technology.

Santos, D. and Sant’Anna, C. (2019). How does feature de-
pendency affect configurable system comprehensibility?
In 2019 IEEE/ACM 27th International Conference on Pro-
gram Comprehension (ICPC).

Santos, D., SantAnna, C., and Ribeiro, M. (2023). An exper-
iment on how feature dependent variables affect config-
urable system comprehensibility. In /7th Brazilian Sympo-
sium on Software Components, Architectures, and Reuse,
pages 61-70.

Schulze, S., Liebig, J., Siegmund, J., and Apel, S. (2013).
Does the discipline of preprocessor annotations matter? a
controlled experiment. In /2th international conference
on Generative programming: concepts & experiences. As-
sociation for Computing Machinery.

Spencer, H. and Collyer, G. (1992). # ifdef considered harm-
ful, or portability experience with ¢ news. Usenix Summer
1992 Technical Conf., pages 185-197.

Tartler, R., Dietrich, C., Sincero, J., Schroder-Preikschat, W.,
and Lohmann, D. (2014). Static analysis of variability
in system software: The 90,000# ifdefs issue. In 20714
USENIX Annual Technical Conference (USENIX ATC 14).

VoBkiihler, A., Nordmeier, V., Kuchinke, L., and Jacobs,
A. M. (2008). Ogama (open gaze and mouse analyzer):
open-source software designed to analyze eye and mouse
movements in slideshow study designs. Behavior research
methods.

Walter, G. F. and Porges, S. W. (1976). Heart rate and res-
piratory responses as a function of task difficulty: The use
of discriminant analysis in the selection of psychologically
sensitive physiological responses. Psychophysiology.

	Introduction
	Study 1: How the number of dependent variables affects comprehensibility.
	Experiment Settings
	Programs
	Experiment Procedures
	Tasks
	Experimental Results
	Time to provide the correct answer
	Number of attempts needed until correct answer
	Visual effort
	Total number of fixations
	Gaze transitions and attention maps

	Heart-related biometrics
	Gaze Movements Analysis
	Threats to Validity
	External validity
	Internal validity
	Construct validity

	Study 2 - How degrees of variability affect program comprehensibility
	Experiment Settings
	Programs
	EXPERIMENT PROCEDURES
	Tasks
	Experimental Results
	Time to provide the correct answer

	Number of attempts needed until correct answer
	Visual effort
	Heart-related biometrics
	GAZE MOVEMENTS ANALYSIS
	Threats to Validity
	Internal validity

	Related Work
	Conclusion

