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Abstract Technical Debt (TD) represents the effort required to address quality issues that affect a software system
and progressively hinder code evolution over time. A pull request (PR) is a discrete unit of work that must meet
specific quality standards to be integrated into the main codebase. PRs offer a valuable opportunity to assess how
developers handle TD and how codebase quality evolves. In this work, we conducted two empirical analyses to un-
derstand how developers address TD within PRs and whether TD is effectively managed during PR reviews by both
developers and reviewers. We examined 12 Java projects from Apache. The first study employed the SonarQube
tool on 2,035 merged PRs to evaluate TD variation, identify the most frequently neglected and resolved types of TD
issues, and analyze how TD evolves over time. The second study involved a qualitative analysis of review threads
of 250 PRs, focusing on the types of PRs that frequently discuss TD, the characteristics of TD fix suggestions, and
the reasons some suggestions are rejected. Our findings reveal that TD issues are prevalent in PRs, following a ratio
of 1:2:1 (reduced: unchanged: increased). Among all TD issues, those related to code duplication and cognitive
complexity are most frequently overlooked, while code duplication and obsolete code are the most commonly re-
solved. Regarding PR code review, we found that around 76% of review threads address TD, with code, design, and
documentation being the most frequently discussed areas. Additionally, 96% of discussions include a fix suggestion,
and over 80% of the discussed issues are resolved. These insights can help practitioners become more aware of TD
management and may inspire the development of new tools to facilitate TD handling during PRs.
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1 Introduction
Technical Debt (Cunningham, 1992) refers to the implicit
costs associated with technical shortcomings. These issues
often arise from various factors, such as rushed, low-quality
design decisions, a team’s lack of expertise, or pressure to
meet tight deadlines. Such challenges can affect both the
source code and the overall development process (Lenar-
duzzi et al., 2019).
Two key concepts related to the cost of technical debt are:

(i) the principal, which denotes the effort required to address
all technical issues and achieve an optimal level of maintain-
ability, either in a specific part of the software or through-
out the system; and (ii) the interest, which reflects the extra
cost incurred when implementing changes due to the pres-
ence of technical debt (Ampatzoglou et al., 2020; Avgeriou
et al., 2021). In this work, we focus on the evolution of the
technical debt principal; specifically, we measure how the
principal fluctuates, whether increasing or decreasing. Here-
after, we abbreviate the technical debt principal as TD.
The level of TD can significantly influence the evolution

and maintainability of software. High levels of TD can in-
crease the effort required for future changes (Tan et al., 2021)
and impact other critical aspects, such as security and perfor-
mance (Digkas et al., 2017). Understanding how TD evolves
during the development process can help identify when and
why debt is introduced or eliminated, and how it affects soft-
ware quality and long-term maintainability.
TD issues can manifest in various forms, including code

(e.g., code complexity and duplication), design (e.g., cohe-
sion and coupling problems), architectural (e.g., violations
of architectural standards, scalability challenges, and perfor-

mance issues), test (e.g., inadequate test coverage), and in-
frastructure (e.g., slow build times) (Li et al., 2015; Kruchten
et al., 2019). Among these, code and design-related TD are
the most frequently studied (Li et al., 2015; Coq and Rosen,
2011; Nugroho et al., 2011; Eisenberg, 2012; Vetrò, 2012;
Monteith and McGregor, 2013; Griffith and Izurieta, 2014;
Zazworka et al., 2014).
In this scenario, code smells are recognized as quality

problems that can affect code readability and maintainabil-
ity, increasing the likelihood of bugs (Yamashita and Coun-
sell, 2013). These issues can be mitigated through refactor-
ing (Lacerda et al., 2020) and often serve as indicators of TD
within the codebase (Giordano et al., 2023).
Automated Static Analysis Tools (ASATs) analyze the

source code of a project and identify quality issues that can
relate to TD (Vassallo et al., 2018; Panichella et al., 2015;
Trautsch et al., 2023). For instance, SonarQube 1 is a well-
known tool that aggregates several code quality analyses and
applies a cost estimation strategy to measure the effort (in
minutes, hours, or days) required to address the detected TD
issues: the technical debt metric 2. Several studies have used
this metric as a valid proxy to measure TD (Digkas et al.,
2017; Molnar and Motogna, 2020; Nikolaidis et al., 2023).
The growth of TD can lead to consequences for both orga-

nizations and developers. For organizations, it implies soft-
ware degradation, leading to delays and increased mainte-
nance costs. For developers, it can negatively impact their
confidence and morale (Besker et al., 2020).
Prior studies (Digkas et al., 2017; Molnar and Motogna,
1https://www.sonarsource.com/products/sonarqube/
2https://docs.sonarsource.com/sonarqube/latest/

user-guide/metric-definitions/
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2020; Tan et al., 2021) have explored TD evolution at the
granularity of software releases and commits in the main
branch. These approaches are useful for observing macro-
level and long-term TD management, but they obscure the
actions and negotiations undertaken by developers that di-
rectly influence TD.
Conversely, a Pull Request (PR) represents a discrete,

self-contained development cycle comprising a set of pro-
posed changes. The pull request cycle involves an initial pro-
posal, which undergoes collaborative review before being in-
tegrated. Thus, analyzing PRs enables more than just mea-
suring TD; it offers the opportunity to understand how tech-
nical and social factors impact TD evolution, specifically:
(i) the technical decisions developers make in the code (i.e.,
whether to resolve issues), (ii) the social interactions inherent
in the code-review process (i.e., TD-related discussions), and
(iii) the socio-technical decisions that emerge from those re-
views (i.e., fixes applied for issues raised during the review).
In addition to ASATs, code review, which is commonly

employed in PR-based development, also plays an important
role in identifying issues related to TD. While ASATs are
effective at detecting code and design-level issues, they have
limitations in identifying more complex problems or those
dependent on the project’s context.
To address these limitations, code review enables a more

comprehensive evaluation. Multiple reviewers can analyze
the code for faults and quality issues (Beller et al., 2014),
ensuring that the source code meets acceptable standards
of readability and maintainability (Han et al., 2022). Pre-
vious studies have highlighted that most issues identified
during code reviews are related to problems affecting soft-
ware evolvability (Mäntylä and Lassenius, 2009; Beller et al.,
2014). Platforms such as GitHub enable proper code reviews
in the context of PRs validation. In that context, reviewers
can select specific code snippets and initiate discussions (re-
view threads), in which the author can participate, fostering
collaboration and problem resolution.
In this work, we present two empirical studies conducted

on 12 Apache Java repositories. The first is a quantitative
study using the SonarQube tool that aims to investigate how
TD evolves within PRs—whether it increases or decreases—
and to identify which types of issues are most frequently ne-
glected and resolved. In the second study, we delved into the
review threads of the PRs, aiming to assess whether TD was
effectively managed during the code-review process. The
qualitative study considers a sample of PRs and investigates
the frequency of TD associated with typical maintenance ac-
tivities. Moreover, we identify common characteristics of the
code review discussions and the outcomes they produce.
This work extends our previous study (Calixto et al., 2024).

The contributions of this work are fourfold:

• A quantitative study that analyzed 2,035 merged PRs
from 12 Apache Java projects. We established conclu-
sions on the presence of TD issues, how they evolve,
which issues are most common to happen in the scope
of a PR, and whether time influences both TD variation
and issue severity.

• A qualitative study that involved 250 PRs and 929 re-
view threads. Our findings include identifying which

maintenance activities most frequently discuss TD, the
key characteristics of suggestions for addressing TD is-
sues, and the motivations behind the rejection of such
suggestions.

• We assembled a dataset of 250 PRs and another contain-
ing 929 review threads, both manually labeled. These
datasets include features related to the primary objective
of the PR, whether the review threads discuss technical
debt, whether suggestions are provided, among other as-
pects.

• A reproduction package with all artifacts of our study
(Calixto et al., 2025). This package can help other re-
searchers in similar fields.

The rest of the paper is organized as follows. Section 2
provides background on some important concepts related to
the SonarQube tool and PR-based development. Section 3
introduces the design of the studies, results, and conclusions.
Section 4 addresses potential threats to validity. Section 5
discusses the related work, while Section 6 provides some
concluding remarks and possible future work.

2 Background
This section discusses concepts that are fundamental to this
paper. In Section 2.2, we delve into PR-based develop-
ment and present the methodology used for investigating TD
within this framework. Sections 2.1 and 2.1.1 provide an
overview of the SonarQube tool, elucidating its method for
measuring TD and introducing the SQALE model, used by
SonarQube.

2.1 SonarQube
SonarQube is an open-source ASAT that can identify around
5,000 code quality issues in projects of more than 30 pro-
gramming languages, including Java. Widely adopted by
over 400,000 organizations globally (SonarSouce, 2022), it
has been extensively used in empirical software engineering
research (Avgeriou et al., 2021; Saarimäki et al., 2019; Mar-
cilio et al., 2019; Lenarduzzi et al., 2020; Yu et al., 2023).
In this study, SonarQube is employed to measure code and
design-related TD issues (Nikolaidis et al., 2023) within PRs.
SonarQube has a set of best-practice rules, referred to as

coding rules3, which generate warnings (issues) when vio-
lated. These issues are categorized into three types: BUG,
representing programming faults that may cause errors or
unexpected behavior during execution; CODE SMELL, indi-
cating sub-optimal code quality that impacts maintainability;
and VULNERABILITY, denoting security-related flaws. The
technical debt metric primarily focuses on CODE SMELL
issues. Additionally, issues are classified by severity levels:
INFO, MINOR, MAJOR, CRITICAL, and BLOCKER, listed
in ascending order of severity.
When an issue is first detected, it is labeled as OPEN (un-

fixed). In subsequent analyses, if an issue previously marked

3https://rules.sonarsource.com/
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as OPEN is no longer detected or has been properly ad-
dressed, SonarQube marks it as CLOSED4.
To estimate the effort required to resolve issues, Sonar-

Qube employs a heuristic () that ranges from TRIVIAL (e.g.,
removing unused imports without affecting logic) to COM-
PLEX (e.g., eliminating cyclic dependencies between pack-
ages, which may require application redesign). For Java, the
estimated effort ranges from 5 minutes for TRIVIAL issues
to 1 day for COMPLEX ones.

2.1.1 The SQALE Method

SonarQube employs the SQALE quality model, which
posits that assessing quality is equivalent to measuring TD
(Letouzey, 2012). This model defines quality as the degree
to which a system adheres to specified requirements, using
remediation costs to derive quality indicators. The SQALE
method further organizes requirements into categories and
subcategories related to code quality, enabling the identifica-
tion of which aspects are most affected by issues. For each
requirement, a remediation function is applied to estimate the
effort, quantified in time, required to fulfill the requirement
within a specific system component, such as a module, file,
or class. This approach provides a structured framework for
evaluating and addressing code quality issues.

Figure 1. This example illustrates a violation of SonarQube’s rule S1104.

Figure 1 illustrates a SonarQube violation associated with
rule S1104, which states that class attributes must not be pub-
lic. To address this issue, one may either convert the attribute
into a constant using the static finalmodifiers or change
its visibility to private (refer to remediation details). In
this scenario, the remediation function estimates a resolution
time of 10 minutes per occurrence.

2.2 PR-Based Development and Code Review

Figure 2. Example of a PR.

PR-based development has been widely adopted by both
commercial organizations and open-source projects, en-
abling developers in distributed teams to implement changes
autonomously. Figure 2 provides an overview of this model.
Developers can fork a development branch and implement
code changes through a series of commits (c1 to c2). The im-
plemented changes are typically associated with a primary
maintenance activity, which we refer to as the PR’s primary

4https://docs.sonarsource.com/sonarqube/10.0/
user-guide/issues/

goal. This activity can encompass one of three types of main-
tenance tasks: requirement changes (implementing new fea-
tures ormodifying existing ones), bug fixes, or code improve-
ments.

Figure 3. Example of a review thread.

Subsequently, they submit a PR to be evaluated by other
developers (reviewers) through code reviews. The review
process aims to ensure a desirable level of quality in various
factors, such as readability and maintainability (Han et al.,
2022), by identifying defects and code quality issues (Beller
et al., 2014). On the GitHub platform, reviewers can select
specific code snippets and initiate a review thread (Figure
3) about them or leave general comments without referenc-
ing specific code snippets. In our qualitative study, we chose
to evaluate only review threads, as they have a well-defined
scope (with clear start and end points) and are associatedwith
specific code snippets, which allowed us, among other things,
to later determine whether an issue was resolved or not.
After inspecting the code, reviewers can initiate a review

thread to request additional information if they have ques-
tions about the code or to suggest modifications. If additional
work is required, the developer implements the changes and
adds new commits (c3 to c6), leading to a potential code
merge upon acceptance of the changes.
This study aims to explore the evolution of TD within

the context of PRs. For this analysis, we use the SonarQube
tool. We start by examining the commit that initiates the PR,
known as the PR commit. This commit is typically the lat-
est one made before the PR is submitted. In Figure 2, this
is represented by commit c2. Our analysis covers all subse-
quent commits from the PR commit up to the final commit in
the PR branch (c2 to c6 in the example). We hypothesize that
developers may enhance code quality during these commits,
either independently or in response to feedback from code
reviews, as these changes are part of the review process. In
addition, in the qualitative study, we evaluate only review
threads, which are blocks of code reviews that include the
reviewed code snippet.

3 The Empirical Studies
The objective of this study is to investigate the evolution
of TD within the context of a single PR and to understand
how developers’ behaviors and review dynamics influence
TD management both in the code and during collaborative
code reviews. By evolution of TD, we refer to the varia-
tions that occur within a PR—whether TD increases, de-
creases, or remains unchanged—and similarly for code re-
views, whether TD-related issues raised are discussed, re-
solved, or ignored throughout the PR lifecycle. Ultimately,

https://docs.sonarsource.com/sonarqube/10.0/user-guide/issues/
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we seek to uncover patterns that reveal whether TD is being
effectively addressed or neglected during the PR process and
how these patterns correlate with code quality and architec-
tural implications.
To achieve this goal, we conducted two empirical studies.

In the first study, we employed the SonarQube tool to analyze
merged PRs, aiming to assess the extent to which developers
manage TD in the code. In the second study, we sought to ex-
plore the same idea but from the perspective of code reviews.
In both studies, we adopted a two-stage purposive sampling
approach, following the guidelines for sampling in software
engineering established by Baltes and Ralph (2022):

• Project selection. We focused on twelve Java reposito-
ries from the Apache Software Foundation for three rea-
sons: (i) they have been extensively studied in prior lit-
erature (Lenarduzzi et al., 2020, 2021; Tan et al., 2021;
Digkas et al., 2022; Zabardast et al., 2022; Coelho et al.,
2021); (ii) they represent a mature software develop-
ment environment with active, high-quality codebases;
and (iii) they compiled successfully on our machines, a
requirement for automated SonarQube analysis.

• Pull-request selection. From each of these twelve
projects, we first extracted all PRs that (i) were merged
into the main branch and (ii) fell within our specified
time window, ending on February 29, 2024, at 23:59:59.
We then applied additional filters, retaining only those
PRs whose commits were fully analyzed by SonarQube,
yielding 2,035 merged PRs for the first study. For the
second study, we first selected all PRs from the 2,035
that contained at least one review thread, resulting in a
total of 712 PRs. From this set, we then drew a stratified
random sample of 250 PRs by project.

Details of each sampling step are provided in the following
subsections.

3.1 Quantitative Analysis - The SonarQube
Study

In our first empirical study, we ran a quantitative analysis to
explore TD within PRs using the SonarQube tool. To guide
the study, we defined the following research questions:
RQ1: How does TD evolve within PRs? Our focus is to
evaluate how TD varies within PRs, specifically examining
whether it decreases, increases, or remains stable. To conduct
this analysis, we propose a TD Variation metric designed to
systematically quantify and evaluate these changes.
RQ2: Which TD issues are most commonly resolved and
neglected within PRs? Given the comprehensive catalog of
coding rules in SonarQube, we hypothesize that developers
are more likely to address issues related to specific rules
while overlooking others. Our goal is to identify these pat-
terns and to gain a better understanding of the factors that
influence developers’ decisions when resolving issues.
RQ3: How does TD within PRs evolve over time?We aim
to understand whether time influences TD, exploring this re-
lationship by considering the variation of TD and the evolu-
tion of issue severity.

Figure 4. Data collection and processing.

Figure 4 provides an overview of the methodology used
to collect and process data in this study. The process be-
gins with the collection of all merged PRs from each project
(Step 1), followed by filtering and processing through multi-
ple stages (Step 2). For each PR, we executed SonarQube on
the commits ranging from the PR commit to the final com-
mit of the PR branch (Step 3). Subsequently, we performed
post-processing (Step 4) to prepare the data for analysis (Step
5). The following sections elaborate on steps 1-4. A summary
of our dataset, including the selected projects and PRs, is pre-
sented in Table 1.

3.1.1 Dataset

Since Apache projects are hosted on GitHub, we leveraged
both the GitHub REST5 and GraphQL6 APIs to retrieve PRs
from each repository. The extraction was carried out between
March 13, 2024, and March 14, 2024, using a set of specific
filters to standardize our dataset:

• Only merged PRs. We considered only merged PRs, as
these adhere to a baseline level of code quality and have
been approved by project reviewers.

• Merged by February 29, 2024, at 23:59:59. A cutoff
point was established to ensure data homogeneity.

Our dataset initially comprised 7,494 merged PRs (Table
1). Through successive filtering stages, we excluded: (i) PRs
containing merge commits except in the final commit, and
(ii) PRs that did not modify Java source files. This refine-
ment process yielded 3,854 candidate PRs. From these, we
successfully executed our analysis tool on 2,035 PRs, which
constitutes our final sample. The details of the filtering pro-
cess and the execution of SonarQube are provided in the fol-
lowing sections.

3.1.2 Dataset Preparation

After gathering the projects and PRs, we applied a five-step
pre-processing pipeline to the PRs dataset. First, we filtered
the PRs based on their merge dates (Step 2.1). Next, we iden-
tified the PR commits (Step 2.2) by using both the commit
creation dates and the PR opening date—defining a PR com-
mit as the most recent commit prior to the PR’s creation. In

5https://docs.github.com/en/rest
6https://docs.github.com/en/graphql
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Table 1. Dataset of projects and PRs.

Project # Classes NCLOC # Issues # PRs
Mining After processing Post-execution With issues

accumulo 5,164 440,441 158,730 2,295 1,512 994 952
cayenne 4,716 318,428 1,712 429 336 55 55
commons-collections 839 67,690 2,280 241 68 31 28
commons-io 288 30,501 8,285 374 95 76 73
commons-lang 918 95,929 9,673 496 192 128 122
helix 2,106 189,487 35,978 1,374 669 278 276
httpcomponents-client 879 76,964 5,179 310 159 126 120
maven-surefire 3,036 110,481 1,833 331 71 25 25
opennlp 2,478 155,900 10,731 375 153 96 94
struts 3,419 234,331 9,877 716 407 145 140
wicket 5,254 251,505 1,000 441 157 47 40
zookeeper 1,542 131,712 2,289 112 35 34 34
Total 247,365 7,494 3,854 2,035 1,959

Step 2.3, we excluded PRs that involved code pulls from
other branches, retaining only those that either did not incor-
porate code pulls or did so solely in the final commit. This
strategy ensured that our analysis focused exclusively on
code modifications generated within the PR, thereby avoid-
ing external influences that could skew our results.
During Step 2.4, we identified the modified files and elim-

inated any PRs that did not alter Java files. Finally, in Step
2.5, we determined the commits preceding the PR commits—
a necessary step to run SonarQube on a commit before the
PR so that issues detected can be classified as pre-existing
(as discussed in Section 3.1.4). To identify this “preceding
commit,” we employed two strategies: (i) if a commit exists
before the PR commit within the branch, we designate the
last commit before the PR commit as the preceding commit;
(ii) if no such commit is present within the branch, we use the
concept of a parent commit7, considering the parent of the PR
commit as the preceding commit. In the example shown in
Figure 2, c1 is the preceding commit.

3.1.3 Dataset Processing

In our study, we employed SonarQube (version
10.0.0.68432) in conjunction with the SonarScanner8
tool (version 4.8.0.2856). SonarScanner was used to execute
all SonarQube analyses and submit the results to SonarQube.
Although SonarScanner can be integrated natively with
build tools (e.g., SonarScanner for Maven), it also supports
standalone execution via a command-line interface (CLI),
making it independent of specific build tools. Since most of
the analyzed projects lacked native SonarQube integration
and the necessary configurations for the SonarScanner
plugin, we opted to use the SonarScanner CLI.
To perform the SonarScanner analysis (Step 3), the com-

piled code of the project is required. Consequently, we down-
loaded the project code corresponding to each commit (as
described in Section 2.2) for every PR and compiled it to
enable SonarQube execution. During this stage, 1,819 PRs

7https://git-scm.com/docs/git-commit-tree
8https://docs.sonarsource.com/sonarqube/10.0/

analyzing-source-code/scanners/sonarscanner/

were excluded due to compilation errors, such as missing de-
pendencies or dependency version conflicts.
Given the large size of the projects, both the compila-

tion and the execution of the SonarQube analysis were time-
consuming — the average execution time per commit was
6 minutes and 18 seconds. Given that each PR consists of
multiple commits, managing execution time posed a signifi-
cant challenge. To mitigate this issue, we partitioned the PRs
into subsets and executed each subset on a separate virtual
machine (VM). We utilized Oracle VM VirtualBox9 to con-
figure four VMs, each configured as follows:

• 8 GB of RAM;
• 4 processor cores;
• 150 GB of storage;
• Ubuntu 22.04.1 LTS operating system.

Additionally, we developed Python scripts to automate the
entire workflow, including downloading the commit source
code, compiling it, running SonarQube, and extracting the
identified issues via the SonarQube API10.

3.1.4 Analysis

Following the execution of SonarQube, we processed data
related to issues (Step 4.1), execution monitoring (Step 4.2),
and PRs (Step 4.3).
In the issue processing phase, we categorized each de-

tected issue along two dimensions: origin and status. The ori-
gin attribute distinguishes whether an issue existed prior to
the PR (pre-existing issue) or was introduced during the PR
(new issue). The status attribute indicates whether the issue
was resolved (fixed issue) or remains unresolved (unfixed is-
sue).
To determine an issue’s origin and status, we analyze the

sequence of commits described in Section 2.2. This analy-
sis enables us to precisely determine the commit in which an
issue was introduced or resolved. For instance, Pre-existing
issues are identified in the commit preceding the PR com-
mit, while new or fixed issues are detected in the commits

9https://www.virtualbox.org/
10https://docs.sonarsource.com/sonarqube/10.0/

extension-guide/web-api/
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that follow. This granular approach makes it possible to track
changes in TDmeasurement, as new issuesmay be addressed
within the PR itself. This method contrasts with studies that
only compare code states before and after a PR, as they do
not track code evolution at the commit level (Panichella et al.,
2015; Zou et al., 2019; Nikolaidis et al., 2023).
For each issue, we extracted the fields described below:

rule: Identifier of the violated SonarQube rule.
severity: Severity level, on a scale from least to most severe

(INFO, MINOR, MAJOR, CRITICAL, BLOCKER).
type: Classification of the issue (CODE SMELL, BUG,

VULNERABILITY ).
debt: Estimated effort (in minutes) required to resolve the

issue.
origin: Issue’s origin (PRE-EXISTING, NEW ).
status: Issue status: OPEN if unresolved, CLOSED if re-

solved.
file: File affected by the issue.
ncloc: Non-Commented Lines of Code (NCLOC) of the af-

fected file.

In the monitoring phase (Step 4.2), we recorded the exe-
cution time for each commit in every PR to estimate the du-
ration required for SonarQube analyses. This data can serve
as a valuable reference for other studies using the same tool,
aiding in more efficient experiment planning.
For PR characterization (Step 4.3), we collected several

features, including added lines, removed lines, code churn
(sum of added and removed lines), time until merge, number
of modified files, and number of commits. This characteriza-
tion covered all 2,035 PRs analyzed.
In summary, we assembled three datasets: (i) issues, (ii)

monitoring, and (iii) PRs. We then performed a detailed char-
acterization of the issues and PRs to understand the distribu-
tions of their respective features. The issues dataset was sub-
sequently used to address our research questions, with the
analysis detailed in the following section.

3.1.5 Metrics

To address RQ1, we introduced a normalized metric for TD
to account for variations in project sizes. For a given PRi

that modifies k files, where each file j contains nj issues,
the TD density (TDDi) is given by:

TDDi =

k∑
j=1

nj∑
a=1

TDaj

k∑
j=1

NCLOCj

(1)

Here, TDaj represents the TD associated with issue a in
file j, and NCLOCj denotes the number of non-comment
lines of code () in file j.
To assess the evolution of TD within PRs, we introduced a

metric that quantifies variation in TD. This variation is classi-
fied into three categories: reduced, unchanged, or increased.
For a given PRi that modifies k files, the TD variation, de-
noted as TDVi is defined as:

TDVi =
k∑

j=1

(
nj∑

a=1
TDNew AND Unfixed

aj

−
nj∑

a=1
TDP re-existing AND F ixed

aj

)
(2)

In this equation, TDNew AND Unfixed
aj denotes the TD

associated with a new unfixed issue a in file j, while
TDP re-existing AND F ixed

aj refers to the TD related to pre-
existing fixed issue a in file j. The TD variation is computed
as the difference between the final (new TD) and initial (pre-
existing TD) states. Since the only differences arise from the
unresolved new debt and the addressed pre-existing debt, the
expression simplifies to Equation 2. The TD variation is cat-
egorized as follows:

Reduced: If TDVi < 0, indicating a decrease in TD after
the PR.

Unchanged: If TDVi = 0, indicating no change in TD.
Increased: If TDVi > 0, indicating an increase in TD after

the PR.

To further analyze the evolution of TD, we introduced two
additional metrics: Pre-existing TDV and New TDV. These
metrics enable us to distinguish TD variation by its origin.
For a given PRi that modifies k files, the Pre-existing TDV
and New TDV are defined as follows:

TDV P re-existing
i =

k∑
j=1

nj∑
a=1

TDP re-existing AND F ixed
aj

(3)

TDV New
i =

k∑
j=1

nj∑
a=1

TDNew AND F ixed
aj (4)

Here, TDP re-existing AND F ixed
aj denotes the TD asso-

ciated with a pre-existing fixed issue a in file j, while
TDNew AND F ixed

aj indicates the TD related to a new fixed
issue a in file j. Both TDV P re-existing

i and TDV New
i can

be categorized as follows:

Reduced: A value greater than zero indicates that TD de-
creased after the PR.

Unchanged: A value of zero indicates that TD remained
constant after the PR.

To address RQ2, we ranked issue types (rules) based on
their positions in each project’s top 10 frequency list. This
approach was necessary due to the uneven distribution of is-
sues across our dataset. For example, the accumulo project
accounts for 64.12% of the identified issues—an expected re-
sult given its size and representation (48.60% of total PRs)—
while other projects contribute less than 36% of the issues.
To account for these disparities, we introduced a metric that
aggregates the rule’s rankings of each project’s top 10. For a
given rule i, its PositionScorei is defined as follows:

PositionScorei =
k∑

j=1
Positionj (5)
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Here, Positionj represents the ranking of the rule within
the top 10 for project j. If a rule does not appear in a project’s
top 10, we assign it a default position of 11 as a penalty. The
PositionScore is then computed across all k projects—in
our study, 12 projects. Under this scheme, a rule can achieve
a score as low as 12 (if it ranks first in every project) and as
high as 131 (if it ranks tenth in one project and falls outside
the top 10 in all others). Lower PositionScore values indi-
cate a higher overall ranking. This metric allows us to rank
rules consistently across all projects.
Using the resulting PositionScore values, we aggre-

gate the top 10 fixed and top 10 unfixed rules across all
projects, ultimately identifying the five rules with the low-
estPositionScore, which correspond to the most frequently
encountered rules across the dataset.
Regarding RQ3, we analyzed the lifetime of each project.

For that, we used the PR creation date as our time reference.
Since the time span analyzed varies across repositories, we
applied min-max normalization to scale the time values be-
tween 0 and 1, with 0 representing the start and 1 representing
the end. In our study, min-max normalization is defined by
the following formula:

NormTime = Date − min(Date)
max(Date) − min(Date)

(6)

Here, NormTime represents the normalized time, Date
is the date being normalized, min(Date) denotes the earli-
est date, and max(Date) denotes the most recent date. The
differences are calculated as the number of days between the
dates.

3.1.6 Results and Discussion

In this section, we present the results and discuss the find-
ings of our quantitative study using SonarQube and research
questions Q1-Q3.
Data Characterization
Before addressing our research questions, we performed

an exploratory data analysis to gain insights into the distribu-
tion of PRs and their associated issues. This analysis aimed
to characterize the typical characteristics of PRs and issues
included in our study.
Our findings revealed that most PRs involvemodifications

to a small number of files (a median of 2 to 4) and consist of
a few commits (a median of 1 to 2), although outliers mod-
ifying hundreds of files were also observed. These results
underscore that a typical PR represents a brief development
cycle by a single developer, targeting specific parts of the
system.
Regarding issue characterization, we observed that our

dataset comprises 264 distinct rules—out of the 622 rules de-
tectable by SonarQube—with 202 rules (76.51%) having at
least one fixed instance. Most of the issues (94.38%) were
classified as CODE SMELL, while 48.43% of the issues had
low severity (INFO andMINOR). However, 73.04% of total
TD stems from issues with medium to high severity (MA-
JOR, CRITICAL, and BLOCKER). As expected, over 96%
of issues were pre-existing, with only slightly more than 4%
being new ones. Notably, just 5.88% of the issues were fixed.

Figure 5. Distribution of TDD per PR.

Figure 6. Distribution of TDV per PR.

In summary, the majority of issues are classified as code
smells, highlighting code concerns that, while not directly im-
pairing system functionality, may affect maintainability and
readability. While the distribution of instances across sever-
ity levels is relatively balanced, a substantial portion of TD
is concentrated in high-severity issues, likely due to their
greater complexity and the effort required for resolution.
Several factors may contribute to the predominance of pre-

existing issues. Although PRs generally affect only a few
files, these files can be extensive and harbor numerous is-
sues that may be overlooked or deprioritized by developers,
in turn resulting in a high number of unfixed issues. More-
over, a typical PR that modifies hundreds of files further ex-
acerbates the situation, as it becomes impractical for a devel-
oper to address issues across such a broad scope.
RQ1: How does TD evolve within PRs?
To investigate how TD evolves within PRs, we employed

two metrics—TDDensity (TDD) and TDVariation (TDV ),
as detailed in Section 3.1.5. The distributions of thesemetrics
are illustrated in Figures 5 and 6.

TDD quantifies the amount of TD per NCLOC in a PR.
Our dataset shows an average TDD of 0.5013 and a median
of 0.3991. Given the median of 651 NCLOC, these values
suggest that most PRs have a moderate to high TD density—
translating into an estimated rework time of over four hours
to resolve all TD issues. This considerable effort implies that,
in many cases, addressing every issue may not be feasible; it
might be more effective for developers to prioritize fixing
those issues with higher severity.

wicket #676 exhibited the highest TDD of 10.34, repre-
senting 600 minutes of TD across 58 NCLOC. This PR had
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a code churn of 27 (12 lines added and 15 lines removed)
and modified two files, each containing one issue. Both is-
sues violated rule S11011 (rule description: inheritance tree
of classes should not be too deep), and each incurred 300
minutes of TD. These issues were pre-existing and remained
unfixed, indicating they were present in the code prior to the
PR and were not resolved during it. Rule S110 sets a default
threshold of 5 for inheritance tree depth, as deeper inheri-
tance hierarchies can lead to increased complexity. For each
class exceeding this threshold, the rule assigns a TD of 4
hours plus an additional 30 minutes for each level beyond
the threshold. In this case, both classes had a depth of 7, re-
sulting in significant TD concentrated in a small amount of
code (NCLOC).
The TDV metric quantifies changes in TD from the start

to the end of a PR. It measures the net difference in TD (in
minutes): positive values indicate an increase, negative val-
ues a decrease, and zero indicates no change. Figure 6 illus-
trates the distribution of TDV, which is concentrated around
zero (median), indicating that most PRs exhibit little or no
variation in TD. Nonetheless, significant outliers exist, pri-
marily driven by PRs that modify dozens to hundreds of
files. Among these outliers, struts #799 recorded the low-
est TDV of -27,133 minutes, representing a complete elimi-
nation of TD within the PR. This PR involved modifications
to 484 files and 90,610 lines (90,609 deletions and 1 addi-
tion). According to its description, the PR removed unused
files and obsolete plugins, meaning the TD reduction resulted
solely from deletions rather than active resolution of issues.
Among the top 10 cases with the largest TD reductions, we
observed that six PRs involved file deletions, suggesting that
a portion of TD reduction occurs incidentally rather than as
a deliberate effort to address TD.
In contrast, the PR with the highest increase in TD was

accumulo #2022, which saw an addition of 14,300 minutes
of new TD. This PR changed 151 files and modified a total
of 1,919 lines (with 985 additions and 934 deletions). It intro-
duced 14,300 minutes of new TD, with none of this new debt
being fixed, while the pre-existing TD amounted to 67,767
minutes, also with no remediation. Among the newTD issues
in this PR, the most frequent violations were:

S11712: Local variable and method parameter names should
comply with a naming convention (385 instances).

S258913: Boolean expressions should not be gratuitous (383
instances).

S10114: Class names should comply with a naming conven-
tion (276 instances).

S112515: Boolean literals should not be redundant (272 in-
stances).

Together, these four rules accounted for 1,316 of the
2,114 new instances and 7,340 of the 14,300 minutes of
TD (51.33%). Rules S117 and S101 pertain to naming con-
ventions, whereas S1125 and S2589 address redundancy in
boolean expressions.
Analysis of outliers suggests that sharp reductions in TD

do not always result from developers’ explicit efforts to ad-
dress issues; instead, these decreases may occur incidentally.

11https://rules.sonarsource.com/java/RSPEC-110/

Conversely, substantial increases in TD are more often asso-
ciated with the introduction of new functionalities.
To categorize PRs according to TD variation—whether re-

duced, increased, or unchanged—we computed the propor-
tion of PRs with a TDV below zero (indicating reduction),
equal to zero (indicating no change), and above zero (indi-
cating an increase). Owing to the variability in the number
of PRs and issues among projects, we first calculated these
percentages for each project and then derived the overall av-
erage percentages.

Table 2. Percentages of TDV by projects.

Project TDV
Reduced Unchanged Increased

accumulo 26.16% 46.95% 26.89%
cayenne 12.73% 56.36% 30.91%
commons-collections 35.71% 53.57% 10.71%
commons-io 32.88% 50.68% 16.44%
commons-lang 13.93% 78.69% 7.38%
helix 19.20% 36.96% 43.84%
httpcomponents-client 19.17% 55.83% 25.00%
maven-surefire 24.00% 68.00% 8.00%
opennlp 44.68% 32.98% 22.34%
struts 37.14% 36.43% 26.43%
wicket 10.00% 57.50% 32.50%
zookeeper 17.65% 52.94% 29.41%
Mean 24.44% 52.24% 23.32%

Table 2 presents the TDV percentages for each reposi-
tory analyzed, along with the overall average. On average,
24.44% of the PRs reduced the TD, 52.24% kept the TD un-
changed, and 23.32% increased the TD. These values approx-
imate a 1:2:1 ratio, indicating that, for every four PRs, one re-
duces the TD, two keep the TD unchanged, and one increases
the TD. Given that 98.57% of the PRs have at least one pre-
existing issue, the PRs that leave the TD unchanged neglect
a certain amount of TD. Therefore, by considering both the
PRs that keep the TD unchanged and those that increase it,
we observe that 75.56% of the PRs neglect some amount of
TD.

Table 3. Percentages of pre-existing TDV by projects.

Project Pre-existing TDV
Unchanged Reduced

accumulo 57.64% 42.36%
cayenne 75.93% 24.07%
commons-collections 53.85% 46.15%
commons-io 62.50% 37.50%
commons-lang 81.15% 18.85%
helix 56.51% 43.49%
httpcomponents-client 69.49% 30.51%
maven-surefire 68.00% 32.00%
opennlp 43.96% 56.04%
struts 51.80% 48.20%
wicket 64.10% 35.90%
zookeeper 67.65% 32.35%
Mean 62.71% 37.29%

We also performed TDV analysis by issue origin, distin-

https://rules.sonarsource.com/java/RSPEC-110/
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Table 4. Percentages of new TDV by projects.

Project New TDV
Unchanged Reduced

accumulo 75.34% 24.66%
cayenne 90.91% 9.09%
commons-collections 66.67% 33.33%
commons-io 84.00% 16.00%
commons-lang 85.00% 15.00%
helix 75.86% 24.14%
httpcomponents-client 94.74% 5.26%
maven-surefire 100% 0.00%
opennlp 95.83% 4.17%
struts 91.43% 8.57%
wicket 94.12% 5.88%
zookeeper 78.57% 21.43%
Mean 86.04% 13.96%

guishing between pre-existing issues (those created before
the PR) and new issues (those added in the current PR). Ta-
bles 3 and 4 show the variation of pre-existing TDV and new
TDV , respectively. A value below zero signifies a reduction
in the specific TD, while a value equal to zero means the TD
remained unchanged.
For pre-existing TD, on average, 37.29% of PRs reduce

some amount of TD, whereas the majority (62.71%) neglect
it. For new TD, the trend is less positive: only 13.96% of PRs
reduce some amount of new TD, which indicates that a sig-
nificant 86.04% of these PRs fail to resolve any of the newly
introduced issues before merging. For new TDV , a reduc-
tion occurs when at least one of the added issues is fixed.
A notable exception is the maven-surefire project,

which exhibits distinct behavior. In this project, only seven
PRs introduced new TD, none of which showed a reduction.
Consequently, 100% of the new TD remained unchanged.

RQ1: Almost all PRs (96.26%) contain some level of TD,
with changes across PRs following an approximate 1:2:1 ra-
tio. This means that one in every four PRs reduces TD, two
keep it unchanged, and one increases TD. Among PRs with
pre-existing debt, 37.29% reduce it, whereas only 13.96% of
those introducing new debt manage to reduce it within the
PR.

RQ2: Which TD issues are most commonly resolved and
neglected within PRs?
To address RQ2, we aggregated the top 10 most frequently

fixed and unfixed rules per project using the PositionScore
metric (Section 3.1.5). Table 5 presents the five fixed and
five unfixed rules with the lowest PositionScore values, i.e.,
the most prevalent across the projects. As observed, all these
common rules are classified as CODE SMELL and are pre-
dominantly of medium to high severity, indicating that devel-
opers often encounter or introduce code quality issues whose
remediation may be more labor-intensive.
Among these, rule S1192 has the lowest PositionScore for

both fixed and unfixed rules. For unfixed rules, S1192 ranks
first in eight projects and within the top three in the remain-
ing four; for fixed rules, it appears in the top position in two
projects and within the top three in six projects. Rule S1192

Figure 7. Example of a violation of the rule S100 in accumulo #4326.

concerns the duplication of String literals—a violation that
forces developers to modify the same value in multiple loca-
tions during maintenance. The recommended solution is to
extract the literal and convert it into a constant, thereby en-
suring consistency.
Our results for rule S1192 suggest that developers may not

always prioritize its resolution, possibly due to its perceived
lower impact, especially when it appears in test classes. An-
quetil et al. (2022) observed that while approximately 42.9%
of regular methods use literals, over 82.2% of test methods
contain them. In our study, 68.92% of the instances of this
rule occurred in test classes, with only 31.08% in non-test
classes.
Other TD-related rules that developers frequently over-

look are S100 and S106. Rule S106 addresses the use of
standard output for logging purposes, and approximately
97.38% of its 6,413 occurrences remain unfixed. Analyzing
the PRs with the highest number of instances reveals that,
in accumulo #1433, some of the issues occurred in a file
named Main.java, which appears to be a CLI. Similarly,
accumulo #2180 modifies code snippets associated with the
mentioned issue and also seems to be related to a CLI. In con-
trast, robust and widely used CLIs such as Maven16 and Gra-
dle17 adhere to best practices by employing dedicated loggers
for output. However, in the mentioned project, this practice
was not followed.
Rule S100 addresses method naming conventions. The

method names must comply with the regular expression il-
lustrated in Figure 7, meaning the first character should be
a lowercase letter, and the remaining characters can be ei-
ther letters (in any case) or numbers. Figure 7 provides an
example from accumulo #4326, where a method name in-
correctly begins with an underscore (“_”) rather than a lower-
case letter. We observed that several Apache projects include
method names with underscores, suggesting that some devel-
opers do not consider this to be an issue. However, since rule
S100 also ranks among the most frequently fixed, we identi-
fied some PRs with a high number of fixed instances of this
type. For instance, httpcomponents-client #202 fixes 16
occurrences of this issue, specifically, method names start-
ing with uppercase letters. One commit message even stated,
“Use camelCase for Java method names – always,” under-
scoring the expectation that method names follow the camel-
Case convention.
Rule S3776, which evaluates cognitive complexity, ap-

pears among both fixed and unfixed rules. However, our
analysis of some PRs indicates that reducing complexity is
often achieved by removing entire methods or classes. For
example, in struts #657, a developer explicitly addressed
this issue, as reflected in the comment “[...] good to see the
cognitive complexity reduced afterwards” and the PR de-

16https://github.com/apache/maven
17https://github.com/gradle/gradle

https://github.com/apache/maven
https://github.com/gradle/gradle
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Table 5. Top 5 fixed rules and top 5 unfixed rules by PositionScore metric.

Unfixed rules

PositionScore Rule Description Severity Type
22 S1192 String literals should not be duplicated CRITICAL CODE SMELL
85 S3776 Cognitive Complexity of methods should not be

too high
CRITICAL CODE SMELL

100 S100 Method names should comply with a naming con-
vention

MINOR CODE SMELL

100 S106 Standard outputs should not be used directly to log
anything

MAJOR CODE SMELL

101 S117 Local variable and method parameter names
should comply with a naming convention

MINOR CODE SMELL

Fixed rules

PositionScore Rule Description Severity Type
41 S1192 String literals should not be duplicated CRITICAL CODE SMELL
84 S1874 “@Deprecated” code should not be used MINOR CODE SMELL
90 S112 Generic exceptions should never be thrown MAJOR CODE SMELL
94 S2293 The diamond operator (“<>”) should be used MINOR CODE SMELL
102 S3776 Cognitive Complexity of methods should not be

too high
CRITICAL CODE SMELL

Figure 8. Example of a compliant and non-compliant code for rule S2293.

scription “Improve readability of XmlConfigurationProvider
class.” Among the projects analyzed, only struts officially
uses SonarQube, suggesting that the developer may have
been influenced by the tool’s reports to identify and remedy
the problem. Nevertheless, such cases are uncommon, and
we believe that more attention should be directed toward cog-
nitive complexity, given that methods with high cognitive
complexity are inherently more difficult to test and maintain.
Among the rules that were exclusively associated with

fixed issues, they primarily addressed obsolete code
(S1874), improper exception handling (S112), and redun-
dancy (S2293). Rule S1874 specifically targets the use of
deprecated code marked with the @Deprecated Java anno-
tation. In such cases, the removal of deprecated code is typi-
cally part of a planned refactoring process.
Rule S2293 emphasizes that the object type should not be

redundantly declared in both the declaration and the construc-
tor. Instead, the constructor should use the diamond operator
(<>), allowing the compiler to infer the type automatically.
Figure 8 provides examples of code snippets that comply
with this rule and those that do not. The two PRs with the
highest number of fixes for this rule were accumulo #2643
(107 instances) and #3604 (55 instances). In both cases, the
fixes were achieved through code removals rather than direct
refactoring.
Rule S112 advises against throwing generic Java excep-

tions, recommending that only specific exceptions intended
to be handled should be caught. Relying on generic exception
types forces developers to distinguish between exceptions by
examining their messages, a practice that is prone to error and

Figure 9. TDV evolution over normalized time by repository.

difficult to maintain. The PR with the most issues resolved
for this rule was accumulo #3402, which addressed 260 in-
stances. According to the PR description, the objective was
to improve exception handling, as the author stated: “[...] try
to catch more specific checked exceptions, when appropriate,
instead of catching (Exception) [...].” However, this targeted
approach to exception handling appears to be relatively un-
common.

RQ2: Naming conventions, literal duplication, cognitive
complexity, obsolete code, improper exception handling, and
redundancy are the most common TD issues. Developers
tend to tolerate naming and duplication problems, and they
actively address obsolete code, duplication, and exception
handling; cognitive complexity, however, remains largely
overlooked.

RQ3: How does TD within PRs evolve over time?
While in RQ1 we examined TD evolution from a broad

perspective, here we aim to investigate whether time influ-
ences TD variation. Figure 9 shows how TDV varies over
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Figure 10. TDV categories evolution over normalized time by repository.

normalized time for each repository. We found no notable
patterns in TD variation over the lifespan of the analyzed
projects. Therefore, time alone does not explain changes in
TD. This suggests that effective TD management must ac-
count for factors beyond the project timeline.

However, some projects display temporal gaps, such
as opennlp and commons-collections. In the case of
opennlp, this gap corresponds to a period of approximately
four years and sevenmonths. This was likely due to PRs from
that period not executing the build process correctly, and con-
sequently, we were not able to include them in our analysis.

When analyzing how TDV categories evolve (Figure
10), we observe that most repositories show a stable
trend. However, three projects stand out: cayenne and
httpcomponents-clients exhibited an increasing trend in
PRs that contributed to TD towards the end of the analyzed
period, while wicket showed a similar trend but closer to
the beginning of the analyzed period. In all three projects
that exhibited spikes, these increases might be attributed to
higher-than-usual demands for new features. For instance, in
the wicket project, we found an earlier spike, even though
this project had already existed for over five years. Therefore,
the observed spike is unlikely to be related to initial develop-
ment efforts.

We also analyzed the evolution of issue severity over time
(Figures 11 and 12). The first key finding is the disparity be-
tween fixed and neglected issues. Neglected issues exhibit
a higher share of CRITICAL and BLOCKER cases, account-
ing for up to 50% of all recorded issues in some projects.
This suggests that neglected TD consists primarily of severe
issues that demand greater effort and time to resolve. Con-
sequently, without proper, continuous management, TD can
increase rapidly, undermining project quality and complicat-
ing future maintenance.

While neglected issues maintain a stable trend, fixed
issues occasionally show spikes in high-severity cases
across repositories. Periodically, developers actively target
the most severe TD issues—likely those long neglected—
demonstrating a degree of ongoing TD management.

Figure 11. Fixed issues severity evolution over normalized time by reposi-
tory.

Figure 12. Neglected issues severity evolution over normalized time by
repository.
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RQ3: TDV shows no consistent evolutionary pattern over
time, while neglected issues within PRs consistently exhibit
higher severity levels. We observed that developers periodi-
cally intensify efforts to resolve these issues during specific
periods.

3.2 Qualitative Study - The Study on PRCode
Review Threads

We conducted a qualitative study of PR code review threads
to assess the extent to which authors and reviewers identify,
discuss, and address TD after a PR is opened. To guide this
investigation, we defined the following research questions:
RQ4: Which maintenance goals are commonly linked to
PRs that discuss TD? Considering common maintenance
goals (bug fixing, requirement changes, and code improve-
ment), we want to understand which kind of tasks lead to
code review messages related to TD issues.
RQ5: What are the key characteristics of suggestions for
addressing TD issues? We analyze how reviewers recom-
mend resolving TD, focusing on who makes the suggestion,
the type of suggestion, the level of agreement among partic-
ipants, and the resolution.
RQ6: What are the primary reasons that suggestions for
resolving TD issues are rejected? Assuming that some of
the rejected suggestions may be related to neglected TD, we
aim to identify the characteristics of these rejected sugges-
tions and the most common reasons for their rejection.

3.2.1 Study Procedure

Inspired by previous qualitative work on code reviews (Han
et al., 2022; Karmakar et al., 2022; Coelho et al., 2024), we
conducted an analysis in which, for each PR review thread,
the first authormanually analyzed both the discussion and the
associated code and answered a series of questions. The col-
lected results were then validated by the remaining authors.
To select the sample, we first identified all PRs among

the 2,035 analyzed in our quantitative study (Section 3.1)
that contained at least one review thread, totaling 712 PRs.
From these, we calculated the final sample using propor-
tional stratified sampling by project, with a 95% confidence
level and a 5% margin of error, resulting in a sample of 250
PRs. We adopted proportional sampling to ensure a repre-
sentative sample that included projects as evenly as possible.
Nevertheless, cayenne and maven-surefire projects were
excluded from the sample calculation due to their minimal
datasets, each containing only two PRs with review threads.
This exclusion was based on their insufficient sample size
rather than an arbitrary decision.
For each PR, the first author manually evaluated aspects

of the PR and its associated review threads, addressing in-
quiries concerning both the PR content and the discussions
within the review threads—each PR may have zero or more
review threads, which typically begin when a reviewer se-
lects a code snippet and initiates a discussion about it, poten-
tially including one or more comments. We excluded stan-
dalone PR comments—those posted independently and not
tied to any code snippet—because they obscure the bound-
aries of each discussion and provide no context about the

affected code. That context is essential for us to determine
whether reviewers’ suggested changes were actually imple-
mented.
We aimed to identify the main maintenance activity per-

formed for each PR, referred to as the primary objective. This
objective was classified based on the code change categories
proposed by previous studies (Hassan, 2009; Palomba et al.,
2017; Nikolaidis et al., 2023) and can be defined as: (i) bug -
when the main activity of the PR consists of correcting a fail-
ure resulting from unexpected behavior; (ii) improvement -
encompassing all actions aimed at improving code quality;
and (iii) requirement changes - when a new feature is added
or an existing one has its structure modified. In cases where
the primary objective among these three categories was not
clearly identifiable, we classified it as unknown. To identify
each PR’s primary goal, we manually reviewed its title, de-
scription, and any related issues.
Thus, in our study, we collected the following data:

Repository: The repository containing the PR.
PR number: The unique identifier of the PR.
PR URL: The link to access the PR details.
Primary objective: As described above and based on

the categories from previous studies (Hassan, 2009;
Palomba et al., 2017; Nikolaidis et al., 2023), classified
as:
BUG: When the primary objective is to fix bugs, that

is, to correct unexpected behavior in system func-
tionality. For example, accumulo #3150 was clas-
sified as a BUG because it implements logic to
handle failures in a specific component, as indi-
cated by the title “Modified ScanServer to cor-
rectly handle tablet failures” and clarified in the
description: “The ScanServer was throwing a Not-
ServingTabletException […].”

IMP: When the primary objective is to improve the
code quality, that is, to implement enhancements
without changing the code’s behavior. For in-
stance, accumulo #2186 was classified as IMP,
as its title and description indicate an objective to
refactor the code to reduce duplication and address
minor style issues.

REQ: When the primary objective is to modify or
implement features. For example, helix #2107
was classified as REQ, as its title indicates that
it adds support for TTL and Container modes to
BaseDataAccessor and its implementations.

UNKNOWN: A category for PRs whose classification
could not be adequately determined. For instance,
accumulo #1934 was classified as UNKNOWN
because there is insufficient information to deter-
mine whether it represents a bug fix or a require-
ment change. The title, “stop recovery if tablet is
being deleted,” could be interpreted either way;
classifying it as a bug would require a report of
an erroneous recovery occurring under those con-
ditions.

Furthermore, we identified PRs and review threads initi-
ated by bots. In both cases, we manually examined the user’s



Technical Debt in Pull Requests: Insights from Apache Projects Calixto et al.

Figure 13. Review threads coding procedure.

profile and their comments to determine whether they belong
to a bot. We also relied on the “bot” tag that bots can use on
GitHub for identification.
For each review thread, we collected a set of data aimed

at identifying whether the discussion addresses TD and, if
so, determining its type. To perform this classification, we
analyzed both the textual content and the associated code
in the review thread. Figure 13 illustrates the coding proce-
dure that we followed throughout this process. We adopt the
TD categories defined in prior taxonomies (Kruchten et al.,
2012; Alves et al., 2014; Li et al., 2015; Rios et al., 2018)
and, for classification purposes, assume that TD refers exclu-
sively to code quality issues that do not arise from require-
ment changes or bug fixes. Table 6 presents all types of TD
identified during the manual evaluation, along with their def-
initions and representative examples.
It is important to note what we did not classify as TD. We

do not classify bugs as TD, as Li et al. (2015) identified incon-
sistencies in the literature regarding whether defects should
be considered a form of TD. Similarly, we exclude require-
ment changes, since they typically represent business needs
that inherently carry priority due to their nature.
Additionally, inspired by a previous study (Han et al.,

2022), we sought to identify the presence of fix suggestions—
only for threads discussing TD.We classified the suggestions
according to their type, author, whether they included sug-
gested code snippets, whether there was agreement between
the reviewer and the PR author, and whether the suggestion
was implemented in the PR.
Regarding their type, the suggestions were classified as

follows:
- Explicit (example in Figure 14). When the author of the
suggestion explicitly points out a problem in the code in an
assertive manner, often also indicating a possible solution.
- Implicit (example in Figure 15). When the author is unsure
whether the identified issue is indeed valid; they hesitate to
request changes explicitly.

Figure 14. Example of a assertive suggestion in helix #1449.

Figure 15. Example of a implicit suggestion in accumulo #2490.

We classified the suggestions according to the author (re-
viewer or PR author) and whether they included suggested
code snippets (yes or no). Based on the procedure of a previ-
ous study (Han et al., 2022), we also identified whether there
was agreement between the author and the reviewer on the
application of the suggestion. This attribute is relevant be-
cause we want to verify whether the authors agreed with the
issues raised by reviewers. Thus, the agreement was assessed
solely based on the textual content of the review thread and
categorized as follows:

AGREED: When there is explicit agreement in a comment
made by the PR author (if the suggestion was initi-
ated by a reviewer) or by the reviewer (if the sugges-
tion was initiated by the PR author). For example, the
first review thread (IDPRRT_kwDOAAJ058431ruQ) of
zookeeper #2114 was classified as AGREED since the
reviewer noted that the author had forgotten to log the
server’s current state (“it seem that you are not printing
the state”), and the author agreed and replied, “Yeah!
Good catch, thanks!” In another example, in the first
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Table 6. TD types, their definitions, and representative examples.

TD type Definition Examples

Code
Source-code deficiencies that hinder
readability and increase maintenance
effort.

“This import is not used” (helix #1847)

“nit: looks like there is an extra space at the front” (helix
#2588)

“I’m wondering if update() could be renamed [...]” (accumulo
#2224)

Design

Suboptimal designs in terms of effi-
ciency, maintainability, and readabil-
ity, as well as practices that diverge
from essential object-oriented design
principles.

“I think it might be helpful to break this function down to [...]”
(helix #1678)

“Maybe its better to just make the new SPI interfaces follow the
patterns of the old ones [...]” (accumulo #1891)

Architectural
System-level issues that affect ar-
chitectural requirements (e.g., perfor-
mance, robustness, scalability).

“For less confusion, this should be in a package corresponding
to the module it is contained in [...]” (accumulo #2549)

“[...] I would like to move more logging to that package [...]”
(accumulo #3047)

Test
Inadequate testing practices that re-
duce test effectiveness and compro-
mise quality assurance.

“Can you test enable it by the new config?” (helix #1487)

“Could use assertThrows() to ensure the specific line throws
the desired exception [...]” (accumulo #2224)

“A unit test for this would nice. [...]” (accumulo #2752)

Documentation
Absence, inadequacy, or incomplete-
ness of project documentation arti-
facts.

“Let’s add TODO for this and below methods.” (helix #2127)

“[...] wie should add a comment referencing JIRA-1337 [...]”
(commons-lang #269)

“[...] Maybe we should mention it in the documentation [...]”
(zookeeper #1799)

Build
Build-system/process issues that lead
to excessive complexity and hinder
the ease of building the software.

“[...] Remove unused spring-webmvc-portlet [...]” (struts
#552)

Usability Poor usability decisions that are likely
to require rework in the future.

“If we make this property of type PropertyType.BYTES, then
it may be more user friendly [...]” (accumulo #1706)

review thread (ID PRRT_kwDOAAMmKs42qKw0) of
commons-lang #1148, the author agreed to the sugges-
tion by reacting with a thumbs-up emoji, which we in-
terpret as agreement, and the fix was implemented in
the subsequent commit.

REJECTED: When the author explicitly rejects the sugges-
tion. For instance, in the only review thread of helix
#2597, the code under review prints the method name
as a plain string; the reviewer suggested using a utility
class to get the method name and print it, but the author
disagreed, arguing that “[...] we just use the plan text
test func name to reduce string append.”

UNKNOWN: When the author participates in the discus-
sion without clearly indicating whether they agree or
not. For example, in the second review thread (ID
PRRT_kwDOACaFSM4x2rKu) of accumulo #3725,
the reviewer suggested removing the “GC” prefix to
eliminate redundancy in the log message. The author
replied by asking whether a debug-level log might be
more appropriate, without explicitly agreeing or dis-

agreeing, so we classify the agreement as UNKNOWN.
POSTPONED: When both agree that there is an is-

sue, but it is not within the scope of the current
PR. For example, in the third review thread (ID
PRRT_kwDOAPIHxc4wopCV ) of helix #2579, the
reviewer suggested deferring style and refactoring
changes to a separate PR to keep the focus on the core
logic, which the author agreed with.

IGNORED: When the author does not engage in the discus-
sion, which is easily verified by the absence of any com-
ments from them in the review thread.

Although the agreement indicates that a consensus was
reached on the issue, it is important to verify whether it
was effectively resolved in cases where the author neither
rejected nor postponed the solution. Thus, we identified the
resolution of the suggestion by analyzing only the code in
the subsequent commits following the discussion. The reso-
lution was categorized as follows:

FIXED. When the issue was completely corrected. For ex-
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ample, in the only review thread of accumulo #2403,
the reviewer asked whether certain class attributes
should be declared final. The author replied that they
had made the change, and we verified in commit
149e858 that all affected attributes had been updated.

P-FIXED. When the issue was partially resolved. This
classification encompasses situations where the so-
lution can be divided and implemented in parts,
with the developer leaving some parts unaddressed.
For example, in the penultimate review thread (ID
PRRT_kwDOAPIHxc4xSLfM) of helix #2588, the re-
viewer suggested replacing a large code block in a test
class with a single log statement because the block
would not be used. The author removed all the code
from the method but did not add the log, thereby ad-
dressing only part of the suggestion.

UNFIXED. When the issue was not resolved. For
example, in the penultimate review thread (ID
PRRT_kwDOAAJ0584eND-O) of zookeeper #1799,
the reviewer asked that the log level be changed from
WARN to INFO. The author explicitly agreed, stating
they had made the change to INFO, but no subsequent
commit was made, and the issue was never resolved.
Conversely, in the only review thread of helix #2666,
the reviewer suggested moving a method to an abstract
test class for reuse. The author did not engage further,
and no commits followed, leaving the suggestion
unaddressed.

UNKNOWN. When it is not possible to determine whether
the issue was corrected. This category applies when
it’s impossible to determine with confidence that the is-
sue was fixed. It covers cases where it is unclear what
the correction should entail, or where commits contain-
ing the potential fix include too many changes, mak-
ing it impossible to identify the correction with preci-
sion. For example, in the third-to-last review thread (ID
PRRT_kwDOAPMNSs439FfM) of strus #861, the re-
viewer recommended improving a code segment’s per-
formance without specifying how. The author subse-
quently comments that the issue was fixed, but the sub-
sequent commit bundles numerous edits, making it un-
clear whether the performance issue was actually ad-
dressed.

These data collection and evaluation processes generated
two datasets: one for PRs and another for review threads. The
PR dataset consists of 250 elements, while the review thread
dataset contains 929 records. Both datasets include the fea-
tures mentioned above.

3.2.2 Results and Discussion

In this section, we present the results and then discuss the
findings for the research questions Q4-Q6. All results in this
section are derived from manual analysis.
Data Characterization
In this study, we manually evaluated a sample of 250 PRs.

In 211 of them (84.4%), we identified at least one discussion
related to TD,meaning that four out of five PRs include some
discussion about TD issues. When analyzing this value for

Figure 16. Percentage of PRs with TD discussion by project.

Figure 17. Review threads by TD type.

each repository (Figure 16), most of them show percentages
above 80%, except for the opennlp and wicket projects,
both of which have a low number of PRs (2 and 5, respec-
tively). This result indicates that PR reviewers are aware of
TD-related issues.
In addition, we analyzed 879 unique review threads. How-

ever, since some threads discussed more than one issue, the
total number of review threads per issue, including dupli-
cates, was 929, of which 708 discussed TD. The average
number of review threads per PR was 3.72, while the median
was 2. The average number of review threads discussing TD
per PR was 3.35, with a median also of 2.
When comparing these values with the statistics on TD

issues per PR from the quantitative study (mean = 126.3,
median = 26), we can conclude that although reviewers al-
most always point out TD issues, the number of discussions
remains relatively low compared to the total number of is-
sues present in the code, whether pre-existing or newly intro-
duced.

Table 7. Review threads regarding a TD discussion.

TD Discussion Percentage (%)
No 20.5
Unknown 3.6
Yes 76.0

Table 7 shows that three out of four review threads dis-
cuss TD, while only one in five does not. These numbers
reinforce prior findings, indicating that reviewers frequently
identify and engage with TD-related issues during code re-
views. Furthermore, we identified the most discussed types
of TD (Figure 17). Code is the most frequently debated type,
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Figure 18. Review thread about TD code.

Figure 19. Review thread about TD design.

followed by documentation, design, and testing. The fact that
code is the most common type is an expected result, as these
issues are generally easier to identify and resolve, such as
improper naming, style, and readability issues, among oth-
ers. However, other types of TD issues are also considered
by reviewers.
Figure 18 presents a typical discussion involving code that

occurred in PR helix #1550, where an unused import is-
sue was identified and subsequently fixed. On the other hand,
Figure 19 illustrates an example of a design issue identified
in accumulo #1765, where the reviewer proposed a better
solution for the MockScanner class, and the author partially
implemented the solution (P-FIXED).
Among the 708 review threads that discuss TD, 680 of

them (96.32%) include suggestions. This indicates that re-
viewers not only identify issues but also actively propose
concrete solutions to address them in the code.
Finally, we checked whether any PR or review thread

was initiated by a bot. We did not find any PRs created
by bots, but we identified four review threads initiated
by bots: two in struts #861, one in zookeeper #1992,
and one in zookeeper #2001. In struts, both review
threads were initiated by a GitHub Advanced Security18 bot,
which ran SonarCloud through the code scanning feature. In
zookeeper, both review threads were initiated by a bot from
the Sonatype Lift19 tool. The only discussion with human in-
volvement was in zookeeper #2001, where the PR author
pointed out that the reported issue was a false negative. All
identified bots used the “bot” tag for self-identification.
RQ4: Which maintenance goals are commonly linked to
PRs that discuss TD?

Table 8. Percentage of PRs by primary goal.

Primary Goal Percentage (%)
BUG 26
IMP 40
REQ 29.6
UNKNOWN 4.4

18https://docs.github.com/en/get-started/
learning-about-github/about-github-advanced-security

19https://github.com/apps/sonatype-lift

Before addressing RQ4, it is important to understand the
most common primary objectives in our sample. Table 8
presents the percentage of PRs for each category.
The IMP category is the most frequent, accounting for

40% of PRs. This indicates that two out of five PRs focus
on implementing code improvements and, consequently, re-
solving TD issues. However, when comparing these results
with the quantitative study, which showed that 25% of PRs
reduce TD, we observe a 15% difference between PRs that
effectively reduce TD and those whose primary objective is
code improvement.
This difference is attributable to issue types that Sonar-

Qube does not detect, including incomplete documentation,
spelling errors in both documentation and code, more com-
plex problems related to the code context, and missing test
cases. Such issues are only detected during the PR review
phase, highlighting the importance of code reviews in this
context and the limitations of code analysis tools.
The REQ and BUG categories follow, with 29.6% and

26%, respectively. Finally, in 11 cases (4.4%), we were un-
able to identify the primary objective.

Table 9. Percentage of PRs with TD discussion by primary goal.

Primary Goal Percentage (%)
BUG 76.9
IMP 86
REQ 87.8
UNKNOWN 90.9

Answering RQ4, Table 9 shows the percentage of PRs
that discuss TD for each primary objective. PRs focused
on adding or modifying features are the ones that most fre-
quently include TD discussions, followed closely by PRs that
improve the code.
Since new code is introduced more frequently in PRs with

requirement changes, the results indicate that, in these situ-
ations, reviewers are more likely to raise TD-related issues
(around 88%). On the other hand, bug-fix PRs present the
lowest rate of TD discussions. Although still relatively high
(77%), this slightly lower rate may be explained by the fact
that reviewers tend to focus more on ensuring that the unex-
pected behavior caused by the bug is properly fixed rather
than on code quality aspects.

RQ4: PRs that add or modify features involve TD discussions
most often (87.8%), with code-improvement PRs following
closely behind. Bug-fix PRs exhibit the lowest rate of such
discussions (76.9%), indicating that in these cases, review-
ers give slightly more priority to fixing functionality over de-
bating code quality.

RQ5: What are the key characteristics of suggestions for
addressing TD issues?
As pointed out in the data characterization, more than 96%

of the review threads discussing TD also include a fix sug-
gestion. These suggestions can provide insights into whether,
based on the TD issues raised by the reviewer, the author un-
derstands the need to pay the debt and whether they actually
correct them.

https://docs.github.com/en/get-started/learning-about-github/about-github-advanced-security
https://docs.github.com/en/get-started/learning-about-github/about-github-advanced-security
https://github.com/apps/sonatype-lift
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Table 10. Distribution of suggestions across different categories.

Category Distribution (%)
Author

Reviewer 96.9
PR Author 3.1

Type
Explicit 50.6
Implicit 49.4

With suggested code
No 63.7
Yes 36.3

Agreement
AGREED 45.0
IGNORED 32.9
POSTPONED 3.7
REJECTED 12.1
UNKNOWN 6.3

Resolution
FIXED 83.6
P-FIXED 3.0
UNFIXED 11.2
UNKNOWN 2.3

Figure 20. Example of a suggestion with code suggestion (accumulo
#2490).

Before that, it is important to understand what a typical
fix suggestion looks like. Table 10 presents the distribution
of suggestions by author role among other breakdowns. In
96.9%of cases, suggestions come from reviewers, while only
3.7% originate from the PR authors. This suggests that PR
authors often resolve issues directly in the code without the
need for an explicit discussion.
However, PR authors are more likely to initiate a discus-

sion when they are uncertain about their implementation, un-
sure if a code issue exists, or are debating whether it should
be addressed. In these situations, they seek a second opin-
ion to help them decide how to proceed. For example, in
struts #867, the author starts a discussion about the possi-
bility of renaming some classes and interfaces in the future:
“Maybe in 7.0 we can consider renaming VelocityManager
to StrutsVelocityManager [...].”
Regarding type, both explicit and implicit suggestions ap-

pear with almost equal frequency. However, suggestions that
include code snippets account for about one-third of the total,

Figure 21. Suggestions by agreement and resolution.

meaning that most suggestions do not contain code. Figure
20 illustrates an example in which the reviewer includes a
code snippet with suggestions to improve readability, mak-
ing it easier for the developer to understand what needs to be
modified.
The agreement analysis shows that in 45% of the sugges-

tions, there is explicit consensus between the author and the
reviewer. In 32.9% of the cases, the author simply ignores the
discussion, while in 6.3% they participate but do not clearly
state whether they agree with the suggestion. It is worth not-
ing that in 3.7% of cases, even when consensus is reached,
the correction is postponed.
Rejected suggestions account for 12.1% of cases, in which

the author explicitly states in the discussion that they do
not accept the suggestion. Excluding the rejected and post-
poned suggestions, approximately 84% of the discussed is-
sues could potentially be fixed or not. Nevertheless, there is
still room for developers to engage more actively in discus-
sions, making it clear whether they agree with or reject the
proposed suggestions.
While agreement indicates whether the author acknowl-

edges the identified issue, it is still necessary to verify
whether they actually fix the problem in the code. Table 10
also presents the distribution of suggestions by resolution.
Four out of five issues are fixed, 3% of the corrections are
only partially implemented, and 11.2% of the issues remain
unresolved.
Complementing these findings with the results shown in

Figure 21, we observe that in approximately 40% of the cases
where problems were fixed, there was no explicit agreement
between the author and the reviewer, yet the author still im-
plemented the correction. In cases where the discussion was
ignored, a possible explanation is that when the issue is clear,
the author may simply choose to fix it directly. However,
even in such cases, it would be beneficial for them to explic-
itly state their agreement and confirm that the issue has been
fixed, as this could also serve as additional motivation for
reviewers.
One aspect that requires more attention from PR authors

is that in about 90% of cases where suggestions remained un-
fixed, reviewers were not explicitly informed of this decision.
This lack of explicitness typically occurred either because the
PR author did not participate in the discussion (IGNORED)
or did not clearly state their intention to leave the suggestion
unfixed (UNKNOWN). Consequently, reviewers were likely
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unaware that their suggestions would not be addressed.

RQ5: Almost all fix suggestions (96.9%) come from review-
ers, yet most—63.7% overall and 76.5% of implicit ones—
lack suggested code snippets, which can obscure what needs
fixing. In approximately 40% of cases, developers neither
participate nor clearly express an intent to resolve the issue;
for unaddressed issues, that figure climbs to nearly 90%.

Table 11.Distribution of rejected suggestions by type and suggested
code.

Category Distribution (%)
Type

Explicit 15.9
Implicit 84.1

With suggested code
No 82.9
Yes 17.1

RQ6: What are the primary reasons that suggestions for
resolving TD issues are rejected?
As previously discussed, the number of rejected sugges-

tions in our sample is low (12.1%). To better understand this
group, we first analyzed the distribution of rejected sugges-
tions by type (Table 11). We found a significant increase
of more than 50% in the proportion of implicit suggestions,
which account for 84.1% of the total. There is also an in-
crease in the proportion of suggestions without a suggested
code snippet. We examined various cases of rejected and im-
plicit suggestions, which revealed that, in most situations, re-
viewers perceived an issue. However, developers often ex-
plain why the identified point is not actually a problem.
For example, in helix #2153, a discussion begins with the

reviewer asking: “How about a proper successful test case?”,
to which the author responds: “The first test case covered
that.” In this case, the reviewer initially believed that there
were no tests covering the success case, but the developer
clarified that such a test already existed.
In some cases, the issue raised by the reviewer is valid,

but the suggestion is rejected because the developer is sim-
ply following project standards or because implementing the
change would require significant modifications, making it
inappropriate at that moment. For instance, in zookeeper
#1799, the reviewer suggests using a final attribute instead of
repeatedly parsing the same value multiple times. The author
responds that, despite agreeing, this is the standard practice
in the project. In another example, in accumulo #1945, the
reviewer points out that the code does not follow a consistent
naming convention for an object, sometimes referring to it as
“ctx” and other times as “context,” and suggests adopting a
single naming pattern to improve readability. The author ac-
knowledges the issue but states that the change falls outside
the scope of the PR.
Figure 22 shows that the main types of TD involved in re-

jected suggestions are code (61%) and design (24.4%).When
comparing these values with those obtained for all review
threads discussing TD (Figure 17), we observe an increase in
the rejection of design-related TD and a significant decrease
in the rejection of documentation-related TD.

Figure 22. Rejected suggestions by TD type.

The lower rejection rate for documentation-related sugges-
tions may be linked to the fact that such suggestions tend to
be simple, straightforward, and easy to implement. In gen-
eral, they involve minor modifications to existing documen-
tation, the addition of new documentation, or spelling cor-
rections, and reviewers often provide explicit textual sugges-
tions. For example, in commons-io #530, there are two doc-
umentation suggestions, both including specific textual sug-
gestions for inclusion: (i) “[...] You could say instead ‘Al-
ways throws the exception supplied from a constructor’” and
(ii) “[...] I think we should say ‘in a constructor’, not ‘in
the...’” On the other hand, in accumulo #2369, there is a typo
correction suggestion that simply involves changing “witn”
to “with.”
Upon analyzing the discussion content of rejected sugges-

tions, we observed that nearly all rejections resulted from sit-
uations where reviewers identified a problem without fully
examining the code, leading developers to reject the sugges-
tion by explaining why it was not an issue. In other cases, al-
though the problem may be real, the suggestion was rejected
because it conflicted with project standards or the required
changes would entail considerable effort.

RQ6: Rejected suggestions differ significantly from common
ones, with 84.1% being implicit and 82.9% lacking suggested
code, alongside fewer documentation-related issues. Most re-
jections occur when reviewers identify issues without thor-
ough code examination, leading developers to dismiss them
by clarifying non-issues, or when suggestions conflict with
project standards or require substantial effort.

3.3 Implications
Our findings carry important implications for practitioners,
researchers, and tools. For practitioners, the results reveal
that issues related to code quality—classified as CODE
SMELL—are the most prevalent, often necessitating exten-
sive remediation efforts due to their medium to high severity.
While the TD detected by SonarQube is neglected in a

large portion of PRs (about 75%), we observed that a simi-
lar proportion (76%) of PRs discuss TD during code reviews.
Furthermore, a significant portion of the issues identified in
these reviews is later addressed by developers (83.6%). This
divergence between the two scenarios can be explained by
several factors.
One factor is the adoption of ASATs. Only the struts
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project officially integrates SonarQube, making it unlikely
that developers of other projects run the tool manually on
their PRs, meaning that they may not be aware of all these
issues. Even when a tool is integrated, developers might not
proactively use it to fix every issue. ASATs flag every de-
tected problem within their scope, often leading developers
to prioritize only the most relevant or critical issues. This be-
havior is consistent with prior studies (Marcilio et al., 2019;
Tan et al., 2021) showing that developers tend to focus on a
small subset of issue types that the tool can detect.
Finally, the limitations of ASATs play a role. An ASAT of-

ten cannot detect more complex issues or issues in other do-
mains, such as documentation, which can further explain the
divergence between tool detection and review discussions.
As practical implications, tool developers can conduct

studies to expand the detection scope of ASATs, using issues
identified in code reviews as a basis and potentially leverag-
ing our dataset from the manual study. For developers and
reviewers, the results indicate that while there is a good level
of discussion about TD during reviews, there is still room for
improvement, as reviewers cannot detect all issues on their
own. Therefore, it is advisable to complement code reviews
with static analysis tools.
In code reviews, we identified that in approximately 40%

of the discussions, developers either do not participate (IG-
NORED) or do not clearly express their intention to fix the
issue (UNKNOWN). This percentage rises to around 90%
for issues that remain unresolved (UNFIXED). Given these
findings, it is crucial for developers to engage more ac-
tively in discussions, clearly stating their intentions regard-
ing whether or not to fix the issues. Meanwhile, reviewers
can adopt a more direct approach by clearly pointing out is-
sues and, whenever possible, providing code snippets with
suggested solutions.
Project managers can explore the implementation of mech-

anisms to prevent the merging of PRs that introduce new TD
beyond a predefined threshold. Additionally, for projects uti-
lizing configurable tools like SonarQube, they could tailor
the active rules set to their specific context, disabling irrele-
vant rules.
For researchers, further investigations could explore the

tolerance for issues by gathering developers’ perspectives.
Such studies could contribute to the proper configuration of
static analysis tools and/or the development of new tools
that consider the context in which issues occur and/or ad-
just severity levels. Additionally, with the growing popular-
ity of Large Language Models (LLMs), automatic code re-
view tools like CodeRabbit20 have emerged, offering the ca-
pability to address developers’ questions during discussions.
Therefore, it would be interesting to compare these tools with
ASATs in terms of both detection scope and the rate at which
developers address identified issues. It would also be rel-
evant to compare human reviews with automated reviews
across various dimensions, such as effectiveness, accuracy,
and developer acceptance.

20https://www.coderabbit.ai/

4 Threats to Validity
In the quantitative study using SonarQube, we are restricted
to issues related to code and design (Nikolaidis et al.,
2023). This limitation was mitigated through manual analy-
sis, which enabled us to identify a variety of TD types, cover-
ing domains beyond the tool’s scope. In addition, SonarQube
can also present false positives. The first author conducted a
manual review of several samples from the collected data and
observed that the occurrence of false positives was minimal,
thus not significantly impacting the conclusions drawn.
Amajor challenge was the necessity of compiling the code.

This requirement led to the exclusion of many projects and
PRs from our study due to compilation errors. Furthermore,
the analysis was a time-intensive process, with an average
execution time of 6 minutes and 18 seconds per commit. To
address this, we parallelized the executions across four VMs,
enabling the analysis of a substantial sample of 2,035 PRs
within approximately two weeks.
Despite these challenges, SonarQube remains the most

widely used tool in empirical studies related to TD (Digkas
et al., 2017; Molnar and Motogna, 2020; Avgeriou et al.,
2021; Zabardast et al., 2022; Nikolaidis et al., 2023; Dantas
et al., 2023), and to the best of our knowledge, the only tool
capable of estimating TD remediation time.
Alternative quality methods could also be employed to as-

sess TD. For instance, the SQALE method quantifies TD in
terms of remediation time, while models such as QMOOD
(Bansiya and Davis, 2002) and Quamoco (Wagner et al.,
2012) consolidate structural metrics into quality aspects. Fur-
thermore, Curtis et al. (2012) proposed a measurement ap-
proach that considers three variables: the number of issues
to be addressed, the time required to resolve each issue, and
the labor cost (dollars per hour). Among these methods, only
Quamoco offers an available plugin21, although it has not
been updated in the last eight years. A recent study (Özçe-
vik, 2024) even utilized tools like SonarQube to estimate the
metrics outlined by QMOOD. Thus, the SQALEmethod, im-
plemented through SonarQube, proved to be the most viable
approach for measuring TD in our study.
Our filtering strategy eliminated nearly half of the PRs in

the initial dataset. However, this step was necessary to avoid
scenarios such as handling code pulled from other branches,
which could impact the results. Furthermore, we focused ex-
clusively on Java projects from the Apache Software Founda-
tion. Therefore, our findings may differ for projects in other
programming languages or industrial contexts.
Regarding our qualitative study, its primary limitation lies

in the fact that the manual analysis and classification were
conducted only by the first author and revised by the remain-
ing authors. To mitigate potential biases, we developed a de-
tailed study guide containing all the questions we aimed to
answer and guidelines for addressing them. Furthermore, the
first author is an experienced developer (with more than 3
years of experience), and he chose to conduct short evalua-
tion sessions (approximately 10 PRs per day) to minimize
the impact of fatigue on the analyses. Although our sample
size is limited, we calculated it to achieve a 95% confidence

21https://github.com/MSUSEL/msusel-quamoco-plugin

https://www.coderabbit.ai/
https://github.com/MSUSEL/msusel-quamoco-plugin
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level and a 5% margin of error.
We base our definition of TD on taxonomies established

in prior studies (Kruchten et al., 2012; Alves et al., 2014; Li
et al., 2015; Rios et al., 2018). The types of TD may vary
across studies, but most of the categories presented here are
commonly found in existing taxonomies. Each review thread
was classified as discussing TD or not. For cases where the
context was not sufficiently clear to determine whether TD
was involved, we applied the UNKNOWN category. We en-
countered several instances where a reviewer simply wrote
“same here” or “this too,” referring to an issue previously re-
ported in another review. Since we only considered the con-
text of the thread under review, we classified all such cases as
UNKNOWN to avoid misattributing references to prior dis-
cussions. Two examples of this are found in commons-io
#325 and helix #1579.
A separate challenge was identifying cases where a com-

ment’s purpose was unclear, making it difficult to distinguish
between a quality concern, a bug, or a requirement change.
For example, in the third-to-last review thread of helix
#1534, the reviewer asked, “How about themanagers? Please
disconnect them too.” Neither the code nor the comment pro-
vided enough detail to judge whether this was a performance-
related issue, a new requirement, or a bug; we therefore clas-
sified it as UNKNOWN. Aside from these ambiguous cases,
most review threads concerned straightforward issues such
as style corrections, documentation fixes, or variable renam-
ing.
Other studies exploring changes in code reviews may em-

ploy different categorizations. For instance, Panichella and
Zaugg (2020) identify only two types of maintenance ac-
tivities: perfective maintenance, which encompasses code
improvements, and corrective maintenance, which includes
both requirement changes and bug fixes. We chose to distin-
guish three types, following previous similar studies (Hassan,
2009; Palomba et al., 2017; Nikolaidis et al., 2023). Addi-
tionally, they categorize change types at a finer granularity,
where their perfective maintenance category includes types
aligning with our definition of TD, albeit under different la-
bels.
The scripts developed to process and analyze the data were

manually validated by the authors through extensive testing.
To ensure the replicability of this study, we have detailed
all the main steps in the methodology and made our repli-
cation package available (Calixto et al., 2025). This package
includes the datasets, scripts, and the data produced at each
stage of the analysis.

5 Related Work

In this section, we review relevant literature related to our
work.We begin by examining studies related to the evolution
of TD (Section 5.1), outlining the level of granularity used to
measure TD and the key findings derived from their analysis.
Next, we explore research on code review practices within
PR-based development (Section 5.2).

5.1 TD Evolution
Li et al. (2015) performed a systematic literature review fo-
cused on TD management, identifying 10 distinct types of
TD, 8 TD management activities, and 29 tools used for TD
management. Their findings revealed that code debt was the
most extensively studied type of TD, aligning with the focus
of our quantitative study. Similarly, Avgeriou et al. (2021)
compared various tools for measuring TD, concluding that
SonarQube is the most widely adopted tool, which is also
employed in our quantitative analysis.
Several studies have explored TD evolution in software

projects using ASATs, primarily SonarQube. Digkas et al.
(2017) analyzed weekly revisions across 66 Apache Java
projects over a five-year period, finding that absolute TD lev-
els increased while normalized TD decreased. Their study
identified prominent issues such as improper exception han-
dling and code duplication. Molnar and Motogna (2020), ex-
amining three Java projects, found a strong correlation be-
tween lines of code and TD levels, highlighting that 20% of
issue types accounted for 80% of TD. In contrast to their anal-
ysis, our study additionally identifies the types of issues most
frequently fixed and neglected within PRs. Tan et al. (2021)
investigated the evolution of TD in Python projects, noting
that resolved TD was predominantly related to testing, docu-
mentation, complexity, and code duplication, with most TD
resolved within two months.
While these studies provide valuable insights into long-

term TD trends through project revisions, our study uniquely
focuses on PRs as the unit of analysis, allowing us to examine
small-scale development cycles, thereby capturing the socio-
technical factors that influence TD management.
Nikolaidis et al. (2023) examined the impact of mainte-

nance activities on TD growth, analyzing 13.5K PRs from
Java projects using SonarQube. The results revealed that
adding new features typically increases TD, whereas refac-
toring activities reduce it. Our work differs from Nikolaidis
et al. by analyzing TD evolution within PRs specifically,
identifying frequently resolved and neglected issue types, ex-
amining the temporal evolution of TD and issue severity, and
exploring maintenance activities associated with TD discus-
sions.

5.2 Code Review in PR-Based Development
Previous studies have already investigated code review in
PRs, focusing on quality issues (Pascarella et al., 2019;
Uchôa et al., 2020; Han et al., 2022; Coelho et al., 2024) and
TD (Karmakar et al., 2022). Karmakar et al. (2022) analyzed
whether PR comments indicate TD. Initially, they manually
labeled comments and used this data to train machine learn-
ing and deep learning models. During this process, the au-
thors faced several challenges, as a single PR comment of-
ten does not provide enough information about the discussed
context. A TD issuemay be spread acrossmultiple comments
or even discussed elsewhere, such as in issues. Considering
this limitation, we chose to analyze code reviews at a higher
level of granularity, using review threads. A review thread
has a well-defined scope, clearly indicating where the dis-
cussion starts and ends, as well as the specific code segment
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involved. This allows us to consider both the code and the dis-
cussion itself to determine whether a review thread addresses
TD or not. While Karmakar et al. (2022) limit their analysis
to classifying whether comments are related to TD or not, we
seek to understand whether developers agree with reviewers’
recommendations andwhether they actually address the iden-
tified issues.
Coelho et al. (2024) conducted a qualitative study to char-

acterize code review in refactoring-inducing PRs. One of
their findings was that some review comments are more as-
sertive, with reviewers directly point out the problem and,
to some extent, demand a correction. In contrast, other com-
ments reflect the reviewer’s uncertainty about the identified
issue. We took these aspects into account when classifying
code review suggestions as explicit or implicit.
With the aim of investigating which code smells are iden-

tified and fixed during code reviews, Han et al. (2022) ana-
lyzed review comments in four open-source projects. Among
other things, they classified the types of code smells, the ac-
tions suggested by reviewers, and how developers responded.
The authors found that reviewers usually provide construc-
tive feedback, including correction recommendations, and
that developers tend to follow these suggestions. Extending
this analysis, our study classifies reviewer-developer interac-
tions by examining agreement and resolution of TD issues
within review threads.
Mäntylä and Lassenius (2009) and Beller et al. (2014)

observed approximately a 75:25 ratio between evolvability
(TD-related) and functionality (bug-related) issues, which
aligns closely with our findings regarding TD presence in
PRs and review threads. Similarly, El Zanaty et al. (2018)
classified review comments in two projects to determine
which were related to design. They found that only 9% to
14% of reviews were design-related, which is consistent with
our observations about design TD discussions.
Previous research on types of code changes (Hassan, 2009;

Palomba et al., 2017; Nikolaidis et al., 2023) typically clas-
sified activities into requirement implementation, bug fix-
ing, and quality improvement. Palomba et al. (2017) found
that bug-fixing activities tend to include a higher number
of refactoring operations aimed at improving maintainability
and readability. On the other hand, during the implementa-
tion of new features, refactoring operations are usually more
complex and focus on enhancing system design.

6 Conclusions
In this paper, we investigated how TD evolves within PRs
by using a static analysis tool as a ground truth and examin-
ing TD as part of the code review process. To achieve this,
we evaluated merged PRs from 12 Java projects from the
Apache ecosystem.
The results show that TD issues are present in nearly all

PRs (96.26%). Across the projects, the variation in TD fol-
lows a ratio close to 1:2:1 (reduction:unchanged:increment),
meaning that for every four PRs, one reduces TD, two leave
TD unchanged, and one increases TD. Time does not appear
to influence TDvariation, while neglected issues consistently
exhibit high severity levels over time.

Our analysis revealed that the most frequent issues across
the studied projects are associated with naming conventions,
literal duplication, cognitive complexity, obsolete code, im-
proper exception handling, poor logging practices, and redun-
dancy. In particular, literal duplication was the most preva-
lent among all projects. Our findings suggest that developers
may tolerate certain issues—specifically those related to lit-
eral duplication and naming conventions—while cognitive
complexity stands out as a significant concern that warrants
further attention, given its impact on code comprehension
and testability.
Regarding code reviews, approximately 76% of them in-

clude discussions about TD issues, with the most common
issues related to code, design, and documentation. Nearly all
discussions include a suggested fix (around 96%), and over
80% of these issues are resolved. However, in a significant
portion of the reviews, developers do not actively participate,
reaching 90% of cases where issues remain unaddressed.
For future work, we plan to expand our manual study

to strengthen the reliability of the coding by involving ad-
ditional raters, conducting consensus meetings, and per-
forming inter-rater agreement analysis (e.g., using Cohen’s
Kappa). We also plan to dive into aspects such as under-
standing ignored suggestions during reviews. Moreover, fu-
ture studies could assess developers’ and reviewers’ toler-
ance toward certain issues through surveys. An emerging
area of interest is automatic code review, where research
could compare different tools, from ASATs to automated re-
view systems, and contrast human review with automated ap-
proaches.

7 Availability of Artifacts
All data and scripts utilized in this study are publicly avail-
able to support future research and reproducibility (Calixto
et al., 2025).
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