
Journal of Software Engineering Research and Development, 2021, 9:3, doi: 10.5753/jserd.2021.827
 This work is licensed under a Creative Commons Attribution 4.0 International License..

An Empirical Study of Bugs in COVID­19 Software Projects
Akond Rahman [Tennessee Technological University| arahman@tntech.edu]
Effat Farhana [North Carolina State University| efarhan@ncsu.edu]

Abstract
The dire consequences of the COVID­19 pandemic have influenced development of COVID­19 software i.e.,

software used for analysis and mitigation of COVID­19. Bugs in COVID­19 software can be consequential, as
COVID­19 software projects can impact public health policy and user data privacy. The goal of this paper is to help
practitioners and researchers improve the quality of COVID­19 software through an empirical study of open source
software projects related to COVID­19. We use 129 open source COVID­19 software projects hosted on GitHub to
conduct our empirical study. Next, we apply qualitative analysis on 550 bug reports from the collected projects to
identify bug categories. We identify 8 bug categories, which include data bugs i.e., bugs that occur during mining
and storage of COVID­19 data. The identified bug categories appear for 7 categories of software projects including
(i) projects that use statistical modeling to perform predictions related to COVID­19, and (ii) medical equipment
software that are used to design and implement medical equipment, such as ventilators. Based on our findings, we
advocate for robust statistical model construction through better synergies between data science practitioners and
public health experts. Existence of security bugs in user tracking software necessitates development of tools that
will detect data privacy violations and security weaknesses.

Keywords: bugs, covid­19, empirical study, pandemic, software quality

1 Introduction
The novel Coronavirus disease (COVID­19) is a world­
wide pandemic that spreads through droplets generated
from coughs or sneezes and by touching contaminated sur­
faces (John Hopkins University, 2020). As of May 31 2020,
COVID­19 has caused 370,247 deaths across theworld (John
Hopkins University, 2020). Apart from causing thousands of
deaths and creating long term health repercussions for vul­
nerable populations, COVID­19 has severely impacted the
economic sector. According to a recent study (Erin Duffin,
2020), due to COVID­19 gross domestic product (GDP) will
decrease from 3.0% to 2.4% worldwide. As of May 28 2020,
nearly 41 million citizens reported unemployment in USA
alone (Mitchell Hartman, 2020). More than 3.9 billion peo­
ple around the world were under some form of stay at home
order due to COVID­19 (Alasdair Sandford, 2020).
Health care professionals are at the frontline of combat­

ing COVID­19. Practitioners from other domains, such as
software engineering have also joined forces to analyze and
mitigate the negative consequences of COVID­19. For ex­
ample, statistical modeling was used to build a software that
identifies pneumonia caused by COVID­19 from lung scan
images (Tom Simonite, 2020). The software was used in 34
Chinese hospitals (Tom Simonite, 2020). In response to the
food insecurity caused by COVID­19, practitioners have cre­
ated an interactive visualization software that displays free
meal sites across USA (Why Hunger, 2020). The creators
of the software envision in building a social movement to
eradicate hunger and address economic inequalities. As an­
other example, Apple and Google have jointly announced
of creating a software framework that will help practitioners
build tools to trace COVID­19 infection status of mobile app
users (Apple, 2020). The above­mentioned examples show
COVID­19 software i.e., software used for analysis and miti­
gation of COVID­19, to have near­term and long­term effects

on public health and society.
Despite the above­mentioned advancements, COVID­19

software projects are susceptible to bugs. Let us consider Fig­
ure 1 in this regard. Figure 1 provides a snapshot of a bug re­
port related to statistical modeling (Begley, 2020a). We ob­
serve when implementing a statistical model the practition­
ers did not consider the correlation between intensive care
unit (ICU) bed availability and death rate prediction. Further­
more, the number of ICU beds is incorrectly assumed to be
40,000 instead of 1,000.
We hypothesize systematic analysis can reveal bug cate­

gories including statistical modeling bugs similar to Figure 1.
In prior work researchers (Garcia et al., 2020; Rahman et al.,
2020; Linares­Vásquez et al., 2017; Catolino et al., 2019;
Thung et al., 2012;Wan et al., 2017) have documented the im­
portance of bug categorization. For example, for autonomous
vehicle software Garcia et al. 2020 stated that categorization
of bugs can help to construct bug detection and testing tools.
Linraes­Vásquez et al. 2017 stated categorizing vulnerabil­
ities can help Android practitioners “in focusing their veri­
fication and validation activities”. According to Catolino et
al. 2019, “understanding the bug type represents the first and
most time­consuming step to perform in the process of bug
triage”.
In prior work, researchers have categorized bugs for infras­

tructure as code (IaC) (Rahman et al., 2020), autonomous
vehicle (Garcia et al., 2020), and machine learning (Thung
et al., 2012; Islam et al., 2019) software. However, COVID­
19 software is different from previously studied software in
the following aspects: (i) development context: unlike previ­
ously studied software projects, COVID­19 software is de­
veloped in response to a pandemic that infected 6.1 million
individuals in five months (John Hopkins University, 2020),
and (ii) public health: unlike previously studied software
projects, COVID­19 software has direct implications on pub­

https://orcid.org/0000-0002-5056-757X
mailto:arahman@tntech.edu
mailto:efarhan@ncsu.edu

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

Figure 1. An example of a bug report related to statistical modeling in a software project called ‘neherlab/covid19_scenarios’.

lic health and relevant policy making for inhabitants in 188
countries.
In response to the pandemic, researchers have conducted

studies related to modeling (Dehning et al., 2020; Yang and
Wang, 2020; Tamm, 2020), biological science (Jin et al.,
2020; Wang et al., 2020; De Clercq, 2006; Helms et al.,
2020), social science (Van Bavel et al., 2020; Pulido et al.,
2020; Evans et al., 2020;Will, 2020; Jarynowski et al., 2020),
and policy making (Corey et al., 2020; Mello and Wang,
2020; Rourke et al., 2020; Kraemer et al., 2020). However,
characterization of bugs in COVID­19 software remains an
unexplored area.
The scope of our paper is to get a systematic understand­

ing of bugs in COVID­19 software projects. In our paper,
we refer to COVID­19 software projects as software projects
that were created to analyze and mitigate the consequences
of COVID­19. These projects were created in response to
a global pandemic that created a worldwide impact on pub­
lic health, economy, and societal activities. Our hypothesis
is that the utility of COVID­19 software projects and the ur­
gency associated with these projects can yield (i) manifesta­
tion of bugs unique to the COVID­19 reality, and (ii) bug res­
olution time. Furthermore, from our empirical analysis what
categories of bugs appear for what types of COVID­19 soft­
ware projects.

The goal of this paper is to help practitioners and re­
searchers improve the quality of COVID­19 software through
an empirical study of open source software projects related
to COVID­19.
We answer the following research questions:

• RQ1: What categories of open source COVID­19
software projects exist? We identify seven categories
of software projects related to COVID­19: aggregation,
education, medical equipment, mining, user tracking,
statistical modeling, and volunteer management.

• RQ2: What categories of bugs exist in open source
COVID­19 software projects? How frequently do
the identified bug categories appear?What is the res­
olution time for the identified bug categories? We
identify eight bug categories: algorithm, data, depen­
dency, documentation, performance, security, syntax,
and user interface. Except formining andmedical equip­

ment projects, for types of COVID­19 software projects
the most frequently occurring bug category is UI.

• RQ3: How similar are the identified bug cate­
gories to that with previously studied software
projects? Identified bug categories for COVID­19 soft­
ware projects also appear for other software types, but
their manifestation of the bugs is different for COVID­
19 software projects.

Contributions: We list our contributions as follows:

• A categorization of bugs that appear in COVID­19 soft­
ware projects;

• A categorization of OSS projects related to COVID­19;
• An empirical study that identifies what category of
bugs appear for what category of COVID­19 software
projects; and

• A comparison of bug categories for COVID­19 soft­
ware projects to that with previously studied software
projects.

We organize rest of the paper as follows: We discuss re­
lated work in Section 2. We provide the methodology to an­
swer the three research questions in Section 3 and provide
the results in Section 4. We discuss our results with a sum­
mary of our findings in Section 5. We provide the limitations
of our paper in Section 6. Finally, we conclude the paper in
Section 7. Our constructed dataset is available as a public,
citable repository (Rahman and Farhana, 2020).

Overview of the Empirical Study An overview of our pa­
per is available in Figure 2. First, we mine software projects
related to COVID­19 fromGitHub by applying a filtering cri­
teria based on number of issues, number of developers etc.
Next, we apply qualitative analysis technique called open
coding (Saldana, 2015) on the README files of the col­
lected open source software (OSS) projects to identify what
categories of OSS projects exist related to COVID­19. After
characterizing the collected software projects, we again ap­
ply open coding on 550 bug reports from the collected OSS
projects to identify bug categories. We also quantify the fre­
quency and resolution time of each bug category across the
identified project categories. Finally, we conduct a scoping

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

review (Munn et al., 2018) to find the similarities in bug
categories between COVID­19­related software projects and
other categories of software projects.

2 Related Work

Our paper is related with prior research that has focused on
categorization of bugs in OSS projects. Mockus et al. 2002
studied the contribution nature in OSS Apache and Mozilla
projects. They (Mockus et al., 2002) observed contributors
who submit bug reports are approximately 8.2 times higher
in number than contributors who address bugs in bug reports.
Ma et al. 2017 investigated Python GitHub projects that are
used in the scientific domain, and observed developers to use
stack traces, as well as communicate with upstream devel­
opers, to identify root causes of bugs. Zhang et al. 2019 ex­
amined bug reports for mobile and desktop software hosted
on GitHub, and identified differences on how the reports are
constructed. Ray et al. 2014 studied the correlations between
bugs and the language the software is being developed, and
reported a modest correlation using an empirical study of
729 GitHub projects. Categorization of domain­specific OSS
bugs has also been investigated: Thung et al. 2012, Garcia et
al. 2020, Wan et al. 2017, Islam et al. 2019, and Rahman
et al. 2020 in separate research papers used OSS projects
to classify bug categories respectively, for machine learning,
autonomous vehicle, blockchain, deep learning, and IaC.
Our paper is also related with publications that have in­

vestigated the impact of COVID­19 on software develop­
ment. Ralph et al. 2020 surveyed 2,225 practitioners and re­
ported fear related to COVID­19 to affect productivity of
software practitioners. Butler and Jaffe 2020 conducted a di­
ary study with 435 practitioners and reported practitioners to
face challenges, such as having too many meetings and feel­
ing overworkedwhile working from home due to COVID­19.
Oliveira et al. 2020 surveyed 413 practitioners from Brazil
and reported practitioners’ perceived productivity to increase
due to fewer interruptions.
From the above­mentioned discussion we observe bugs

in software projects related to COVID­19 to be an under­
explored area. While there exists several bug categorization
studies (Thung et al., 2012; Garcia et al., 2020; Wan et al.,
2017; Islam et al., 2019; Rahman et al., 2020) no studies ex­
ist for COVID­19­related projects. The bug categorization­
related studies for IaC, block chain, and deep learning moti­
vated us to derive bug categories and quantify the identified
bug categories. Wan et al. 2017’s paper on blockchain bugs
motivated us to study bug resolution time for each identified
bug category. In our paper, we study COVID­19 software
bugs in the following manner:

• categories of bugs;
• frequency of identified bug categories;
• resolution time of identified bug categories; and
• categories of software projects.

3 Methodology

In this section we provide the methodology to answers re­
search questions: RQ1, RQ2, and RQ3.

3.1 Methodology for RQ1:What categories of
open source COVID­19 software projects
exist?

We define COVID­19 software projects as software projects
used for analysis and mitigation of COVID­19. We hypoth­
esize multiple categories of COVID­19 software projects to
exist in the OSS domain. We validate our hypothesis by sys­
tematically categorizing COVID­19 software projects. Our
categorization will provide insights on how the software de­
velopment community has responded to the COVID­19 pan­
demic. We answer RQ1 by completing the following steps:

3.1.1 Dataset Collection

We conduct our empirical analysis by collecting COVID­
19 software projects hosted on GitHub. To collect these
projects we use GitHub’s search utility (GitHub, 2020c),
where we first identified projects tagged as ‘covid­19’. We
use the search string ‘covid­19’, as it is a topic designated
for COVID­19 by GitHub (GitHub, 2020a). Our assumption
is that by using a GitHub­designated tag we can collect OSS
projects hosted on GitHub that are related to COVID­19.
OSS projects hosted on GitHub are susceptible to quality

issues, as GitHub users often host repositories for personal
purposes that are not reflective of real­world software de­
velopment (Munaiah et al., 2017). Upon collection of the
projects we apply a set of filtering criteria so that we can
identify projects that contain sufficient data for analysis. We
describe the filtering criteria below:

• Criterion­1: The project must have at least 2 developers.
Our assumption is that this criterion will filter out projects
used for personal purposes.

• Criterion­2: The project has at least 5 open issues. We use
this filtering criterion to identify projects that are actively
maintained. Our assumption is that by using this criterion
we will able to identify COVID­19 software projects that
are not used for personal purposes as well as projects that
are active. Prior research (Agrawal et al., 2018) has also
used the count of issues to filter OSS projects hosted on
GitHub to conduct empirical studies.

• Criterion­3: The project must have at least two commits
per month. Munaiah et al. 2017 used the threshold of at
least two commits per month to determine which projects
have enough development activity for software organiza­
tions. We use this threshold to filter projects with short de­
velopment activity.

• Criterion­4: The README of the project is written in En­
glish. README projects related to COVID­19 can be non­
English. We do not include non­English projects as raters
who will perform categorization are not familiar with non­
English languages, such as Spanish and Cantonese.

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

Public
GitHub

Filtered
COVID-19 Projects

Characterization of
COVID-19 Projects

Characterization of
COVID-19 Software Bugs

Figure 2. An overview of our empirical study.

• Criterion­5: The project is related with COVID­19. We
use the ‘topic’ 1 feature of GitHub to search and identify
COVID­19 software projects. However, practitioners can
mislabel projects using the ‘topic’ feature of GitHub po­
tentially including projects in our dataset that are not re­
lated with COVID­19. For example, from manual inspec­
tion we observe the ‘RehanSaeed/Schema.NET’ 2 project
to be tagged as ‘covid­19’, even though it is not related
with COVID­19. In fact, the project is used to convert blob
objects into C# classes.

3.1.2 Qualitative Analysis of README files

We apply a qualitative analysis called open coding (Saldana,
2015) on the content of README files for each of the down­
loaded projects from Section 3.1.1. README files describe
the content of the project and give GitHub users an overview
of the software project (Prana et al., 2019). We hypothesize
that by systematically analyzing the content of the README
files we can derive what types of software projects are devel­
oped that are related to COVID­19.
In open coding a rater identifies and synthesizes patterns

within unstructured text (Saldana, 2015).We select open cod­
ing because we can obtain detailed information on the soft­
ware project categories. We use a hypothetical example to
demonstrate our process of open coding in Figure 3. First,
we collect text from the README files for each of the col­
lected projects from Section 3.1.1. Next, we extract text snip­
pets that describe the purpose of the software project. For
example, from the raw text ‘The COVID­19 Vulnerability In­
dex (CV19 Index) is a predictive model that identifies people
who are likely to have a heightened vulnerability to severe
complications from COVID­19’ we extract the text snippet
‘a predictive model’, as the extracted text snippet describes
the purpose of the software project. Next, from the text snip­
pets ‘a predictive model’ and ‘modelling estimated deaths’
we generate an initial category called ‘Models to predict’.
Two initial categories ‘Models to predict’ and ‘Models to un­
derstand’ are combined into one category ‘Statistical mod­
eling’, as they both indicate the descriptions of the software
projects to be related with statistical modeling.

1https://github.com/topics
2https://github.com/RehanSaeed/Schema.NET

The first and second authors conduct the open coding
process separately. Both authors used Excel spreadsheets
to conduct the open coding process manually. The first
and second authors respectively an experience of 10 and
6 years in software engineering and has experience in con­
ducting open coding upon software project artifacts, such
as commit messages (Rahman et al., 2020) and Stack Over­
flow posts (Farhana et al., 2019). Upon completion of the
open coding process, the first and second authors identify
agreements and disagreements. Disagreements are resolved
upon discussion, agreement rate is calculated using Cohen’s
Kappa (Cohen, 1960). During the discussion phase both au­
thors agreed present their justification, and recheck the cat­
egory derivation based on the discussion and revisiting con­
tent. The mapping determined upon discussion is considered
final. One project can map to multiple categories.

3.1.3 Closed Coding

We apply closed coding (Crabtree and Miller, 1999) to iden­
tify which project maps to the identified categories from Sec­
tion 3.1.2. Closed coding is the qualitative analysis technique
where a rater maps an artifact to a pre­defined category by
inspecting the artifact (Crabtree and Miller, 1999). The first
and second author separately conduct closed coding on the
collected README files. Both authors use Excel spread­
sheets to conduct closed coding. After completing the closed
coding process the first and second authors identify agree­
ments and disagreements. Agreement rate is recorded using
Cohen’s Kappa (Cohen, 1960). Disagreements are resolved
using discussion. During the discussion phase both authors
present their justification for disagreements. Next, based on
the discussion the authors recheck the labeling based on the
justification and content analysis. The categorization deter­
mined upon discussion is considered final.

3.1.4 Rater Verification

The derived categories are susceptible to the bias of the first
and second author. We mitigate the limitation by allocating
an additional rater who applied closed coding for a subset of
the README files. The additional rater who is not an author
of the paper, is a fourth year PhD candidate in the Depart­
ment of Computer Science at Tennessee Technological Uni­

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

README excerpt Raw Text Initial Category Category

The COVID-19 Vulnerability Index
(CV19 Index) is a
predictive model that
identifies people who are likely to
have a
heightened vulnerability to
severe complications from COVID-
19

COVID-19 Agent-based Simulator
(Covasim):
a model for understanding novel
coronavirus epidemiology

Code for modelling estimated
deaths and cases for COVID19

a predictive
model

a model for
understanding

modelling
estimated deaths

Models to predict

Models to
understand

Statistical
modeling

Figure 3. A hypothetical example to demonstrate our process of open coding to categorize COVID­19 software projects.

versity. The rater has a professional experience of 2 years in
software engineering and has conduced qualitative analysis
on software artifacts, such as bug reports. We randomly al­
locate a set of 100 README files mined from 100 projects
to the rater. The rater applies closed coding on the content
of the README files, to identify the mapping between each
project and identified categories. Upon completion of closed
coding we calculate Cohen’s Kappa (Cohen, 1960) between
the rater and the first author, as well as with the second au­
thor, separately.

3.2 Methodology for RQ2: What categories
of bugs exist in open source COVID­19
software projects? How frequently do the
identified bug categories appear? What is
the resolution time for the identified bug
categories?

In this section, we answer “RQ2: What categories of bugs
appear in COVID­19 software projects? How frequently do
the identified bug categories appear?What is the resolution
time for each bug category?” A categorization of bugs for
COVID­19 software projects can inform practitioners and re­
searchers about how software related to COVID­19 is devel­
oped and in which areas they can help. Furthermore, educa­
tors can learn about the software bugs that occur in a soft­
ware related to a pandemic and disseminate these findings
in the classroom. Frequency of the identified bug categories
can help us understand what categories of software tend to
contain what types of software bugs and provide quality im­
provement suggestions accordingly. Quantifying the resolu­
tion time for bugs in software projects can help software en­
gineering researchers provide actionable guidelines to prac­
titioners. For example, Wan et al. 2017 observed that for
blockchain software projects security bugs can take longer

to fix compared to other bug categories. Based on their find­
ings Wan et al. 2017 recommended that blockchain project
maintainers can adopt security analysis and repair tools to fix
security bugs quickly. We provide the methodology to iden­
tify bug categories, quantify bug category frequency, and bug
resolution time below:
Methodology to Identify Bug Categories: We identify

bug categories using the following steps:

• Step#1­Filtering: We collect the 4,405 issue reports
from the 129 projects and manually inspect each issue
report. We do not rely on automated approaches, such
as keyword search or using bug labels, as automated
approaches tend to generate false positives, which may
bias research results (Herzig et al., 2013).While inspect­
ing each issue report we use the following IEEE defini­
tion for bugs: “an imperfection that needs to be replaced
or repaired” (IEEE, 2010), similar to prior work (Rah­
man et al., 2020). By completing this step wewill obtain
a set of closed issues reports that correspond to bugs.We
use closed reports because as open bug reports are often
incomplete and may not help in identifying bugs (Wan
et al., 2017).
The first and second author manually inspect individu­
ally to identify what issue reports correspond to bugs.
We record agreement rate and Cohen’s Kappa (Cohen,
1960) between the first and second author. Disagree­
ments between the first and second author are resolved
through discussions. The process is subjective and sus­
ceptible to the bias of the first and second author. We
mitigate the bias by using an additional rater, who in­
spected randomly inspected 100 issue reports and clas­
sified them as bug reports and non­bug reports. The ad­
ditional rater is the fourth year PhD candidate at Ten­
nessee Technological University who is also involved
in rater verification for RQ1.

BugPropAll(x) = # of bug reports labeled as category x

total # of bug reports
∗ 100% (1)

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

BugPropCateg(x, y) = # of bug reports labeled as x, of project type y

of bug reports for project type y
∗ 100% (2)

• Step#2­Open coding: We apply open coding (Saldana,
2015) on the content of the collected bug reports from
Step#1. Our open coding process is illustrated in Fig­
ure 4 using an example. First, we extract raw text from
bug report titles and description, from which we gener­
ate initial categories. Next, we merge initial categories
based on the commonalities and generate categories.
Similar to deriving project categories, the first and sec­
ond author separately apply the process of open cod­
ing to generate bug categories. Upon completion of the
process we quantify agreement rate and measure Co­
hen’s Kappa (Cohen, 1960). For disagreements we con­
duct discussion. Generated categories upon discussion
is considered final.

Methodology to Quantify Bug Category Frequency:
We apply the following steps to quantify the frequency of
identified bug categories:

• Step#1­Closed coding: We apply closed coding (Crabtree
and Miller, 1999) to map each identified category to the
bug reports that we study. The first and second author sep­
arately apply closed coding for the collected bugs from
Step#1. Upon completion, we calculate the agreement rate
and Cohen’s Kappa (Cohen, 1960). Disagreements are re­
solved using discussion.

• Step#2­Metric calculation: We quantify the frequency of
the identified bug categories using two metrics: Bug­
PropAll’ and ‘BugPropCateg’.We use Equations 1 and 2 to
respectively calculate ‘BugPropAll’ and ‘BugPropCateg’.
The ‘BugPropAll’ metric refers to the proportion of bugs
across all projects, and provides a holistic overview of
the frequency of identified bug categories. The ‘BugProp­
Categ’ metric refers to the proportion of bugs for a certain
project category, and provides a granular overview of bug
category frequency for each software project types identi­
fied from Section 4.1.2.

• Step#3­Rater verification: The use of first and second au­
thor as raters to conduct closed coding is susceptible to
rater bias. Wemitigate this limitation by allocating an addi­
tional rater. We assign randomly selected 250 bug reports
to the additional rater who apply closed coding. We pro­
vide the additional rater with a document that provides def­
initions of each identified category with examples.
Similar to our process of rater verification for project cate­
gorization, the additional rater is the fourth year PhD candi­
date in the Department of Computer Science in Tennessee
Technological University. The fourth year PhD candidate
is involved in the rater verification process for identifying
project categories and labeling issue reports as bug reports.

Methodology to Quantify Bug Resolution TimeWe use
the open and closing timestamp for each closed bug report in
our dataset to quantify the resolution time for each bug cate­
gory, similar to Wan et al. 2017. We calculate bug resolution

time by computing the number of hours that have elapsed
between when the bug report is opened and closed, and not
re­opened again, as per our dataset , which was downloaded
on April 04, 2020. We report bug resolution time for all bug
categories, as well as for bug reports that belong to certain
categories of software projects.

3.3 Methodology to Answer RQ3: How simi­
lar are the identified bug categories to that
with previously studied software projects?

We conduct a scoping review of publications related to soft­
ware bug categorization. Using a scoping review, researchers
can synthesize results using a limited search (Anderson et al.,
2008). According toMunn et al. 2018 “Researchers may con­
duct scoping reviews instead of systematic reviews where the
purpose of the review is to identify knowledge gaps, scope a
body of literature, clarify concepts or to investigate research
conduct.”. Unlike a systematic literature review, a scoping
review is less comprehensive, and can be used as a precursor
to conduct a systematic literature review. Scoping review can
be useful to collect emerging evidence, which eventually can
be used to inform further research decisions (Anderson et al.,
2008). For example, if a researcher is inexperienced in the do­
main of software fuzzing, and wants to get an understanding
of existing topics such as practices and techniques to imple­
ment fuzzing, then a scoping review could be useful to that
researcher of interest.
We conduct a scoping review by identifying well­known

venueswhere software engineering research is published.We
select five conferences: International Conference on Soft­
ware Engineering (ICSE), Symposium on Foundations of
Software Engineering (FSE), International Conference on
Automated Software Engineering (ASE), International Con­
ference on Mining Software Repositories (MSR), and Inter­
national Symposium on Software Testing and Analysis (IS­
STA).We select these conferences because these conferences
are considered reputed venues to publish literature related to
software engineering (Emery Berger, 2021), and sponsored
by special interest groups of the Association of Computing
Machinery (ACM). We select conferences as they tend to
have a shorter review cycle and are more likely to include
recent advances in the field of interest (Vardi, 2009). We con­
duct the review by applying the following steps:

• Step­1: We download all papers from 2010 to 2020 for
each of the four conferences. We select papers from 2010
to 2020 to identify and synthesize state of the art bug tax­
onomies and categories used for a wide range of software
projects. Papers that studied bug categories prior to 2010
may not give us an understanding of the state of art. Our
hypothesis is that by identifying papers from the last 10
years we will get a better overview of what types of bugs
appear for a wide range of software projects.

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

Bug report excerpt Raw Text Initial Category Category

fix historical nyc data transition to
borough/county level reporting

Temperature data not saved in the
backend

Rajasthan district names are
wrong

fix nyc data

data not saved in
the backend

district names
are wrong

Data bugs related
to location

Data bugs related
to storage

Data Bugs

Figure 4. A hypothetical example to demonstrate our process of open coding to identify bug categories for software projects.

• Step­2: We read the title, abstract, and keywords to deter­
mine if the downloaded papers are related to software bug
categorization.

• Step­3: Upon completion of Step­2, one rater reads each
collected paper, and identifies topics discussed in the pa­
per of interest using qualitative analysis. For each paper
the rater determines if the paper focuses on bug categoriza­
tion. If so, the rater documents the bug categories for the
reported software project.

Upon completion of the above­mentioned steps, we derive
reported bug categories for multiple software projects.

4 Results
In this section, we provide answers to the three research ques­
tions, RQ1, RQ2, and RQ3.

4.1 Answer to RQ1: What categories of open
source COVID­19 software projects exist?

We answer RQ1 by first providing summary statistics of our
dataset in Section 4.1.1. Next, we report categories of the
projects in Section 4.1.2.

4.1.1 Summary of Dataset

Altogether we download 129 projects for analysis. Using
the search feature we identify 3,276 public projects upon
which we apply our filtering criterion. A complete break­
down of our filtering criterion is available in Table 1. At­
tributes of the projects are available in Table 2. ‘Languages’
in Table 2 correspond to the count of main programming lan­
guages of the collected projects as determined by GitHub’s
linguist tool (GitHub, 2020b). Example languages include
JavaScript, Python and R.
A temporal evolution of the 129 COVID­19 software

projects based on creation date is available in Figure 5. We
observe sharp increase in project creation after Feb 29, 2020.

Table 1. Filtering of COVID­19 projects used in paper.
Criteria GitHub
Initial 3,276
Criterion­1 (Devs >= 2) 1,287
Criterion­2 (Open issues >= 5) 169
Criterion­3 (Commits/month >= 2) 154
Criterion­4 (README is English) 131
Criterion­5 (Actually COVID­19) 129
Final 129

Table 2. Attributes of studied COVID­19 projects.
Attributes Total
Commits 38,152
Developers 2,243
Duration 12/2019­03/2020
Files 24,839
Issues 4,405
Languages 18
Releases 286
Projects 129

4.1.2 Categorization of COVID­19 Software Projects

We identify 7 categories of COVID­19 software projects. We
describe each of the categories below in alphabetic order:

I: Aggregation:: This category includes software
projects that curate data related to COVID­19 and present
collected COVID­19 data in an aggregated format using vi­
sualizations. The purpose of these projects is to help users un­
derstand the spread of the COVID­19 disease over time and
location. Software projects that belong to this category can be
country specific as done in ‘juanmnl/covid19­monitor’ (juan­
mnl, 2020) and ‘dsfsi/covid19za’ (Marivate and Combrink,
2020) respectively, for Ecuador and South Africa. Aggrega­
tion of COVID­19 data can also be at a global level, for ex­
ample, ‘boogheta/coronavirus­countries’ (boogheta, 2020) is
a software that aggregates COVID­19 data across the world
and allows software users to compare the reported cases on
a country­by­country basis.

II:Education:: This category includes projects that pro­
vide utilities on educating people about COVID­19. Lack
of knowledge related to infections and symptoms can con­
tribute to rapid spreading of COVID­19. The purpose of

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

●
● ● ●

●

●

●
●

●

●

●

●

●

● ●

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

20
19

−1
2−

22

20
19

−1
2−

29

20
20

−0
1−

07

20
20

−0
1−

14

20
20

−0
1−

21

20
20

−0
1−

28

20
20

−0
2−

07

20
20

−0
2−

15

20
20

−0
2−

22

20
20

−0
2−

29

20
20

−0
3−

07

20
20

−0
3−

15

20
20

−0
3−

22

20
20

−0
3−

29

20
20

−0
4−

04

Date

C
ou

nt
 o

f p
ro

je
ct

s

Count of COVID−19 software projects over time

Figure 5. Temporal evolution of COVID­19 software projects based on their creation date. We observe sharp increase in project creation after Feb 29, 2020.

these projects is to build software, where users can ask
questions and obtain answers. We observe two categories
of software: first, question and answer websites similar to
Stack Overflow 3, such as ‘nthopinion/covid19’ (nthopinion,
2020), where users can ask questions about COVID­19, and
other users answer such questions. Second, we observe bot­
specific software, such as ‘deepset­ai/COVID­QA’ (deepset
ai, 2020) that provides answers for questions related to
COVID­19 automatically.

III: Medical equipment:: This category includes
projects to curate andmaintain source code for the design and
implementation of medical equipment used to treat COVID­
19. The purpose of these projects is to create designs of
COVID­19 related medical equipment, such as ventilators at
scale, so that the growing need of medical equipment in hos­
pitals is satisfied. One example of such repository is ‘makers­
for­life/makair’ (makers­for life, 2020), which states the fol­
lowing in it’s README page: “Aims at helping hospitals
cope with a possible shortage of professional ventilators dur­
ing the outbreak. Worldwide. ... We target a per­unit cost well
under 500 EUR, which could easily be shrunk down to 200
EUR or even 100 EUR per ventilator given proper economies
of scale, as well as choices of cheaper on­the­shelf compo­
nents”. The project includes design of the proposed ventila­
tors as CAD files, as well as relevant firmware available as
C++ code files.
Another example is the ‘popsolutions/openventila­

tor’ (popsolutions, 2020), which aims to provide cheap
but reliable ventilators to treat COVID­19 in economically
under­developed regions of the world. The software project
initiated from a Facebook group called ‘Open Source
COVID­19 Medical Supplies’ 4, where members discussed
the scarcity of ventilators and the importance of creating
cheap ventilators through efficient design. In the project we
notice developers to create, build, and share designs using
OpenSCAD scripts. OpenSCAD is an open source tool to
build computer­aided design (CAD) objects 5.

IV: Mining:: This category includes projects that
provide APIs to mine COVID­19 data from data sources,
such as the US Center for Disease Control and Prevention

3https://stackoverflow.com/
4https://www.facebook.com/groups/opensourcecovid19medicalsupplies/
5https://www.openscad.org/

(CDC) 2020, the World Health Organization (WHO) 2020,
and data reported from local institutions. The purpose of this
category of software is to provide utilities for software devel­
opers so that they can get real­time access to COVID­19 data
to build aggregation software, discussed above. Because of
the nature of the pandemic, access to real­time data is pivotal
for accurate aggregation and analysis. The mining tools help
developers to get such support. Mining software can be lo­
cation specific, for example ‘dsfsi/covid19africa’ (Marivate
et al., 2020) is dedicated to curate and collate COVID­19 re­
lated data for African countries.

V: User tracking:: This category includes software
projects that collects information from users regarding their
COVID­19 infection status. Tracking of user information
can happen voluntarily, where the user voluntarily self re­
ports COVID­19 infection status. The ‘enigmampc/Safe­
Trace’ (enigmampc, 2020) software is an example where
users self report their infection status as well as location his­
tory. Tracking of user information can also be done using
inference, as done in ‘OpenMined/covid­alert’ (OpenMined,
2020), where the software collects user’s location informa­
tion to predict if the user is in a location with high infection
density. One utility of these projects is to identify high­risk
locations so that users can have an understanding of which
nearby location can be avoided. Self reporting software have
yielded benefits for China and South Korea (Huang et al.,
2020).

VI: Statistical modeling:: This category includes soft­
ware that use statistical models to predict attributes related
to COVID­19. The purpose of the projects is to make pre­
dictions for the future based on existing data. Example us­
age of statistical models include (i) predicting death rate as
done in ‘ImperialCollegeLondon/covid19model’ (Imperial­
CollegeLondon, 2020), (ii) automating the process of lung
segmentation with computerized tomography (CT) scan, as
done in ‘JoHof/lungmask’ (JoHof, 2020), (iii) predicting the
impact of the COVID­19 pandemic on hospital demands as
done in ‘neherlab/covid19_scenarios’ (neherlab, 2020), and
(iv) predicting presence of COVID­19 with X­ray images us­
ing deep learning as done in ‘elcronos/COVID­19’ (elcronos,
2020).

VII: Volunteer management:: This category includes
software used to efficiently manage volunteering effort. The

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

purpose of this software is to build software platforms so that
users can volunteer and participate in activities to help dis­
tressed families and communities. One example is the ‘covid­
volunteers’ (helpwithcovid, 2020) software, which provides
a web portal where users can sign up for 650 projects that
include donation of masks, personal protective equipment
(PPEs), and testing of COVID­19 6. Platforms can be global,
such as ‘covid­volunteers’, and also regional, for example
‘Applifting/pomuzeme.si’ (Applifting, 2020) creates a web
portal so that people inside Czech Republic can volunteer.

4.1.3 Frequency of the Identified Categories

Based on project count aggregation is the most frequent cat­
egory. Along with project count, we provide summary statis­
tics of projects that belong to each category in Table 3. We
also observe on average user tracking projects to be more
frequently released compared to other project types.
We identify four software projects that belong to multiple

categories. As an example, the ‘soroushchehresa/awesome­
coronavirus’ (soroushchehresa, 2020) project belongs to the
categories: aggregation, mining, and statistical modeling.

4.1.4 Rater Agreement

We report agreement rate for three steps: open coding, closed
coding, and rater verification.
Open coding: After completing open coding, the first and sec­
ond author respectively, identified 7 and 10 categories. The
agreement rate is 70.0%, and the Cohen’s Kappa is 0.7, indi­
cating ‘substantial’ agreement (Landis and Koch, 1977). The
authors disagreed on ‘Volunteering software related to local
communities’, ‘Education bots’, and ‘Aggregated visualiza­
tions’, additional categories identified the second author.
Disagreements were resolved through discussion. Both au­

thors provided justifications for their categorization. The first
author pointed out that the category ‘Education bots’ can be
merged with ‘Education’ as the category ‘Education’ encom­
passes all categories of knowledge software, such as bots
and web applications. The first author also pointed out that
‘Volunteering software related to local communities’ can be
merged with ‘Volunteer management’, as the category is an
extension of the category ‘Volunteer management’. Further­
more, the first author also pointed out that ‘Aggregated visu­
alizations’ can be merged with ‘Aggregation’, as ‘Aggrega­
tion’ includes software that aggregates COVID­19 data and
displays aggregated data with visualizations. The second au­
thor was convinced by the first authors’ justification and up­
dated her derived list of categories.
Closed coding: During closed coding the first and second au­
thors mapped each of the 129 projects to an existing category.
The agreement rate is 93.8%. The Cohen’s Kappa is 0.92.
The authors disagreed on the labeling of 8 projects, which
are resolved through discussion. During the discussion phase
both authors agreed to present their justification, and recheck
the labeling based on the justification and content analysis.
The categorization determined upon discussion is considered
final.

6https://helpwithcovid.com/medical

Rater verification: We also measured the agreement rate be­
tween an additional rater and the authors for categorizing
README files of projects. Cohen’s Kappa between the ad­
ditional rater and the first author for a randomly selected set
of 50 README files is 0.73, indicating ‘substantial’ agree­
ment (Landis and Koch, 1977). Cohen’s Kappa between the
additional rater and the second author for a randomly se­
lected set of 50 README files is 0.73, indicating ‘substan­
tial’ agreement (Landis and Koch, 1977). The agreement rate
between the additional rater and the first and second author
is respectively, 78.0% and 76.0%.

4.2 Answer to RQ2: What categories of bugs
exist in open source COVID­19 software
projects? How frequently do the identified
bug categories appear?What is the resolu­
tion time for the identified bug categories?

We answer RQ2 by first providing a breakdown of how we
obtained our bug reports in Table 4 and 5. As shown in Ta­
ble 5, the categories with themost and least bug reports are re­
spectively, aggregation and medical equipment. One project
can belong to multiple categories, and that is why the total
count of bug reports does not total 550.
Next, we describe the identified bug categories in Sec­

tion 4.2.1 by applying open coding on the collected 550 bug
reports. The frequency of the identified bug categories is pro­
vided in Section 4.2.2.We provide details of rater verification
in Section 4.2.3. Finally, we provide the bug resolution time
in Section 4.2.4.

4.2.1 Bug Categories of COVID­19 Projects

We identify 8 bug categories, which we describe below al­
phabetically:

I: Algorithm:: This category corresponds to bugs when
implementation of an algorithm does not follow expected be­
havior. An algorithm is a sequence of computational steps
that transform input into output (Cormen et al., 2009).We ob­
serve algorithm bugs to include two sub­categories: (i) bugs
related to statistical modeling algorithms, where statistical
modeling results are incorrect due to incorrect assumptions
and/or implementations, and (ii) bugs related to incorrect
logic implemented in the software.
Example: We provide examples for the two sub­

categories:

• Statistical modeling: In a bug report titled “Death rates
should increase when ICU’s are overwhelmed” (Beg­
ley, 2020a), a practitioner describes how incorrect as­
sumption can result in incorrect modeling behavior. The
practitioner discusses that bed space is correlated with
estimation of fatality rate. When bed space of hospi­
tals are exhausted hospitals will not be able to treat
new COVID­19 new patients, which could potentially
increase the fatality rate.
The bug report provides evidence that if the context
of COVID­19 is not correctly incorporated in statis­
tical models, those models will provide incorrect re­
sults. Incorrect statistical models can be consequential,

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

Table 3. Summary statistics of projects that belong to each category. Based on project count ‘Aggregation’ is the most frequent category
as highlighted in green.

Proj. Categ. Projects Com. Devs Files Iss. Rele.
Aggregation 50 14,985 663 8,641 908 72
Mining 35 9,671 894 6,714 515 21
Stat. model. 22 7,214 429 3,464 491 38
Education 9 4,550 196 1,696 406 14
User track 9 2,020 152 2,291 119 286
Volunteer. 7 2,186 143 2,041 320 0
Med. equip. 3 859 38 790 14 63

Table 4. Filtering of bug reports from COVID­19 software projects.
Initial 4,095
Criterion­1 (Closed issues) 2,965
Criterion­2 (Valid bug reports) 550
Final 550

Table 5. Count of bug reports for each category of COVID­19
software projects. Aggregation­related projects have the highest
amount of bug reports.

Project category Count (%)
Aggregation 220 (40%)
Mining 150 (27.3%)
Stat. Model. 98 (17.8%)
Education 58 (10.5%)
Volunteer. 40 (7.3%)
User Track 31 (5.6%)
Med. Equip. 4 (0.7%)

as countries are adopting public health policies specific
to COVID­19. For example researchers have critiqued
the statistical models derived by the Institute for Health
Metrics and Evaluation at the University of Washing­
ton (IHME), and advised USA policymakers to use the
modeling results with caution (Begley, 2020b).

• Incorrect logic: In a bug report titled “Fix Prefecture
Sorting” (reustle, 2020), a practitioner describes a sort­
ing bug which occurs when trying to visualize COVID­
19 cases based on prefectures in Japan. A prefecture is
an administrative jurisdiction in a country similar to a
state or province (Hu andQian, 2017). The bug occurred
due to an incorrect logic that did not perform sorting by
prefectures.

II: Data:: This category corresponds to bugs that occur
during mining and storage of COVID­19 data. As discussed
in Section 4.1.2 we observed our dataset to include projects
that mine and aggregate COVID­19 data. We observe four
sub­categories of data bugs: (i) storage: bugs that occur while
storing data in a database, (ii) mining: bugs that occur while
retrieving data from data APIs, (iii) location: bugs where lo­
cation information in stored data is incorrect, and (iv) time
series: bugs that correspond to missing data for a certain time
period.
Example: We provide examples for each of these sub­

categories below:

• Storage: In a bug report titled “Temperature data not
saved in the backend” (pavel ilin, 2020), a practitioner
describes a bug where patient temperature data is in­
serted in the front­end but not stored in the database.

• Mining: Bugs occur when COVID­19­related data is
being mined. A practitioner describes a mining bug
in a bug report titled “CDC Children scraper is out­

dated” (Timoeller, 2020). The mining tool mines data
related to children affected by COVID­19.

• Location: In a bug report titled “Rajasthan District
names are wrong”, a practitioner describes that inserted
location data for an Indian state called ‘Rajasthan’ is
wrong (SinghRajenM, 2020).

• Time series: Missing data was reported for a project and
reported in a bug report titled “Data has a gap between
2020­3­11 and 2020­3­24” (zbraniecki, 2020).

III: Dependency:: This category corresponds to bugs
that occur when execution of the software is dependent on
a software artifact that is either missing or incorrectly speci­
fied. For COVID­19 projects, an artifact can be an API or a
build artifact.
Example: In a bug report titled “Missing PostGIS” (va­

clavpavlicek, 2020), a practitioner describes that installation
and execution of the software is prohibited due to a software
package called ‘PostGIS’, which is used to store spatial and
geographic measurements, such as area, distance, polygon,
and perimeter in PostgreSQL databases.

IV: Documentation:: This category corresponds to
bugs that occur when incorrect and/or incomplete informa­
tion in specified in release notes, maintenance notes, and doc­
umentation files, such as README files.
Example: In a bug report titled “Missing code of conduct”,

a practitioner describes a ‘CODE_OF_CONDUCT.md’ file
to be missing in a Markdown file that describes how practi­
tioners can contribute to the project (mdeous, 2020).

V: Performance:: This category corresponds to bugs
that cause performance discrepancies for the software. Per­
formance bugs are manifested in slow response of the web
or mobile app.
Example: In a bug report titled “Cluster animation slow­

ing down the browser. It also takes much time”, a practitioner
describes how a performance bug related to an animation fea­
ture is slowing down a Firefox browser onWindows 10 (Sub­
ratappt, 2020). The performance bug was reported for a web­
site called ‘covid19india.org’ 7, which aggregates COVID­
19 data for India and displays them.

VI: Security:: This category corresponds to bugs that
violate confidentiality, integrity, or availability for the soft­
ware.
Example: In a bug report titled “Fix password reset proce­

dure” (landovsky, 2020), a practitioner describes a password
reset bug, where the password reset procedure ends arbitrar­
ily after 500 login attempts.

VII: Syntax:: This category corresponds to bugs related

7https://www.covid19india.org/

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

Table 6. Frequency of identified bug categories. UI­related bugs are
the most frequent.

Bug category BugPropAll (%)
UI 38.2
Data 30.9
Dependency 18.9
Algorithm 7.8
Syntax 6.7
Security 2.5
Performance 1.6
Documentation 1.4

with the syntax of the programming languages used to de­
velop the software.
Example: We notice bugs related to data types in ‘ne­

herlab/covid19_scenarios’. In the bug report titled “Fix types
and linting errors” (ivan aksamentov, 2020), a practitioner
describes how linting and type checking was disabled for the
project, which led to bugs related to linting and type check­
ing.

VIII: UI:: This category corresponds to bugs that in­
volve the user interface (UI) of the software. UI bugs include
navigation­related bugs on web pages, bugs related to acces­
sibility, displaying incorrect images, links, and color, and re­
sponsiveness.
Example: In a bug report titled “accessibility

fixes” (abquirarte, 2020) describes a UI bug related to
accessibility. According to the bug report, a screen reader
incorrectly renders check marks and crosses in front of the
“Do’s and Don’t as M’s and N’s”.

4.2.2 Frequency of Identified Bug Categories

Based on the ‘Proportion of Bugs Across All Projects (Bug­
PropAll)’ metric we observe UI bugs to be the most frequent
category, whereas documentation is the least frequent cate­
gory. We provide a complete breakdown of the metric in Ta­
ble 6. Data bugs have four sub­categories: storage, mining,
location, and time series. The frequency for storage, mining,
location, and time series is respectively, 4.7%, 5.8%, 87.2%,
and 2.3%. Algorithm bugs have two sub­categories: statisti­
cal modeling and wrong logic. The frequency for statistical
modeling and wrong logic is respectively, 42.3% and 57.7%.
We observe bug category frequency to vary for differ­

ent categories of projects. We provide the ‘Proportion of
Bugs For a Certain Project Category (BugPropCat)’ val­
ues for each project category in Table 7. ‘AGG’, ‘MINE’,
‘STA’, ‘EDU’, ‘TRAK’, ‘VOL’ and ‘EQU’ respectively, cor­
responds to the seven project categories: aggregation, min­
ing, statistical modeling, education, user tracking, volunteer
management system, and medical equipment.
According to Table 7, except for mining and medical

equipment software, the dominant bug category is UI. One
possible explanation can be the analyzed software projects
have UIs, which may have contributed to the frequency of
UI bugs. For mining software the dominant bug category is
data bugs i.e., bugs that occur due to storing and processing
of COVID­19 data. Formedical equipment software the dom­
inant bug category is dependency. We also notice algorithm
bugs to be the second most frequent bug category for statis­
tical modeling software. Similar to prior work on machine
learning (Thung et al., 2012), we expected algorithm bugs to

be the most dominant category for statistical modeling. Sta­
tistical modeling software also have UIs for user interaction,
and the count of UI bugs may have foreshadowed the count
of algorithm bugs.

4.2.3 Rater Agreement and Verification

We report agreement rate for four steps: issue labeling, open
coding, closed coding, and rater verification.
Labeling issues as bugs: While labeling collected issue re­
ports as bug reports and non­bug reports the agreement rate
is 96.5% and the Cohen’s Kappa is 0.9.
Open coding to identify bug categories: The first and sec­
ond author respectively, identified 9 and 10 categories. The
agreement rate is 72.7%, and the Cohen’s Kappa is 0.70, indi­
cating ‘substantial’ agreement (Landis and Koch, 1977). The
first author identified ‘database’ as a category not identified
by the second author. Upon discussion both authors agreed
that ‘database’ is related to data storage and belongs to the
data category. The second author identified two additional
categories ‘Public health data’ and ‘Type errors’. After dis­
cussing the definitions of all categories both authors agreed
that ‘Public health data’ and ‘Type errors’ can respectively,
be merged with data and syntax.
Closed coding to quantify bug category frequency: Dur­
ing closed coding the first and second author mapped each
project to an existing category. The agreement rate is 95.1%
and the Cohen’s Kappa is 0.93. The authors disagreed on the
labeling of 27 bug reports, which are resolved through dis­
cussion.
Rater verification: For the randomly selected 250 issue re­
ports we allocate an additional rater who manually identi­
fied which of the issue reports are bug reports and non­bug
reports. The Cohen’s Kappa between the additional rater
and the first author is 0.80, indicating ‘substantial’ agree­
ment (Landis and Koch, 1977). The Cohen’s Kappa between
the additional rater and the second author is 0.84, indicating
‘perfect’ agreement (Landis and Koch, 1977). The agreement
rate between the additional rater and the first and second au­
thor is respectively, 89.0% and 93.0%.
We have also measured the agreement rate between an ad­

ditional rater and the authors for categorizing bug reports.
Cohen’s Kappa between the additional rater and the first au­
thor for a randomly selected set of 250 bug reports is 0.65,
indicating ‘substantial’ agreement (Landis and Koch, 1977).
Cohen’s Kappa between the additional rater and the second
author for a randomly selected set of 250 bug reports is 0.68,
indicating ‘substantial’ agreement (Landis and Koch, 1977).
The agreement rate between the additional rater and the first
and second author is respectively, 78.0% and 81.6%.

4.2.4 Resolution Time of Identified Bug Categories

We provide bug resolution time as measured in hours for
all bug categories in Table 8. From Table 8 we observe that
based on min and median bug resolution times security bugs
take the longest to resolve, followed algorithm bugs. We also
observe data bugs to take as long as 548 hours to resolve.
A breakdown of bug resolution time across the seven

project categories is provided in Table 9. The ‘All’ row in

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

Table 7. Bug category frequency for each identified project type. All values are presented in (%).
AGG MINE STA EDU TRAK VOL EQU

Bug categ.
Algorithm 6.8% 6.7% 22.4% 3.4% 0.0% 2.5% 0.0%
Data 28.6% 60.6% 13.2% 15.5% 0.0% 12.5% 0.0%
Dependency 16.3% 18.0% 18.3% 24.1% 9.7% 27.5% 75.0%
Document 0.9% 1.3% 1.0% 0.0% 0.0% 10.0% 0.0%
Performance 2.7% 2.0% 0.0% 0.0% 3.2% 0.0% 0.0%
Security 1.8% 0.0% 3.0% 3.4% 6.4% 12.5% 0.0%
Syntax 5.9% 3.3% 14.3% 17.2% 3.2% 10.0% 0.0%
UI 50.0% 12.0% 34.7% 44.8% 77.4% 32.5% 25.0%

Table 8. Resolution time of identified bug categories. Resolution
times is measured in hours. Median resolution time is highest for
security bugs.

Bug category Min Median Max
Security 1.240 13.9 144.6
Algorithm 0.041 13.5 172.7
Syntax 0.004 12.1 174.2
UI 0.003 11.8 254.2
Data 0.003 8.4 548.0
Performance 0.961 7.1 104.4
Dependency 0.014 2.4 379.4
Documentation 0.013 1.4 76.8

Table 9. Resolution time of bug categories grouped by project cate­
gories. Wemeasure resolution time in hours. Median bug resolution
time is highest for projects related to medical equipment software.

Project category Min Median Max
Medical Equipment 5.0 29.4 46.4
Volunteer Management System 0.013 21.1 174.2
User Tracking 0.124 16.5 294.5
Education 0.121 11.2 294.5
Aggregation 0.003 8.7 379.4
Statistical Modeling 0.004 7.2 168.3
Mining 0.005 2.5 548.1
All 0.003 7.4 548.0

Table 9 shows the minimum, median, and maximum bug res­
olution time for all bug categories measured in hours.
In Table 9 we observe four instances where the minimum

bug resolution time is less than 6 minutes (< 0.1 hours). One
possible explanation can be practitioners’ habit of opening a
bug report after they have developed the fix for a bug (Wan
et al., 2017; Thung et al., 2012). In such cases, practitioners
notice the bug early, construct the fix for the bug, and then
submit the bug report by opening and closing the bug report
promptly.
Median bug resolution duration for each project type

and bug category is provided in Table 10. ‘AGG’, ‘MINE’,
‘STA’, ‘EDU’, ‘TRAK’, ‘VOL’ and ‘EQU’ respectively, cor­
responds to the seven project categories: aggregation, min­
ing, statistical modeling, education, user tracking, volunteer
management system, and medical equipment. We observe
median bug resolution time to vary across bug categories as
well as for project categories.

4.3 Answer to RQ3: How similar are the iden­
tified bug categories to that with previ­
ously studied software projects?

We report our findings in Table 11. The ‘Bug category’ col­
umn presents the bug categories identified for COVID­19
software projects, whereas, the ‘Other software projects’ col­
umn presents the software projects for which the bug cate­

gory was observed according to papers identified from our
scoping review. We observe bug categories for COVID­19
software projects to also be observable for other categories
of software projects, such as deep learning and automated
vehicle.

5 Discussion
In this section, we first provide a summary of our findings
in Section 5.1. Next, we provide a discussion on the implica­
tions of our findings in Section 5.2.

5.1 Summary

Project category: Aggregation
Definition: Aggregate COVID­19 data and present using visualizations
Count : 50 out of 129 (38.7%)
Most frequent bug category: UI bugs
Median bug resolution time: 8.7 hours

Project category: Mining
Definition:Mine COVID­19 data
Count : 35 out of 129 (27.1%)
Most frequent bug category: Data bugs
Median bug resolution time: 2.5 hours

Project category: Statistical modeling
Definition: Use of statistical models to make COVID­19 predictions
Count : 22 out of 129 (17.0%)
Most frequent bug category: UI bugs
Median bug resolution time: 7.2 hours

Project category: Education
Definition: Educate people about COVID­19
Count : 9 out of 129 (6.9%)
Most frequent bug category: UI bugs
Median bug resolution time: 11.2 hours

Project category: User tracking
Definition: Track user data related to COVID­19
Count : 9 out of 129 (6.9%)
Most frequent bug category: UI bugs
Median bug resolution time: 16.5 hours

Project category: Volunteer management
Definition: Efficiently manage volunteering effort related to COVID­19
Count : 7 out of 129 (5.4%)
Most frequent bug category: UI bugs
Median bug resolution time: 21.1 hours

Project category: Medical equipment
Definition: Source code for design and implementation of medical devices
Count : 3 out of 129 (2.3%)
Most frequent bug category: Dependency bugs

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

Table 10.Median bug resolution time for each bug category and each project type measured in hours. ‘—’ indicates categories for which
no bug reports exist.

AGG MINE STA EDU TRAK VOL EQU
Bug cat.
Algorithm 9.8 10.8 13.9 10.1 — 13.5 —
Data 12.2 4.4 15.2 17.0 — 42.0 —
Dependency 5.6 0.1 0.3 4.5 5.3 2.9 22.4
Document 1.3 39.0 1.5 — — 6.9 —
Performance 7.1 36.6 — — 1.5 — —
Security 8.1 — 3.1 84.1 13.9 20.4 —
Syntax 12.1 4.7 11.4 8.6 16.9 79.3 —
UI 8.3 2.7 13.1 16.8 18.7 21.9 46.4

Table 11. Comparison of bug categories of COVID­19 software projects with that of other software project categories.
Bug category Other software projects
Security IaC (Rahman et al., 2020), OSS GitHub projects (Ray et al., 2014)
Algorithm Autonomous vehicle (Garcia et al., 2020), OSS GitHub projects (Ray et al., 2014)
Syntax IaC (Rahman et al., 2020), deep learning (Islam et al., 2019), OSS GitHub projects (Ray et al., 2014)
UI Blockchain (Wan et al., 2017)
Data Deep learning (Islam et al., 2019)
Performance OSS GitHub projects (Ray et al., 2014)
Dependency IaC (Rahman et al., 2020)
Documentation Autonomous vehicle (Garcia et al., 2020), IaC (Rahman et al., 2020)

Median bug resolution time: 29.4 hours

5.2 Implications
We discuss the implications of our findings below:
Security and privacy implications of user tracking soft­

ware: From Table 3 we observe 9 projects to be related with
user tracking. While the benefits of user tracking software
have been documented for countries, such as Russia and
South Korea (Crowell Morning, 2020), this category of soft­
ware can have negative impacts on privacy of end­users. Data
generated from user tracking software can be leveraged for
marketing purposes. We make the following recommenda­
tions to preserve privacy of user data in user tracking soft­
ware:

• Policymakers should construct policies specific to
COVID­19 software that collects user data.

• Practitioners who develop user tracking software should
leverage existing privacy policy frameworks, such as
the ‘National Institute of Standards and Technology
(NIST) Privacy Framework’ 2020.

• Privacy researchers can build tools that will automati­
cally detect and report privacy policy violations.

Evidence fromTable 7 shows that security bugs to exist for
user tracking software. We advocate security researchers to
systematically investigate if user tracking software includes
security bugs. Recent news articles suggest that user track­
ing software, such as contract tracing apps may becomemore
and more prevalent as Apple and Google are already provid­
ing frameworks to build software that tracks user data (Ap­
ple, 2020). Our hypothesis is that availability of these frame­
works will facilitate rapid development and deployment of
mobile apps that collect user data. Security weaknesses in
these apps can provide malicious users opportunity to con­
duct large­scale data breaches. We notice anecdotal evidence
in this regard: a researcher has identified vulnerabilities in a

user tracking app that could leak user location data (Green­
berg, 2020). Panelists at EuroCrypt 2020, a cryptography
research conference, discussed limitations of user tracking
mobile apps for COVID­19 with respect to API design, in­
door location tracking, and informing users about privacy
risks (EuroCrypt, 2020a) (EuroCrypt, 2020b).
Towards constructing correct statistical models: From

Section 4.2.1 we have observed statistical modeling bugs
to exist. Bugs related to statistical modeling can be conse­
quential because based on the predictions generated by sta­
tistical models, policymakers enforce public health policies.
One possible explanation for buggy statistical models can be
attributed to the quality of datasets using which statistical
models are build (Koerth et al., 2020). For example, fatality
prediction models that are built using the ‘Diamond Princess
Cruise Ship Dataset’ may not be applicable for a specific geo­
graphic region with low population density. Another possible
explanation can be a lack of context and knowledge related to
public health specific that hinders model builders to identify
appropriate independent variables to construct the models.
Incorrect estimation of hospital beds from our discussion in
Section 4.2.1 is one example. Other examples of independent
variables related to public health includes staff availability,
count of known cases, hospitalization rate etc. (Attia, 2020).
According to a health expert (Attia, 2020), statistical mod­
els that predicted 2.4 million US residents to die, assumed a
hospitalization rate of 15­20%, which in reality was 5%.
Based on our findings and above­mentioned explanations

we make two recommendations:

• Automated testing for COVID­19 modeling: We hope
to see novel research in the domain of COVID­19 that
will test the correctness of constructed statistical models
used in forecasting in an automated manner. In recent
years, we have seen research efforts that test deep learn­
ing models (Tian et al., 2018; Pei et al., 2017; Ma et al.,
2018). We expect similar research pursuits for COVID­
19 statistical modeling.

• Better synergies between data science and public health

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

practitioners: Construction and verification of COVID­
19 statistical modeling should involve practitioners
from public health and data science. Public health prac­
titioners within a specific locality can provide necessary
context that data scientists can incorporate in their sta­
tistical models.

Implications for Educators: Our findings have implica­
tions for educators involved in teaching the following topics:

• Data science: Educators who teach data science can use
the examples of statistical modeling bugs to highlight
the value of considering the full context and related lim­
itations that accompany statistical modeling.

• Information security and privacy: User tracking soft­
ware can be discussed in information security and pri­
vacy courses to demonstrate the value of protecting user
data. Such discussion can also include privacy policy
frameworks that are already in place, such as the NIST
Privacy framework (National Institute of Standard and
Technology, 2020).

• Software engineering: Our categorization of bugs re­
lated to COVID­19 software development can be dis­
cussed to demonstrate that understanding and repair of
bugs requires contextualization.

Benchmark for practitioners and researchers: Ta­
bles 6— 10 can be used as a measuring stick by practitioners
and researchers who are involved with COVID­19 software
projects. Practitioners can estimate their bug resolution ef­
forts by comparing median resolution times for bugs in their
COVID­19 software projects to that of Tables 8, 9, and 10.
Compared to prior work related to blockchain andmachine

learning (Thung et al., 2012; Wan et al., 2017), median bug
resolution time is lower for COVID­19 software projects.We
provide two possible explanations: one possible explanation
can be related to the sense of urgency. Practitioners may have
realized that bugs in COVID­19 software projects could ham­
per the analysis or mitigation of COVID­19, and therefore,
needs immediate attention. Another possible explanation can
be the limitations of our dataset. The age of our software
projects does not exceed four months and that may have bi­
ased median bug resolution time. We advocate for future re­
search that will confirm or refute our explanations.
Recurrence­related implications: Researchers (Kissler

et al., 2020; Chen et al., 2020) have provided evidence that
support the recurring nature of COVID­19. About the re­
currence of COVID­19 Kissler et al. 2020 stated “a resur­
gence in contagion could be possible as late as 2024.”. We
hypothesize that COVID­19’s recurrence will lead to more
COVID­19 software building. Whether or not our findings
hold for these newly constructed COVID­19 software can be
validated through a replication of our paper. We expect to
observe more categories of COVID­19 software projects as
well as more bug categories.

5.3 Differences between COVID­19 Software
Projects and Other Software Projects

We provide the differences that we have noticed between
COVID­19 software projects and other software projects,

which we discuss in the following subsections:

5.3.1 Differences in Bug Manifestation

A non­COVID­19 software project does not have the con­
text of public health consequences that are associated with
a COVID­19 software project. We define a COVID­19 soft­
ware project to be a software project that is related with an­
alyzing and mitigating the consequences of COVID­19. By
definition, we include software projects that directly captures
the consequences related to public health, which is absent
from a traditional software project. We observe empirical ev­
idence that shows the unique context of COVID­19 to yield
differences in bugs and bug resolution time when compared
with other software projects.
Let us consider the case of algorithm bugs. Algorithm bugs

manifest in COVID­19 projects as well as in machine learn­
ing and autonomous vehicle projects. A machine learning
project that uses statistical modeling can have algorithm bugs
that generates erroneous predictions. For a COVID­19 soft­
ware project that predicts death rates, a bug related to the
modeling algorithm can have serious consequences, as pub­
lic health policies are derived based on these models, as it oc­
curred during incorrect estimation of hospitalization rate (At­
tia, 2020). As discussed in Section 4.3 algorithm­related bugs
also appear for autonomous vehicles but presence of such
bugs manifest in components unique to autonomous vehicle
projects, such as lane positioning and navigation, and traffic
light processing.
We have observed that data bugs appear for both deep

learning projects and COVID­19 software projects. The dif­
ference is for COVID­19 we have the concepts of location,
as practitioners tend to miss important location­related data
for COVID­19, e.g., not able to identify states in India that
are observing an outbreak of COVID­19. In the case of deep
learning projects, data bugs are related with structure and
type of training data.
As another example, dependency­related bugs appear for

both IaC scripts and COVID­19 software projects. In the case
of IaC, dependency­related bugs are related to an IaC­related
artifact, such as Puppet manifest, class, or a module, upon
which execution of an IaC script is dependent upon (Rahman
et al., 2020). For COVID­19 software project dependencies
are relatedwithAPI and build artifacts, such asMaven depen­
dencies. This difference with respect to dependent artifacts
also highlight the differences between COVID­19 software
projects and IaC­based software projects.
In short, our findings suggest that while commonalities

for bug categories between COVID­19 software projects and
other software projects, the manifestation and artifacts re­
lated to the bug categories are different from other categories
of software projects.

5.3.2 Difference in Bug Resolution Time

Our findings indicate that median bug resolution time is
lower for OVID­19 software projects than that of blockchain
and machine learning projects. Based on our findings, we
conjecture that the sense of urgency might have motivated
practitioners to fix bugs in COVID­19 software projects.

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

5.3.3 Differences with Existing Healthcare­related Soft­
ware Projects

Our findings also demonstrate differences between COVID­
19 software projects and other projects related to healthcare
domain. To illustrate these differences we use Janamanchi et
al. 2009’s work. Janamanchi et al. 2009 studied 174 open­
source software projects related to the health domain and
identified 11 categories of software projects that do not in­
clude the three categories of projects that we have iden­
tified for COVID­19 software projects: volunteer manage­
ment, user tracking, and education. The inception and spread
of COVID­19 have motivated software practitioners to cre­
ate a wide range of software projects, such as projects related
to user tracking and volunteer management so that people are
aware about the consequences and hygiene practices related
to COVID­19. In the context of COVID­19 software projects,
projects related to user tracking focus on tracking user loca­
tion data emitted from smartphones to assess the proximity of
individuals who might be exposed to COVID­19. Software
projects related to volunteer management are related with
managing volunteers to address COVID­19­related societal
issues, such as food banking. A pandemic of this nature was
not experienced by health professionals prior to 2020. Exist­
ing research related to software projects that belong to health
domain were not able to perform characterization of COVID­
19 software projects and identify project categories unique
to COVID­19. Janmanchi et al. 2009 did not systematically
study the types of bugs that appear in health care software
projects. Our paper complements Janamanchi et al. 2009’s
work by studying healthcare­related projects that are related
with COVID­19 by characterizing the bugs and the types of
software projects related to COVID­19 in which the bugs ap­
pear in.

6 Threats to Validity
We describe the limitations of our paper as following:
Conclusion validity: We have used raters who derived the

software and bug categories. Both raters are authors of the
paper. Our derived categories are susceptible to the authors’
bias. We mitigate this limitation by allocating another rater
who is not the author of the paper who verified our ratings.
Our categories might not be comprehensive because our

categorization for projects and bugs is limited to the dataset
that we collected. The bug resolution time could be limiting
as our dataset includes projects that have a duration of four
months.
We use the topic ‘covid­19’ to identify and filter COVID­

19 software projects from GitHub. Any software project
that is not labeled as ‘covid­19’ will not be included in our
dataset.
Our datasets have limited lifetime as the COVID­19 was

discovered in December 2019, and the lack of maturity in our
datasets may influence our analysis. We mitigate this limita­
tion by identifying projects using a filtering criteria so that
we can identify projects with sufficient development activ­
ity.
Internal validity: For RQ1 and RQ2we use ourselves, the

authors of the paper, as raters who conduct open and closed

coding on README files and bug reports. Our research is
susceptible to mono­method bias, as our categorization and
labeling may be influenced by the authors’ implicit expecta­
tions and hypotheses about the study.
External validity: Our findings are not comprehensive.

We have not analyzed projects hosted outside GitHub and
private projects hosted on GitHub. We mitigate this limita­
tion by analyzing 129 software projects that belong to 7 cat­
egories. Also, as we have used open coding to determine cat­
egories, our findings may not be identified by other raters.
We mitigate this limitation by conducting rater verification,
where we use a rater who is not the author of the paper.

7 Conclusion

The COVID­19 pandemic has impacted people all over the
world causing thousands of deaths. Software practitioners
have joined the fight in combating the spread and mitigating
the dire consequences of COVID­19. An understanding of
COVID­19 software categories and software bugs can give
us clues on how the software engineering community can
help even further in combating COVID­19.
We conduct an empirical study with 129 COVID­19 soft­

ware projects hosted on GitHub. We identify 7 categories of
software projects: aggregation, mining, statistical models, ed­
ucation, volunteer management, user tracking, and medical
equipment. By applying open coding on 550 bug reports, we
identify 8 categories of bugs: algorithm, data, dependency,
documentation, performance, security, syntax, and UI. We
observe bug category frequency to vary with project cate­
gories, e.g., for mining projects data­related bugs is the most
frequently occurring category.
Our findings have implications for educators, practition­

ers, and researchers. Educators can use our categorization
of COVID software projects and related bugs to educate stu­
dents about the security and privacy implications of COVID­
19 software. Privacy researchers can build tools that will
check if user tracking software related to COVID­19 are
not leaking user data. Practitioners in the data science do­
main can learn from our categorization of statistical model­
ing bugs to understand limitations of constructed statistical
models and verify underlying assumptions that accompany
constructed statistical models. Based on our findings we also
advocate for better synergies between data scientists and pub­
lic health experts so that statistical modeling bugs can bemiti­
gated.We hope our paper will advance further research in the
domain of COVID­19 software.

Acknowledgements

We thank the PASER group at Tennessee Technological University
for their useful feedback. We also thank Farzana Ahamed Bhuiyan
of Tennessee Technological University for her help as an additional
rater. The research was partially supported by the National Science
Foundation (NSF) award # 2026869.

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

References
abquirarte (2020). accessibility fixes. github.com/

cagov/covid19/issues/137. [Online; accessed 10­
May­2020].

Agrawal, A., Rahman, A., Krishna, R., Sobran, A., and Men­
zies, T. (2018). We don’t need another hero?: The im­
pact of ”heroes” on software development. In Proceed­
ings of the 40th International Conference on Software En­
gineering: Software Engineering in Practice, ICSE­SEIP
’18, pages 245–253, New York, NY, USA. ACM.

Alasdair Sandford (2020). Coronavirus: Half of humanity
now on lockdown as 90 countries call for confinement.
https://www.euronews.com/2020/04/02/. [Online;
accessed 17­Apr­2020].

Anderson, S., Allen, P., Peckham, S., and Goodwin, N.
(2008). Asking the right questions: scoping studies in the
commissioning of research on the organisation and deliv­
ery of health services. Health research policy and systems,
6(1):7.

Apple (2020). Privacy­preserving contact tracing. https://
www.apple.com/covid19/contacttracing. [Online;
accessed 25­May­2020].

Applifting (2020). pomuzeme.si. github.com/
Applifting/pomuzeme.si. [Online; accessed 09­
May­2020].

Attia, P. (2020). Comparing covid­19 to past pandemics,
preparing for the future, and reasons for optimism. https:
//peterattiamd.com/ameshadalja/. [Online; ac­
cessed 21­May­2020].

Begley, S. (2020a). Death rates should increase when icu’s
are overwhelmed. https://github.com/neherlab/
covid19_scenarios/issues/7. [Online; accessed 10­
May­2020].

Begley, S. (2020b). Influential covid­19 model uses flawed
methods and shouldn’t guide u.s. policies, critics say.
https://www.statnews.com/2020/04/17/. [Online;
accessed 10­May­2020].

boogheta (2020). boogheta/coronavirus­countries. https:
//github.com/boogheta/coronavirus-countries.
[Online; accessed 09­May­2020].

Butler, J. L. and Jaffe, S. (2020). Challenges and gratitude:
A diary study of software engineers working from home
during covid­19 pandemic.

Catolino, G., Palomba, F., Zaidman, A., and Ferrucci, F.
(2019). Not all bugs are the same: Understanding, char­
acterizing, and classifying bug types. Journal of Systems
and Software, 152:165 – 181.

CDC (2020). Cases, data, and surveillance.
https://www.cdc.gov/coronavirus/2019-ncov/
cases-updates/index.html. [Online; accessed
09­May­2020].

Chen, D., Xu, W., Lei, Z., Huang, Z., Liu, J., Gao, Z., and
Peng, L. (2020). Recurrence of positive sars­cov­2 rna in
covid­19: A case report. International Journal of Infec­
tious Diseases, 93:297 – 299.

Cohen, J. (1960). A coefficient of agreement for nomi­
nal scales. Educational and Psychological Measurement,
20(1):37–46.

Corey, L., Mascola, J. R., Fauci, A. S., and Collins, F. S.
(2020). A strategic approach to covid­19 vaccine r&d. Sci­
ence.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2009). Introduction to algorithms. MIT press.

Crabtree, B. F. and Miller, W. L. (1999). Doing qualitative
research. sage publications.

Crowell Morning (2020). Mobile applications for covid
tracking & tracing – balancing the need for personal
information and privacy rights in the time of coro­
navirus. https://www.crowell.com/NewsEvents/
AlertsNewsletters/all/. [Online; accessed 20­May­
2020].

De Clercq, E. (2006). Potential antivirals and antiviral strate­
gies against sars coronavirus infections. Expert review of
anti­infective therapy, 4(2):291–302.

deepset ai (2020). deepset­ai/covid­qa. https://github.
com/deepset-ai/COVID-QA. [Online; accessed 09­
May­2020].

Dehning, J., Zierenberg, J., Spitzner, F. P., Wibral, M., Neto,
J. P., Wilczek, M., and Priesemann, V. (2020). Inferring
change points in the spread of covid­19 reveals the effec­
tiveness of interventions. Science.

elcronos (2020). elcronos/covid­19. https://github.
com/elcronos/COVID-19. [Online; accessed 09­May­
2020].

Emery Berger (2021). Csrankings: Computer science
rankings. http://csrankings.org/#/index?all&us.
[Online; accessed 31­February­2021].

enigmampc (2020). Safetrace. github.com/enigmampc/
SafeTrace. [Online; accessed 09­May­2020].

Erin Duffin (2020). Impact of the coronavirus pan­
demic on the global economy ­ statistics & facts.
https://www.statista.com/topics/6139/
covid-19-impact-on-the-global-economy/.
[Online; accessed 08­May­2020].

EuroCrypt (2020a). Eurocrypt 2020 program. https://
eurocrypt.iacr.org/2020/program.php. [Online;
accessed 16­May­2020].

EuroCrypt (2020b). s­212 panel discussion on contact trac­
ing. https://youtu.be/Xt4P8E_Y-xc. [Online; ac­
cessed 16­May­2020].

Evans, A. B., Blackwell, J., Dolan, P., Fahlén, J., Hoekman,
R., Lenneis, V., McNarry, G., Smith, M., and Wilcock, L.
(2020). Sport in the face of the covid­19 pandemic: to­
wards an agenda for research in the sociology of sport.

Farhana, E., Imtiaz, N., and Rahman, A. (2019). Synthesiz­
ing program execution time discrepancies in julia used for
scientific software. In 2019 IEEE International Confer­
ence on Software Maintenance and Evolution (ICSME),
pages 496–500.

Garcia, J., Feng, Y., Shen, J., Almanee, Sumaya Xia, Y.,
and Chen, Q. A. (2020). A comprehensive study of au­
tonomous vehicle bugs. In Proceedings of the 42nd Inter­
national Conference on Software Engineering, ICSE ’20.
to appear.

GitHub (2020a). Covid­19 : Github topics. https://
github.com/topics/covid-19. [Online; accessed 07­
May­2020].

github.com/cagov/covid19/issues/137
github.com/cagov/covid19/issues/137
https://www.euronews.com/2020/04/02/
https://www.apple.com/covid19/contacttracing
https://www.apple.com/covid19/contacttracing
github.com/Applifting/pomuzeme.si
github.com/Applifting/pomuzeme.si
https://peterattiamd.com/ameshadalja/
https://peterattiamd.com/ameshadalja/
https://github.com/neherlab/covid19_scenarios/issues/7
https://github.com/neherlab/covid19_scenarios/issues/7
https://www.statnews.com/2020/04/17/
https://github.com/boogheta/coronavirus-countries
https://github.com/boogheta/coronavirus-countries
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/index.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/index.html
https://www.crowell.com/NewsEvents/AlertsNewsletters/all/
https://www.crowell.com/NewsEvents/AlertsNewsletters/all/
https://github.com/deepset-ai/COVID-QA
https://github.com/deepset-ai/COVID-QA
https://github.com/elcronos/COVID-19
https://github.com/elcronos/COVID-19
http://csrankings.org/#/index?all&us
github.com/enigmampc/SafeTrace
github.com/enigmampc/SafeTrace
https://www.statista.com/topics/6139/covid-19-impact-on-the-global-economy/
https://www.statista.com/topics/6139/covid-19-impact-on-the-global-economy/
https://eurocrypt.iacr.org/2020/program.php
https://eurocrypt.iacr.org/2020/program.php
https://youtu.be/Xt4P8E_Y-xc
https://github.com/topics/covid-19
https://github.com/topics/covid-19

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

GitHub (2020b). Language savant. https://github.com/
github/linguist. [Online; accessed 07­May­2020].

GitHub (2020c). Search : Covid­19. https://github.
com/search?q=covid-19. [Online; accessed 07­May­
2020].

Greenberg, A. (2020). India’s covid­19 contact tracing app
could leak patient locations. https://www.wired.com/
story/india-covid-19-contract-tracing-app/.
[Online; accessed 23­May­2020].

Helms, J., Kremer, S., Merdji, H., Clere­Jehl, R., Schenck,
M., Kummerlen, C., Collange, O., Boulay, C., Fafi­
Kremer, S., Ohana, M., et al. (2020). Neurologic features
in severe sars­cov­2 infection. New England Journal of
Medicine.

helpwithcovid (2020). helpwithcovid/covid­
volunteers. https://github.com/helpwithcovid/
covid-volunteers. [Online; accessed 09­May­2020].

Herzig, K., Just, S., and Zeller, A. (2013). It’s not a bug, it’s a
feature: How misclassification impacts bug prediction. In
Proceedings of the 2013 International Conference on Soft­
ware Engineering, ICSE ’13, page 392–401. IEEE Press.

Hu, F. Z. and Qian, J. (2017). Land­based finance, fiscal
autonomy and land supply for affordable housing in ur­
ban china: A prefecture­level analysis. Land Use Policy,
69:454 – 460.

Huang, Y., Sun, M., and Sui, Y. (2020). How
digital contact tracing slowed covid­19 in
east asia. https://hbr.org/2020/04/
how-digital-contact-tracing-slowed-covid-19.
[Online; accessed 09­May­2020].

IEEE (2010). Ieee standard classification for software
anomalies. IEEE Std 1044­2009 (Revision of IEEE Std
1044­1993), pages 1–23.

ImperialCollegeLondon (2020). Imperialcollegelon­
don/covid19model. https://github.com/
ImperialCollegeLondon/covid19model. [Online;
accessed 09­May­2020].

Islam, M. J., Nguyen, G., Pan, R., and Rajan, H. (2019). A
comprehensive study on deep learning bug characteristics.
InProceedings of the 2019 27th ACM JointMeeting on Eu­
ropean Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE
2019, page 510–520, New York, NY, USA. Association
for Computing Machinery.

ivan aksamentov (2020). Fix types and linting er­
rors. https://github.com/neherlab/covid19_
scenarios/issues/101. [Online; accessed 10­May­
2020].

Janamanchi, B., Katsamakas, E., Raghupathi, W., and Gao,
W. (2009). The state and profile of open source software
projects in health and medical informatics. International
Journal of Medical Informatics, 78(7):457–472.

Jarynowski, A., Wójta­Kempa, M., Płatek, D., and Czopek,
K. (2020). Attempt to understand public health relevant
social dimensions of covid­19 outbreak in poland. Avail­
able at SSRN 3570609.

Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., Zhu,
Y., Zhu, C., Hu, T., Du, X., et al. (2020). Structural ba­
sis for the inhibition of sars­cov­2 main protease by anti­

neoplastic drug carmofur. Nature Structural & Molecular
Biology, pages 1–4.

John Hopkins University (2020). Corona Virus Resource
Center. https://coronavirus.jhu.edu/. [Online; ac­
cessed 31­May­2020].

JoHof (2020). Johof/lungmask. https://github.com/
JoHof/lungmask. [Online; accessed 09­May­2020].

juanmnl (2020). covid19­monitor. github.com/juanmnl/
covid19-monitor. [Online; accessed 09­May­2020].

Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H., and
Lipsitch, M. (2020). Projecting the transmission dynamics
of sars­cov­2 through the postpandemic period. Science.

Koerth, M., Bronner, L., and Mithani, J. (2020). Why
it’s so freaking hard to make a good covid­19
model. https://fivethirtyeight.com/features/
why-its-so-freaking-hard-to-make/. [Online;
accessed 22­May­2020].

Kraemer, M. U., Yang, C.­H., Gutierrez, B., Wu, C.­H.,
Klein, B., Pigott, D. M., du Plessis, L., Faria, N. R., Li,
R., Hanage, W. P., et al. (2020). The effect of human mo­
bility and control measures on the covid­19 epidemic in
china. Science, 368(6490):493–497.

Landis, J. R. and Koch, G. G. (1977). The measurement
of observer agreement for categorical data. Biometrics,
33(1):159–174.

landovsky (2020). Fix password reset procedure. https://
github.com/Applifting/pomuzeme.si/issues/99.
[Online; accessed 10­May­2020].

Linares­Vásquez, M., Bavota, G., and Escobar­Velasquez, C.
(2017). An empirical study on android­related vulnerabil­
ities. In Proceedings of the 14th International Conference
on Mining Software Repositories, MSR ’17, pages 2–13,
Piscataway, NJ, USA. IEEE Press.

Ma, L., Zhang, F., Sun, J., Xue, M., Li, B., Juefei­Xu, F., Xie,
C., Li, L., Liu, Y., Zhao, J., and Wang, Y. (2018). Deep­
mutation: Mutation testing of deep learning systems. In
2018 IEEE 29th International Symposium on Software Re­
liability Engineering (ISSRE), pages 100–111.

Ma, W., Chen, L., Zhang, X., Zhou, Y., and Xu, B. (2017).
How do developers fix cross­project correlated bugs? a
case study on the github scientific python ecosystem. In
Proceedings of the 39th International Conference on Soft­
ware Engineering, ICSE ’17, page 381–392. IEEE Press.

makers­for life (2020). makers­for­life/makair. https://
github.com/makers-for-life/makair. [Online; ac­
cessed 09­May­2020].

Marivate, V. and Combrink, H. M. (2020). Use of available
data to inform the covid­19 outbreak in south africa: A
case study. Data Science Journal, 19(1):1–7.

Marivate, V., Nsoesie, E., Bekele, E., and open COVID­19
data working group, A. (2020). Coronavirus COVID­19
(2019­nCoV) Data Repository for Africa.

mdeous (2020). Missing code of conduct. https://github.
com/reach4help/reach4help/issues/135. [Online;
accessed 10­May­2020].

Mello, M. M. andWang, C. J. (2020). Ethics and governance
for digital disease surveillance. Science.

Mitchell Hartman (2020). Covid­19 job­
less claims are now over 40 million. many

https://github.com/github/linguist
https://github.com/github/linguist
https://github.com/search?q=covid-19
https://github.com/search?q=covid-19
https://www.wired.com/story/india-covid-19-contract-tracing-app/
https://www.wired.com/story/india-covid-19-contract-tracing-app/
https://github.com/helpwithcovid/covid-volunteers
https://github.com/helpwithcovid/covid-volunteers
https://hbr.org/2020/04/how-digital-contact-tracing-slowed-covid-19
https://hbr.org/2020/04/how-digital-contact-tracing-slowed-covid-19
https://github.com/ImperialCollegeLondon/covid19model
https://github.com/ImperialCollegeLondon/covid19model
https://github.com/neherlab/covid19_scenarios/issues/101
https://github.com/neherlab/covid19_scenarios/issues/101
https://coronavirus.jhu.edu/
https://github.com/JoHof/lungmask
https://github.com/JoHof/lungmask
github.com/juanmnl/covid19-monitor
github.com/juanmnl/covid19-monitor
https://fivethirtyeight.com/features/why-its-so-freaking-hard-to-make/
https://fivethirtyeight.com/features/why-its-so-freaking-hard-to-make/
https://github.com/Applifting/pomuzeme.si/issues/99
https://github.com/Applifting/pomuzeme.si/issues/99
https://github.com/makers-for-life/makair
https://github.com/makers-for-life/makair
https://github.com/reach4help/reach4help/issues/135
https://github.com/reach4help/reach4help/issues/135

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

are still waiting for unemployment benefits.
https://www.marketplace.org/2020/05/28/
covid-19-jobless-claims-unemployment-benefits-waiting/.
[Online; accessed 31­May­2020].

Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002).
Two case studies of open source software development:
Apache and mozilla. ACM Trans. Softw. Eng. Methodol.,
11(3):309–346.

Munaiah, N., Kroh, S., Cabrey, C., and Nagappan, M. (2017).
Curating github for engineered software projects. Empiri­
cal Software Engineering, pages 1–35.

Munn, Z., Peters, M. D., Stern, C., Tufanaru, C., McArthur,
A., and Aromataris, E. (2018). Systematic review or scop­
ing review? guidance for authors when choosing between
a systematic or scoping review approach. BMC medical
research methodology, 18(1):143.

National Institute of Standard and Technology (2020).
Nist privacy framework. https://www.nist.gov/
privacy-framework. [Online; accessed 24­May­2020].

neherlab (2020). covid19_scenarios. github.com/
neherlab/covid19_scenarios. [Online; accessed 09­
May­2020].

nthopinion (2020). nthopinion/covid19. https://github.
com/nthopinion/covid19. [Online; accessed 09­May­
2020].

Oliveira, E., Leal, G., Valente, M. T., Morandini, M., Prik­
ladnicki, R., Pompermaier, L., Chanin, R., Caldeira, C.,
Machado, L., and de Souza, C. (2020). Surveying the im­
pacts of covid­19 on the perceived productivity of brazil­
ian software developers. In Proceedings of the 34th Brazil­
ian Symposium on Software Engineering, SBES ’20, page
586–595, New York, NY, USA. Association for Comput­
ing Machinery.

OpenMined (2020). covid­alert. github.com/OpenMined/
covid-alert. [Online; accessed 09­May­2020].

Paul, R., Baltes, S., Gianisa, A., Torkar, R., Kovalenko, V.,
Marcos, K., Nicole, N., Yoo, S., Xavier, D., Tan, X., et al.
(2020). Pandemic programming. Empirical Software En­
gineering, 25(6):4927–4961.

pavel ilin (2020). Temperature data not saved
in the backend. https://github.com/
COVID-19-electronic-health-system/
Corona-tracker/issues/351. [Online; accessed
10­May­2020].

Pei, K., Cao, Y., Yang, J., and Jana, S. (2017). Deepxplore:
Automated whitebox testing of deep learning systems. In
Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 1–18, New York, NY, USA.
Association for Computing Machinery.

popsolutions (2020). popsolutions/openventilator. https:
//github.com/popsolutions/openventilator.
[Online; accessed 09­May­2020].

Prana, G. A., Treude, C., Thung, F., Atapattu, T., and Lo, D.
(2019). Categorizing the content of github readme files.
Empirical Softw. Engg., 24(3):1296–1327.

Pulido, C. M., Villarejo­Carballido, B., Redondo­Sama, G.,
and Gómez, A. (2020). Covid­19 infodemic: More
retweets for science­based information on coronavirus
than for false information. International Sociology, page

0268580920914755.
Rahman, A. and Farhana, E. (2020). Dataset for Pa­
per ­ COVID­19­EMSE. https://figshare.com/s/
7044678e1d7e7feb1efb. [Online; accessed 22­January­
2021].

Rahman, A., Farhana, E., Parnin, C., andWilliams, L. (2020).
Gang of eight: A defect taxonomy for infrastructure as
code scripts. In Proceedings of the 42nd International
Conference on Software Engineering, ICSE ’20. to ap­
pear.

Ray, B., Posnett, D., Filkov, V., and Devanbu, P. (2014).
A large scale study of programming languages and code
quality in github. In Proceedings of the 22Nd ACM SIG­
SOFT International Symposium on Foundations of Soft­
ware Engineering, FSE 2014, pages 155–165, New York,
NY, USA. ACM.

reustle (2020). Fix prefecture sorting. https://github.
com/reustle/covid19japan/issues/15. [Online; ac­
cessed 05­Mar­2021].

Rourke, M., Eccleston­Turner, M., Phelan, A., and Gostin, L.
(2020). Policy opportunities to enhance sharing for pan­
demic research. Science, 368(6492):716–718.

Saldana, J. (2015). The coding manual for qualitative re­
searchers. Sage.

SinghRajenM (2020). Rajasthan district names are
wrong. https://github.com/covid19india/
covid19india-react/issues/321. [Online; accessed
10­May­2020].

soroushchehresa (2020). soroushchehresa/awesome­
coronavirus. github.com/soroushchehresa/
awesome-coronavirus. [Online; accessed 16­May­
2020].

Subratappt (2020). Cluster animation slowing down the
browser. it also takes much time. https://github.com/
covid19india/covid19india-react/issues/497.
[Online; accessed 10­May­2020].

Tamm, M. V. (2020). Covid­19 in moscow: prognoses and
scenarios. FARMAKOEKONOMIKA. Modern Pharma­
coeconomic and Pharmacoepidemiology, 13(1):43–51.

Thung, F., Wang, S., Lo, D., and Jiang, L. (2012). An empir­
ical study of bugs in machine learning systems. In 2012
IEEE 23rd International Symposium on Software Reliabil­
ity Engineering, pages 271–280.

Tian, Y., Pei, K., Jana, S., and Ray, B. (2018). Deeptest:
Automated testing of deep­neural­network­driven au­
tonomous cars. In Proceedings of the 40th International
Conference on Software Engineering, ICSE ’18, page
303–314, New York, NY, USA. Association for Comput­
ing Machinery.

Timoeller (2020). Cdc children scraper is outdated. https:
//github.com/deepset-ai/COVID-QA/issues/43.
[Online; accessed 10­May­2020].

Tom Simonite (2020). Software that reads ct lung scans
had been used primarily to detect cancer. now it’s
retooled to look for signs of pneumonia caused by
coronavirus. https://www.wired.com/story/
chinese-hospitals-deploy-ai-help-diagnose/.
[Online; accessed 08­May­2020].

vaclavpavlicek (2020). Missing postgis. https://github.

https://www.marketplace.org/2020/05/28/covid-19-jobless-claims-unemployment-benefits-waiting/
https://www.marketplace.org/2020/05/28/covid-19-jobless-claims-unemployment-benefits-waiting/
https://www.nist.gov/privacy-framework
https://www.nist.gov/privacy-framework
github.com/neherlab/covid19_scenarios
github.com/neherlab/covid19_scenarios
https://github.com/nthopinion/covid19
https://github.com/nthopinion/covid19
github.com/OpenMined/covid-alert
github.com/OpenMined/covid-alert
https://github.com/COVID-19-electronic-health-system/Corona-tracker/issues/351
https://github.com/COVID-19-electronic-health-system/Corona-tracker/issues/351
https://github.com/COVID-19-electronic-health-system/Corona-tracker/issues/351
https://github.com/popsolutions/openventilator
https://github.com/popsolutions/openventilator
https://figshare.com/s/7044678e1d7e7feb1efb
https://figshare.com/s/7044678e1d7e7feb1efb
https://github.com/reustle/covid19japan/issues/15
https://github.com/reustle/covid19japan/issues/15
https://github.com/covid19india/covid19india-react/issues/321
https://github.com/covid19india/covid19india-react/issues/321
github.com/soroushchehresa/awesome-coronavirus
github.com/soroushchehresa/awesome-coronavirus
https://github.com/covid19india/covid19india-react/issues/497
https://github.com/covid19india/covid19india-react/issues/497
https://github.com/deepset-ai/COVID-QA/issues/43
https://github.com/deepset-ai/COVID-QA/issues/43
https://www.wired.com/story/chinese-hospitals-deploy-ai-help-diagnose/
https://www.wired.com/story/chinese-hospitals-deploy-ai-help-diagnose/
https://github.com/Applifting/pomuzeme.si/issues/164

An Empirical Study of Bugs in COVID­19 Software Projects Rahman and Farhana 2021

com/Applifting/pomuzeme.si/issues/164. [On­
line; accessed 10­Mar­2021].

Van Bavel, J. J., Baicker, K., Boggio, P. S., Capraro, V., Ci­
chocka, A., Cikara, M., Crockett, M. J., Crum, A. J., Dou­
glas, K. M., Druckman, J. N., et al. (2020). Using social
and behavioural science to support covid­19 pandemic re­
sponse. Nature Human Behaviour, pages 1–12.

Vardi, M. Y. (2009). Conferences vs. journals in computing
research. Communications of the ACM, 52(5):5–5.

Wan, Z., Lo, D., Xia, X., and Cai, L. (2017). Bug characteris­
tics in blockchain systems: A large­scale empirical study.
In 2017 IEEE/ACM14th International Conference onMin­
ing Software Repositories (MSR), pages 413–424.

Wang, C., Li, W., Drabek, D., Okba, N. M., van Haperen,
R., Osterhaus, A. D., van Kuppeveld, F. J., Haagmans,
B. L., Grosveld, F., and Bosch, B.­J. (2020). A human
monoclonal antibody blocking sars­cov­2 infection. Na­
ture Communications, 11(1):1–6.

WHO (2020). Global research on coronavirus disease

(covid­19). https://www.who.int/emergencies/
diseases/novel-coronavirus-2019/
global-research-on-novel-coronavirus-2019-ncov.
[Online; accessed 09­May­2020].

Why Hunger (2020). Why hunger. https://whyhunger.
org/map.php. [Online; accessed 08­May­2020].

Will, C. M. (2020). ‘and breathe...’? the sociology of health
and illness in covid­19 time. Sociology of Health & Illness.

Yang, C. Y. and Wang, J. (2020). A mathematical model for
the novel coronavirus epidemic in wuhan, china. Mathe­
matical Biosciences and Engineering, 17(3):2708–2724.

zbraniecki (2020). Data has a gap between 2020­3­11
and 2020­3­24. https://github.com/covidatlas/
coronadatascraper/issues/375. [Online; accessed
10­May­2020].

Zhang, T., Chen, J., Luo, X., and Li, T. (2019). Bug reports
for desktop software and mobile apps in github: What’s
the difference? IEEE Software, 36(1):63–71.

https://github.com/Applifting/pomuzeme.si/issues/164
https://github.com/Applifting/pomuzeme.si/issues/164
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
https://whyhunger.org/map.php
https://whyhunger.org/map.php
https://github.com/covidatlas/coronadatascraper/issues/375
https://github.com/covidatlas/coronadatascraper/issues/375

	Introduction
	Related Work
	Methodology
	Methodology for RQ1: What categories of open source COVID-19 software projects exist?
	Dataset Collection
	Qualitative Analysis of README files
	Closed Coding
	Rater Verification

	Methodology for RQ2: What categories of bugs exist in open source COVID-19 software projects? How frequently do the identified bug categories appear? What is the resolution time for the identified bug categories?
	Methodology to Answer RQ3: How similar are the identified bug categories to that with previously studied software projects?

	Results
	Answer to RQ1: What categories of open source COVID-19 software projects exist?
	Summary of Dataset
	Categorization of COVID-19 Software Projects
	Frequency of the Identified Categories
	Rater Agreement

	Answer to RQ2: What categories of bugs exist in open source COVID-19 software projects? How frequently do the identified bug categories appear? What is the resolution time for the identified bug categories?
	Bug Categories of COVID-19 Projects
	Frequency of Identified Bug Categories
	Rater Agreement and Verification
	Resolution Time of Identified Bug Categories

	Answer to RQ3: How similar are the identified bug categories to that with previously studied software projects?

	Discussion
	Summary
	Implications
	Differences between COVID-19 Software Projects and Other Software Projects
	Differences in Bug Manifestation
	Difference in Bug Resolution Time
	Differences with Existing Healthcare-related Software Projects

	Threats to Validity
	Conclusion

