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Abstract
Automated grading systems (autograders) assist the process of teaching in introductory programming courses (CS1).
However, the sole focus on correctness can obfuscate the assessment of other characteristics present in code. In this
work, we investigated if code, deemed correct by an autograder, were developed with characteristics that indicated
potential misunderstandings of the concepts taught in CS1. These characteristics were named Misconceptions in
Correct Code (MC³). By analyzing 2,441 codes developed by CS1 students, we curated an initial list of 45 MC³. This
list was assessed by CS1 instructors, resulting in the identification of MC³ that should be addressed in classes. We
selected the 15 most severe MC³ for further investigation, including a semi-structured observation in a CS1 course
and an automated detection software using static code analysis. The results suggested that students develop these
MC³ either due to an incomplete comprehension of the concepts taught in CS1 course or a lack of attention while
elaborating their code, with correctness being their primary goal. We believe our results can contribute to: (1) the
research field of misconceptions in CS1; (2) promoting alternative approaches to complement the use of autograders
in CS1 classes; and (3) providing insights that can serve as the foundation for teaching interventions involving MC³
in CS1.
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1 Introduction

The need for interdisciplinary domains to solve modern problems constantly requires profession-
als with knowledge in computer literacy. As a result, an increasing number of undergraduate
programs are incorporating Computer Science (CS) related classes into their curricula. While
these classes are predominantly found in programs within the Science, Technology, Engineering,
and Mathematics (STEM) field (Brodley et al., 2022; Dodds et al., 2010), they are also being
introduced in other areas, including Law (Sloan et al., 2017).

When considering the context of CS teaching, one of the common courses focuses on intro-
ductory programming concepts, commonly referred to as CS1 (Austing et al., 1979). CS1 courses
are often associated with challenges, including high failure and dropout rates (Bosse & Gerosa,
2015; Kinnunen & Malmi, 2006; Walker, 2017). Among the various factors contributing to these
rates, the number of students per class stands out. The high student-to-teacher ratio hinders indi-
vidual attention, leading to student demotivation.

Automated grading systems, commonly known as autograders, have been employed in CS1
courses to address the challenges associated with large class sizes. As early as 1960, Hollingsworth
(1960) highlighted the potential benefits of autograders, including time and cost savings, as well
as the ability to accommodate larger classes. Today, autograders are extensively used in courses
with these characteristics, particularly in Massive Open Online Courses, facilitating individual
attention between instructors and students (Marwan et al., 2019).

In the educational context, autograders play a crucial role in grading assignments, relieving
instructors of some of their workload and conserving resources (Ellis et al., 2019; Galvão et al.,
2016; Hollingsworth, 1960). However, the use of autograders can also influence the development
of undesirable habits in students. Baniassad et al. (2021) noted that students may become overly
reliant on the feedback provided by autograders, leading them to rely on trial-and-error approaches
in their coding. Frustration among CS1 students can also arise when automated tools experience
malfunctions (Inside Higher Ed, 2018) or when students mistakenly assume that autograders can-
not make mistakes, resulting in overconfidence (Hsu et al., 2021).

One common application of autograders in CS1 courses is to verify if the output of a code
matches the expected predetermined output (Prather et al., 2018). This approach fosters research
aimed at understanding and enhancing the teaching and learning of concepts based on code cor-
rectness (L. G. Araujo et al., 2021; Becker et al., 2018; Liu & Petersen, 2019; Pereira, Oliveira,
et al., 2020). However, in CS1, even code that produces the desired outcome can exhibit undesir-
able characteristics that experienced programmers would typically avoid (De Ruvo et al., 2018;
Soloway & Ehrlich, 1984). Examples of such characteristics include higher code complexity re-
sulting from the redundant use of syntactic constructs, such as conditional statements or nested
loops (Ihantola & Petersen, 2019; Silva et al., 2021; Ureel II & Wallace, 2019). The sole focus on
code correctness may lead students to disregard other important code attributes, such as readabil-
ity and maintainability, which are crucial for future programmers (De Ruvo et al., 2018; Keuning
et al., 2019). In a CS1 setting where both instructors and students solely assess code functional-
ity without considering other indicators, potential misconceptions or incomplete understanding of
CS1 topics may go unnoticed and unaddressed.

An example of incomplete understanding of a CS1 topic is illustrated in Code 1. In this code,
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a student employed conditional statements to determine whether the value of the variable var was
zero/positive or negative. However, likely due to a belief that the else clause is mandatory, the
student checked both desired cases for var in lines 2 and 4, while also including an unnecessary
else statement in line 6. Despite knowing that both necessary conditions were already checked
in the if-elif statements, the student mistakenly believed that the else clause was obligatory and
included redundant instructions within its body to not alter the correct output. Code 2 provides an
alternative implementation that resolves the misconception demonstrated in Code 1.

1 var = int(input())
2 if var >= 0:
3 print("var␣is␣positive␣or␣0")
4 elif var < 0:
5 print("var␣is␣negative")
6 else:
7 (...)

Code 1: Example of unnecessary else.

1 var = int(input ())
2 if var >= 0:
3 print("var␣is␣positive␣or␣0")
4 else:
5 print("var␣is␣negative")

Code 2: Code 1 without the unnecessary else.

This work was motivated by the need to assess code that had already been deemed correct
by an autograder. By correct, we refer to code that successfully passed all the tests designed
to evaluate the code output for specific inputs. Since we were within a CS1 context, these tests
primarily focused assessing the correctness of the code by testing both standard and boundary
values as inputs. In this work, we were specifically interested in identifying whether correct code
could exhibit behaviors that potentially indicated incomplete understanding of CS1 topics. To
conduct our analysis, we classified these behaviors as misconceptions (Qian & Lehman, 2017).
In CS1, research on misconceptions typically focuses on identifying and classifying errors made
by students, including syntactic, semantic, or logical errors (A. Araujo et al., 2021; Caceffo et al.,
2016, 2019; Gama et al., 2018). However, these studies are not necessarily limited to correct code.
Therefore, we chose to narrow our investigation and specifically examine code that produced the
expected results. As a result, we established a subgroup called Misconceptions in Correct Code
(MC³). In other words, whereas MC³ are misconceptions within the CS1 research field, not all
misconceptions studied in this field can be classified as MC³.

With the hypothesis that MC³ exist in code deemed correct by an autograder, this work
aimed to address the following research questions:

RQ1: Which MC³ are the most severe, requiring high-priority explanations in CS1 courses?

RQ2: How can MC³ be potentially addressed in CS1 classes, considering multiple contexts of
teaching and learning?

RQ3: What is the frequency distribution of MC³ in a typical CS1 course?

RQ4: What are the reasons behind CS1 students incorporating MC³ into their code?

In total, an exploratory analysis of students’ code submitted for assignments in a CS1 course
revealed the presence of 45 MC³, indicating misconceptions and incomplete understandings of key
CS1 topics. To prioritize the most critical misconceptions for classroom intervention, a survey
was conducted among CS1 instructors. From this survey, the top 15 MC³ were identified and
given priority to investigation. These misconceptions predominantly revolved around Boolean
expressions and iteration, with additional focus on code organization, the use of variables and
functions, and the characteristics of autograders, including test cases. The analyses involving CS1
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instructors and students shed light on the reasons behind the incorporation of MC³ in code, which
included incomplete comprehension of CS1 topics and a lack of attention to coding practices,
stemming from a narrow focus on correctness alone. CS1 instructors and students also emphasized
that addressing MC³ in CS1 classes can be facilitated through automated detection and feedback
mechanisms, integration into lecture classes, and the adoption of Active Learning techniques.
Additionally, we developed a prototype of an automated detection tool for the most severe MC³,
and while the occurrence of these misconceptions was not found to be high in absolute numbers,
their presence was observed throughout the entirety of a CS1 course.

We believe that our findings can contribute for the broader community, particularly in the
context of CS1 education supported by autograders from which MC³ are possibly being over-
looked. While previous literature may have identified similar behaviors to MC³, our survey with
CS1 instructors and conversations with students provided additional insights into the underlying
reasons for these misconceptions throughout the course. Based on the evidence we have gathered,
we advocate for the development of formative feedback that can be directed towards instructors,
teaching assistants, and students, with the aim of enhancing the teaching and learning experience
in CS1 courses.

The remainder of this paper is organized as follows. Section 2 presents the background and
related work. The methodology used are described in Section 3, followed by the obtained results
in Section 4. We discuss the results in Section 5. Section 6 details the limitations and threats to
validity of this research. Lastly, we present the conclusions in Section 7.

2 Background and Related Work

In this section, we dedicate our focus to providing a theoretical background that formed the basis
of our hypothesis to the development of this work, as well as discussing related research in a sim-
ilar domain. The background section delves into the intricate details of student errors commonly
encountered in CS1, as well as highlighting the role of autograders in this context. Subsequently,
we describe related works with the aim of examining and synthesizing existing literature that has
addressed similar challenges, while also identifying their strategies and methodologies. Addition-
ally, we clarify the specific contribution and position of our work within this broader research
landscape.

2.1 Background

There are various terms used to describe faulty comprehensions of concepts taught in CS1 classes.
Qian and Lehman (2017) conducted a systematic literature review on this topic and identified
terms such as errors, bad comprehensions, challenges, and misconceptions commonly used in the
literature. They classified these faulty comprehensions into different levels of knowledge: syntac-
tic, conceptual, and strategic. At the syntactic level, comprehension issues arise from a lack of
understanding of basic rules of a programming language, such as mandatory Python indentation
or the use of semicolons in Java. The conceptual level encompasses issues related to the under-
standing of programming constructs, such as variable declaration or loops. Finally, issues at the
strategic level occur when students struggle to apply the knowledge acquired at the syntactic and
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conceptual levels while solving problems. Qian and Lehman classified misconceptions as issues
present in the conceptual level.

The identification of misconceptions is an important aspect of developing concept invento-
ries (CI) (Ali et al., 2023; Almstrum et al., 2006). A CI is an assessment tool specifically designed
to identify and address misconceptions within a specific domain of knowledge (Almstrum et al.,
2006; Caceffo et al., 2016), often in the form of a multiple-choice questionnaire. Almstrum et al.
(2006) proposed a development process for constructing and validating a CI, which involves steps
such as using open-ended questions to discover misconceptions, interviewing students, piloting a
set of multiple-choice questions, and employing statistical analysis to validate the CI. This devel-
opment process has been applied to the creation of CI for CS1 in programming languages such as
C (Caceffo et al., 2016), while there are ongoing research for Python (Gama et al., 2018) and Java
(Caceffo et al., 2019). Additionally, Tew and Guzdial (2011) developed the Foundational CS1
(FCS1) assessment tool, designed to be used independently of a specific programming language.

Regarding automated assessment tools, Ureel II and Wallace (2019) identified two distinct
groups that these tools may fall into: autograders and critiquers. Autograders primarily focus on
unit testing and may not be suitable for providing feedback on all types of bad coding behaviors,
as some of them might happen on correct code. On the other hand, critiquers are similar to au-
tograders, but aim to provide feedback based on the instructors’ pedagogical knowledge. This
formative feedback is crucial as it can lead to significant improvements in students’ understanding
(Cain & Babar, 2016). However, there is a risk of students becoming overly reliant on automated
feedback (Baniassad et al., 2021). Baniassad et al. (2021) found that students were using the feed-
back merely to correct mistakes in their code without engaging in thorough thinking. To address
this issue, the authors implemented a penalty system in a CS1 course, whereby students received
lower grades for successive submissions to an autograder. As a result, the authors observed a
decrease in the number of submissions while only slightly affecting the median grade. Although
the students expressed concerns with each submission, they also reported that they checked their
code more carefully and analyzed their mistakes before submitting again.

Instructors and teaching assistants can also benefit from the feedback provided by auto-
graders or similar tools. Pereira et al. (2020) conducted a study where they collected and analyzed
various features from students’ submissions to a CS1 course in Python, enabling them to predict
whether students would pass or fail the course. These features included, but were not limited to,
the number of submissions, time spent on each submission, number of problems solved correctly,
and average lines of code per submission. The authors argued that assessing the first two weeks of
assignments is crucial for creating an early prediction and providing support to students who may
be at risk of failing the course. Similarly, using machine learning techniques, Lima et al. (2021)
classified coding questions present in an autograder to ensure a balanced distribution of assign-
ments among students. To achieve this, the authors analyzed past students’ submissions to these
questions and collected code attributes such as complexity and the number of syntax constructs,
along with the success rate in completing the assignments. Both studies were conducted using
CodeBench1, an autograder developed by the Federal University of Amazonas.

1https://codebench.icomp.ufam.edu.br/
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2.2 Related Work

By analyzing students’ answers to exams and interviewing CS1 instructors, Caceffo et al. (2016)
identified 15 misconceptions in the C programming language. These misconceptions were clas-
sified into seven categories: function parameter use and scope; variables, identifiers, and scope;
recursion; iteration; structures; pointers; and Boolean expressions. The findings from this analysis
served as the basis for the development of a concept inventory.

Gama et al. (2018) conducted an analysis to examine the applicability of the misconceptions
identified by Caceffo et al. (2016) to the Python language. Based on the frequency of these
misconceptions in open-ended exam questions, they made decisions regarding whether to retain
or discard each misconception. Two categories, structures and pointers, were deemed irrelevant
in Python and were discarded, while a new category emerged: use and implementation of classes
and objects. In total, Gama et al. hypothesized 28 misconceptions, requiring further validation.

Araújo et al. (2021) expanded upon the results obtained by Gama et al. (2018) through an
empirical study. Given the similarity in the teaching contexts of the analyzed CS1 courses in both
works, the authors stated that this empirical study could be conducted. Similar to the previous
studies, students’ answers to open-ended exam questions were used. Araújo et al. identified 27
misconceptions, with 19 of them present in the listing provided by Gama et al. The remaining
eight misconceptions were grouped into a new category called Additional, which consisted of
simple logic and syntactic errors.

Regarding the use of autograders in CS1, Araujo et al. (2021) developed the Python En-
hanced Error Feedback (PEEF). PEEF is an online integrated development environment (IDE)
that provides enhanced compiler error messages, an integrated chat feature, and performs dy-
namic code analysis through unit testing. The authors discussed the potential uses of this tool
for both students and instructors in CS1 courses. Another tool, PyTA, was created by Liu and
Petersen (2019). PyTA promotes static code analysis (Wichmann et al., 1995) to provide compre-
hensive feedback by presenting warnings and error messages in a simplified manner to students.
Liu and Petersen conducted a study in which students had the option to consult or not consult
this enhanced feedback. Among the students who chose to use it, they observed a reduction in
the number of errors per assignment, the total number of submissions until an assignment had an
error corrected, and the total number of submissions until the assignment passed all the test cases.

Among research that focused on analyzing correct code in CS1, De Ruvo et al. (2018)
introduced the concept of semantic styles. Semantic styles are indicators that potentially reveal
a poor understanding of programming concepts. The authors analyzed students’ submissions to
programming assignments and identified 16 semantic styles. Among these, 12 were related to
conditional commands, such as unnecessary else statements or duplicated code within an if/else
structure. The remaining four semantic styles were associated with the use of variables.

Motivated by the goal of providing formative feedback that closely resembles that of an in-
structor, Ureel II and Wallace (2019) developed WebTA. They classified their tool as an automated
critiquer capable of detecting anomalous coding behaviors, regardless of whether the code is cor-
rect. WebTA can identify pre-existing misconceptions from the literature (approximately 200),
and it also allows instructors to create new coding behavior rules to detect specific anomalous
code expected for an assignment.
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The A-Learn Evid, developed by Porfirio et al. (2021), is an automatic method for iden-
tifying students’ programming skills. The authors aimed to automate the assessment of these
skills, going beyond functionality, in order to allow instructors to provide timely and formative
feedback to students. The method employs both static and dynamic analysis of students’ source
code and can identify 37 programming skills. Examples of these skills include variables, Boolean
expressions, infinite loops, control structures, and functions.

Refactoring Programming Tutor (RPT)2, developed by Keuning et al. (2021), is an Intelli-
gent Tutoring System (VanLehn, 2006) that provides step-by-step hints for improving the quality
of correct code. The system incorporates rules idealized by experienced instructors, refactoring
rules found in established software, and previous literature, including the semantic styles identi-
fied by De Ruvo et al. (2018). Keuning et al. outlined 19 refactoring rules implemented in RPT,
covering areas such as expressions, branching, loops, and declarations.

In their study, Oliveira et al. (2023) analyzed program snapshots of students who worked on
programming exercises in RPT to identify errors made by students during code refactoring. The
authors examined 482 sequences of these program snapshots, which were created by 133 students.
Based on their analysis, Oliveira et al. categorized these errors as refactoring misconceptions.
They identified a total of 25 refactoring misconceptions, which were catalogued into five groups:
arithmetic expressions, Boolean expressions, conditionals, flow, and loops.

Table 1 presents a comparison of our work with the related research discussed in this section.
One key characteristic of our work is its focus on analyzing misconceptions exclusively in code
that is deemed correct by an autograder, which sets it apart from some of the related research
that did not apply this condition (A. Araujo et al., 2021; L. G. Araujo et al., 2021; Caceffo et
al., 2016; Gama et al., 2018; Liu & Petersen, 2019). Additionally, our study specifically targets
misconceptions found in students’ code for CS1 courses taught in Python, while other research
had primarily focused on different programming languages (De Ruvo et al., 2018; Keuning et al.,
2021; Oliveira et al., 2023; Ureel II & Wallace, 2019).

Table 1: Comparison of this research with the presented related work.

Research Errors/Misconceptions
analyzed

Analysis of
correct code Language

(Caceffo et al., 2016) 15 - C
(Gama et al., 2018) 28 - Python
(A. Araujo et al., 2021) 21 - Python
(L. G. Araujo et al., 2021) Not mentioned* - Python
(Liu & Petersen, 2019) Not mentioned* - Python
(De Ruvo et al., 2018) 16 ✓ Java
(Ureel II & Wallace, 2019) 200 ✓ Java
(Porfirio et al., 2021) 37 ✓ C
(Keuning et al., 2021) 19 ✓ Java
(Oliveira et al., 2023) 25 ✓ Java

This research 45 ✓ Python

*Total not informed. Authors used enhanced compiler error messages for Python errors.

2http://hkeuning.nl/rpt/
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3 Methods

In this section, we describe the methods employed in the research on MC³, encompassing data
collection and analysis. The section begins by providing background information on the analyzed
CS1 course and outlining the identification process of the MC³. Subsequently, we present the
details of the severity ranking (RQ1) and explain how the MC³ can be addressed in CS1 classes
(RQ2). We then explain how the frequency of the most severe MC³ was calculated (RQ3), fol-
lowed by how we delved into the reasons why students incorporate MC³ into their code (RQ4).
Figure 1 summarizes the methods used in this work.

MC³
Identification

Questionnaire
(RQ1)

Observation
(RQ4)

Interview
(RQ2)

Automated
Detection
(RQ3)

45 MC³ identified

based on 2,441

students'

submissions

15 MC³ classified

as most severe

CS1 teaching

contexts and

interventions for

addressing MC³

Students' rationale

for incorporating

MC³ in their code

Prototype for detecting

14 MC³ based on

static analysis

Figure 1: Description of the methods used in this research.

3.1 MC³ Identification

The primary objective of this phase was to determine whether code deemed correct by an auto-
grader exhibited characteristics that could indicate an incomplete understanding of CS1 learning
objectives. To achieve this, we analyzed the course of Algorithms and Computer Programming
(MC102) at UNICAMP, which has a high number of enrolled students per semester (approxi-
mately 600). MC102 is organized in a coordinated environment that follows the same syllabus
and practical assignments to a group of bachelors’ programs, mostly engineering. The course
teaches the imperative paradigm using the Python programming language since 2018.

The basic syllabus for MC102 is the following: basic concepts of computer organization;
data I/O; arithmetic, logical, and relational expressions; conditional commands; repetition com-
mands; lists, tuples, dictionaries, strings, and matrices; functions and scope of variables; sorting
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algorithms; searching algorithms; recursion; and recursive sorting algorithms.

During the semester, MC102 students are assigned practical tasks. Although these tasks
cover most of the syllabus topics, some topics are combined within a single one (e.g., lists and
tuples, strings and dictionaries), while others lack dedicated tasks (e.g., functions and recursive
sorting algorithms). All assignments are submitted via SuSy3, an autograder developed within
the institution itself. SuSy performs a dynamic analysis of each submission to verify whether the
output matches the expected results for each task. This assessment is conducted using test cases,
which consist of predefined input and expected output data. Test cases can be open, which are
visible to students, whereas closed test cases are not visible. The grade for each assignment is
determined by the number of test cases the students’ submissions pass. SuSy may also limit the
maximum number of submissions (typically set to 20 to prevent trial-and-error usage) and imposes
a maximum execution time for the code. The system is also capable of detecting plagiarism
among submissions. To identify the presence of MC³ in code deemed correct by an autograder,
we collected and analyzed the students’ submissions to MC102 assignments.

3.1.1 Data Collection

All students’ submissions were collected using SuSy. We analyzed submissions from a total of 19
different bachelors’ programs in the first term of 2020. The process of data collection and analysis
took place after the term ended.

Since our objective was to analyze characteristics present in correct code, a filtering process
had to be conducted before the analysis began. For each submission, SuSy generates a log file that
contains various information, including the total number of test cases passed by the submission.
The system retains only the last submission made by each student. By utilizing this log file, we
were able to identify the code that passed all test cases for all assignments.

In the aforementioned academic term, the course had a total of 14 assignments. As this
research was in its initial exploratory stages, it was decided to only collect tasks assigned in the
first half of the course, before the first partial exam. This decision considered the identification
of undesirable behaviors and incomplete comprehensions developed during the learning of basic
CS1 topics. Our goal in doing this was because if these characteristics are not addressed early on,
they may manifest in more complex topics taught later. Additionally, some assignments within
this interval covered the same topic and were excluded from the analysis. In total, six assignments
were chosen for analysis, as described in Section 4.

3.1.2 Data Analysis

All submissions were manually analyzed, following the sequential order of the assignments. We
created spreadsheets to organize the occurrences identified in students’ code. Initially, these oc-
currences were simple annotations that described coding behaviors present in the submissions.
As the analysis progressed, we identified similar behaviors and assigned them provisional names,
grouping and updating related occurrences as necessary. Since we planned to obtain external vali-
dation (RQ1 and RQ2) of these coding behaviors before conducting further investigations, we did
not perform any assessment of the MC³ frequency.

3http://ic.unicamp.br/~susy/
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After completing the analysis of all submissions, a categorization process was initiated.
This process consolidated the MC³ by grouping similar occurrences that had been annotated. The
categories were named based on the work of Gama et al. (2018). We analyzed a total of 2,441
submissions, resulting in an initial list of 45 MC³ divided into 8 categories, detailed in Section 4.

While it can be argued that the identification of MC³ was thorough because we analyzed
submissions from 19 different bachelors’ programs from the same CS1 course, there are potential
issues to be noted. The discovered MC³ may be influenced by institutional locality since all pro-
grams were from the same institution. Furthermore, the interpretation of MC³ may be influenced
by the researchers’ bias. To address these issues, we conducted a survey involving CS1 instructors
to assess the MC³. The survey consisted of an online questionnaire to classify the severity of each
MC³, and a semi-structured interview (Lazar et al., 2017) to identify different teaching and learn-
ing contexts of CS1 and explore how MC³ could be addressed in classes. Due to the COVID-19
pandemic and the desire to reach a broader audience, the survey was conducted entirely online. As
the survey involved human participants, it received prior evaluation and approval from a Research
Ethics Committee4.

3.2 RQ1: MC³ Severity Classification

Our objective was to determine how CS1 instructors would classify all 45 MC³ in terms of the
severity of these coding behaviors. By severity, we refer to the high priority need for explanation
in CS1 classes, as these MC³ indicate potential misconceptions or incomplete understandings of
the learning objectives. Another anticipated outcome of this phase was to establish a ranking for
the initial list of MC³. We believed that with a ranked list, we would be able to identify and further
investigate the most severe MC³.

3.2.1 Data Collection

We collected the data using an online questionnaire. The invitation period spanned from January to
February 2022, and we accepted responses until the end of March of the same year. We distributed
the invitations through discussion lists and directly contacted authors who had recently published
papers focused on CS1. The estimated average completion time for the questionnaire was between
40 to 55 minutes. The completion process involved the following steps:

1. Detailing the Informed Consent Form that provided a comprehensive explanation of the
research and requested the respondent’s consent.

2. Basic contextualization questions about the respondent, including name, institution of em-
ployment, years of experience teaching CS1, experience teaching Python, and familiarity
with other programming languages.

3. Questions for classifying the severity of the MC³. Each item in the questionnaire presented
the MC³ name, a brief description, a generic code sample illustrating the MC³, and a de-
scription of the sample. The severity classification consisted of two parts: a Likert item

4Approval can be consulted in Plataforma Brasil with CAAE number: 51444121.5.0000.5404.
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inquiring whether the respondent considered the MC³ to be severe, and an optional text field
for additional comments on the MC³.

4. Invitation for the respondent to participate in the semi-structured interview.

3.2.2 Data Analysis

The MC³ severity ranking was conducted based on the frequencies obtained from the Likert items.
Initially, we grouped the frequencies of similar response categories: strongly disagree (SD) and
disagree (D), neutral (N) and blank (B), and strongly agree (SA) and agree (A). Next, we calcu-
lated the difference between the frequencies of those who considered the MC³ to be severe and
those who did not. This difference, referred to as DIF, can be interpreted as (SA+A)− (N +B+
SD+D).

The commentaries provided by respondents were analyzed using context analysis (Lazar
et al., 2017). Four main topics related to the MC³ were identified: severity, frequency, reasons
for their occurrence, and strategies to mitigate their occurrence. Although the results obtained
with this analysis were not directly used in the ranking of MC³, we believe that the obtained data
can contribute to a deeper understanding of these behaviors and serve as a foundation for further
investigation into MC³.

3.3 RQ2: Addressing MC³ in CS1

We conducted semi-structured interviews (Lazar et al., 2017) with CS1 instructors to answer this
question. The interviews aimed to gather more information about the diverse contexts of teaching
and learning of CS1, explore whether the MC³ or similar behaviors occur in other CS1 courses, and
understand how instructors handle these behaviors. Additionally, we sought to gather instructors’
opinions on potential interventions to address the MC³ in CS1 classes.

3.3.1 Data Collection

Since this research on MC³ was primarily exploratory in nature, we chose a semi-structured format
for the interviews to allow for flexibility. To ensure geographic diversity among the CS1 instruc-
tors who had volunteered for the interviews, we chose to invite at least one instructor from each
institution in every participating country. The interviews took place between March and July of
2022 and were expected to last approximately 40 minutes each. We utilized Google Meet as the
platform to conduct the conversations. The interviewing process consisted of the following steps:

1. A brief introduction by the researcher, including an explanation of the research purpose and
objectives, followed by a request for the interviewee’s consent to record the interview.

2. A set of questions focused on the structure of the CS1 classes taught by the instructor.

3. A set of questions concerning the MC³ and how the instructor handles them.

4. A set of questions related to teaching and learning interventions aimed at mitigating the oc-
currence of MC³ and the instructor’s perspectives on their implementation in the classroom.
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3.3.2 Data Analysis

After the interviews were concluded, each answer was compiled and analyzed individually using
content analysis (Lazar et al., 2017). The information obtained from the interviews was organized
into different categories, which included the context in which the instructors teach, such as the
class outline, assigned tasks, and the use of autograders. Additionally, the instructors’ opinions
on the MC³ were examined, including whether they observed these behaviors in their classes, how
they dealt with them, and examples of other similar behaviors they encountered. Furthermore, the
instructors provided insights on potential artifacts and interventions to address the MC³ in CS1
classes, such as the use of autograders capable of detecting MC³ and the implementation of Active
Learning (Bonwell & Eison, 1991) techniques specifically targeting these coding behaviors.

3.4 RQ3: Frequency Distribution of MC³

Building upon the insights obtained from RQ1 and RQ2, our next endeavor was to explore the
automatic detection of the most severe MC³. Automating this procedure would not only facilitate
its integration with an autograder but also provide the opportunity to assess the frequency of
MC³ in our dataset, as well as in other datasets. Additionally, analyzing the distribution of MC³
occurrences would shed light on when these behaviors emerge in CS1, in terms of the topics
covered in assignments, and whether they persist until the end of the course.

3.4.1 Data Collection

To accomplish the automatic detection, we leveraged static analysis techniques (Wichmann et al.,
1995). Specifically, we employed Python module AST5 for this purpose. This module provides
tools to inspect and modify the Abstract Syntax Tree (Kluvyer, n.d.) of Python code, which is
generated after parsing the syntax but before compiling the bytecode.

Out of the 45 identified MC³, a subset of 15 was deemed the most severe (refer to Section
4 for detailed information). We chose to prioritize the implementation of the automatic detection
process for this subset. The implementation was carried out exclusively in Python 3, utilizing its
AST module. We collected and analyzed students’ submissions for the MC102 course that were
elaborated in the first academic term of 2020 and the second term of 2022.

3.4.2 Data Analysis

The assignments in each analyzed academic terms were different from each other. To account
for this, we opted to group them based on the CS1 concept intended to be explored in these
assignments. For each submission, we parsed the code and checked for the presence of the selected
MC³, counting whether the MC³ was present or not in the code. Subsequent occurrences of the
same MC³ in the same code were not counted twice.

During the implementation process, we encountered certain challenges in the automated
detection of certain MC³. Specifically, decisions regarding code that was deemed redundant,
non-significant, or unnecessary still required instructor intervention. In such cases, we employed

5https://docs.python.org/3/library/ast.html
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threshold values to determine if the code exhibited the associated MC³ or not. Further details on
the grouping of CS1 concepts and the thresholds used can be found in Section 4.

3.5 RQ4: Why Students Code with MC³

During the identification of the MC³, we were unable to directly inquire with the students about
why they incorporated these behaviors into their code, as the first term of 2020 had already con-
cluded. While we did gather some insights on the reasons for MC³ occurrences through RQ1
and RQ2, those responses were provided by CS1 instructors, not students. Given this limitation,
we decided to investigate one context of teaching and learning of CS1 to understand what could
contribute to the development of MC³ by students. To achieve this, we conducted an assessment
during an academic semester of the MC102 course in the second term of 2022 and in the first term
of 2023, engaging with both students and the instructor. As with our previous methodology, this
approach involving human participants underwent evaluation and approval by a Research Ethics
Committee6.

3.5.1 Data Collection

A semi-structured observation (Cohen et al., 2005) methodology was employed to gather the data.
Cohen et al. (2005) suggest that this approach is ideal for capturing real-time data in live situations,
accessing personal knowledge, and analyzing details that might have been overlooked. Given the
phenomenological nature of the participants’ experiences, we adopted a qualitative approach to
explore the connections, causes, and correlations related to the MC³ over time.

Prior to analyzing the students’ submitted code for the assignments, we obtained their con-
sent to use their code for research purposes. The presence of MC³ in the code was examined after
the submission deadline. In this research, all code submissions were checked for the presence of
any MC³, regardless of the severity of the behaviors. Following each assignment analysis, one
researcher conducted brief conversations of approximately 10 to 15 minutes, during which he
asked the students about their reasons for incorporating MC³ into their code. Simultaneously, he
explained the identified MC³ to them. These conversations took place outside of class hours, at
a time and place mutually agreed upon by the student and the researcher. The observational data
was recorded by the instructor using field notes.

In a similar manner, the instructor was asked for his consent to be observed during his
classes. The same researcher attended all lectures during the second term of 2022, each one being
a 2 hour slide based class with some code examples executed. The primary objective of this
observation was to analyze whether the educational material used in the classes might potentially
contain MC³, which could influence students to develop these behaviors in their code. Analogous
to the conversations, the researcher also recorded observational data from the CS1 classes using
field notes. At the end of the term, the researcher conducted an interview with the instructor to
present our findings.

6Approval can be consulted in Plataforma Brasil with CAAE number: 60258622.8.0000.5404.
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3.5.2 Data Analysis

The field notes that were developed during the observation of the instructor and the conversations
with students were analyzed using content analysis (Lazar et al., 2017). By observing the lec-
tures, the researcher aimed to identify whether the educational materials utilized, such as class
slides or code developed in class, contained any instances of MC³. At the conclusion of the term,
all identified MC³ in these materials were cataloged. Similarly, we analyzed the various reasons
provided by the students for incorporating MC³ into their code, grouping together similar expla-
nations. While we investigated all instances of MC³ that occurred in both the classroom and the
conversations, for the purpose of this paper, we will focus solely on the most severe behaviors as
identified in RQ1.

4 Results

This section presents the results obtained, following the same order as described in Section 3.
Firstly, we provide a detailed explanation of the initial list of identified MC³ and their respective
categories, along with the assignments that were analyzed during this phase. Next, we present
the results obtained from the online questionnaire, including the severity ranking of MC³ and
code examples illustrating the behaviors classified as most severe. Subsequently, we delve into
the results from the semi-structured interviews with CS1 instructors, followed by an analysis of
the frequency distribution of the most severe MC³. Finally, we conclude this section presenting
the results obtained from the semi-structured observation conducted with CS1 instructors and
students. For more detailed information on RQ1 and RQ2, we direct the reader to our Technical
Report (Silva et al., 2023a).

4.1 MC³ Identification

As mentioned in Section 3, a total of six assignments were selected for analysis. The dataset con-
sisted of 2,959 student submissions, out of which 2,874 passed all test cases. These submissions
were the last ones that each student submitted for the assignments. Table 2 provides detailed in-
formation on the relevant topics covered in each assignment, along with the number of general
submissions, correct submissions, and the subset of submissions that were analyzed. We chose to
analyze roughly half (220) of the correct submissions for the last two assignments because they
covered similar CS1 concepts (loops). Moreover, we believed that, by doing this, we would still
have an adequate volume of material for an initial exploratory manual analysis. After applying
these filters, we analyzed a total of 2,441 submissions.

After analyzing all 2,441 submissions, we identified a total of 45 MC³, which were split
into eight distinct categories. Table 3 shows the list of MC³ with their severity classifications.
The categories are named as follows: A) Variables, identifiers, and scope (A1 to A8); B) Boolean
Expressions (B1 to B12); C) Iteration (C1 to C8); D) Function parameter use and scope (D1 to
D4); E) Reasoning (E1 and E2); F) Test Cases (F1 and F2); G) Code Organization (G1 to G6);
and H) Other (H1 to H3).

The topics listed in Table 2 correspond to the assignments appointed to students. Given the
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Table 2: Description of how many student solutions to the assignments were submitted, correct (i.e. passed all test cases), and analyzed (i.e.
checked by the researcher).

Related Topic Submitted Correct Analyzed

Arithmetic operations: the int type 535 529 529
Arithmetic operations: the float type 499 491 491
Logical operations: the bool type 511 503 503
Conditionals I 499 478 478
Simple loops: while 459 452 220
Nested loops: for 456 421 220

Total 2,959 2,874 2,441

allotted time for submission (typically three weeks), students often learn about future concepts
while working on prior assignments and may incorporate these concepts into their code. This
phenomenon may account for the presence of MC³ related to concepts such as functions (category
D) and lists (MC³ E2) in our dataset.

4.2 Questionnaire

A total of 32 volunteers participated in the questionnaire. The respondents were distributed across
different countries as follows: Brazil (18), United States of America (9), Australia (1), Colombia
(1), Finland (1), Slovenia (1), and The Netherlands (1). All answers received, including those with
blank responses, were considered valid and included in the analysis.

Table 3 displays the MC³ severity ranking, presenting the ID, name, total number of re-
sponses for each Likert item category (strongly agree and agree (SA + A), neutral and blank (N
+ B), strongly disagree and disagree (SD + D)), and the calculated DIF (described in Section 3)
for each MC³. The names given to the MC³ were carefully chosen to best describe the associated
misconceptions. The table also includes a threshold indicated by a horizontal line, highlighting
the most severe MC³. Any MC³ with a DIF value greater than 10 was classified as most severe,
resulting in a total of 15 behaviors falling within this category.

In this study, we will concentrate our analysis on the 15 most severe MC³. To illustrate these
misconceptions, we have created four sets of Python code. These code examples were constructed
to provide generic samples of each coding behavior.

4.2.1 Set 1

This example, denoted in Code 3, contains 5 MC³: A4, D4, G4, G5, and H1. In line 9, the built-in
function max was redefined (A4) by the user, creating it as a new function. In this same function,
variables a and b were accessed, but they were not present in the function’s scope (D4). Variables
that were not significantly named (G4) were declared in the code, such as a, b, c, x, and y. The
code was elaborated with an arbitrary organization (G5) as it alternated between input (line 1)
and function declaration (line 2). This pattern was further repeated in lines 7, 8, and 9. Lastly, a
statement with no effect (H1) was declared in line 4 because the result of the function round was
not assigned to a variable.
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Table 3: Severity ranking of the 45 identified MC³. Table is sorted decreasingly by the DIF column. The horizontal line highlights the 15 most
severe MC³.

ID Name SA+A N+B SD+D DIF

C8 for loop having its iteration variable overwritten 31 0 1 30
B6 Boolean comparison attempted with while loop 26 4 2 20
C1 while condition tested again inside its block 26 3 3 20
B8 Non utilization of elif/else statement 24 8 0 16
C2 Redundant or unnecessary loop 24 5 3 16
C4 Arbitrary number of for loop executions instead of while 24 5 3 16
D4 Function accessing variables from outer scope 24 4 4 16
G4 Functions/variables with non-significant name 24 7 1 16
H1 Statement with no effect 24 7 1 16
B12 Consecutive equal if statements with distinct operations in their blocks 23 5 4 14
B9 elif/else retesting already checked conditions 23 4 5 14
E2 Redundant or unnecessary use of lists 23 3 6 14
A4 Redefinition of built-in 22 3 7 12
F2 Specific verification for instances of open test cases 22 8 2 12
G5 Arbitrary organization of declarations 22 6 4 12

C3 Redundant operations inside loop 21 9 2 10
E1 Checking all possible combinations unnecessarily 21 7 4 10
G3 Too many declarations in a single line of code 21 7 4 10
A2 Variable assigned to itself 20 7 5 8
A6 Variables with arbitrary values (Magic Numbers) used in operations 20 6 6 8
A7 Arbitrary manipulations to modify declared variables 20 7 5 8
B11 Consecutive distinct if statements with the same operations in their blocks 20 6 6 8
B10 Unnecessary elif/else 19 9 4 6
B3 Arithmetic expression instead of Boolean 19 6 7 6
B4 Repeated commands inside if-elif-else blocks 19 11 2 6
D1 Inconsistent return declaration 19 6 7 6
A8 Arbitrary treatment of the stopping point of reading values 18 8 6 4
B7 Boolean validation variable instead of elif/else 18 5 9 4
C7 Arbitrary internal treatment of loop boundaries 17 6 9 2
C6 Multiple distinct loops that operates over the same iterable 16 9 7 0
F1 Verification for non explicit conditions 16 9 7 0
H2 Redundant typecast 16 8 8 0
G6 Functions not documented in the Docstring format 14 14 4 -4
A1 Unused variable 13 9 10 -6
A3 Variable unnecessarily initialized 12 8 12 -8
B1 Redundant or simplifiable Boolean comparison 12 12 8 -8
D2 Too many return declarations inside a function 12 8 12 -8
B5 Nested if statements instead of Boolean comparison 11 12 9 -10
G2 Exaggerated use of variables to assign expressions 11 13 8 -10
C5 Use of intermediary variable to loop control 10 11 11 -12
D3 Redundant or unnecessary return declaration 10 12 10 -12
H3 Unnecessary or redundant semicolon 8 8 16 -16
B2 Boolean comparison separated in intermediary variables 7 9 16 -18
G1 Long line commentary 7 8 17 -18
A5 Unused import 5 8 19 -22
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4.2.2 Set 2

This example, denoted in Code 4, contains 4 MC³: B6, B8, B9, and B12. A while loop was used
instead of an if (B6) to check if the sum of num1 and num2 was greater than 9 in line 4 because a
break statement was declared in line 6. The non-utilization of elif/else (B8) in line 10 could have
resulted in the value of res being overwritten (lines 9 and 11) depending on the value of num2.
The elif declared in line 15 checked if the value of num1 was not even. However, this check was
unnecessary because it was already guaranteed when using an elif (B9). Lastly, the exact same
condition was checked in lines 18 and 20, albeit with distinct operations inside each block (B12).
These conditions could have been grouped in a single if statement.

1 a = int(input ())
2 def foo(a):
3 a = a / 3.5
4 round(a, 2)
5 return a
6
7 b = int(input ())
8 c = int(input ())
9 def max():

10 if b >= c:
11 return b
12 return c
13
14 x = foo(a)
15 y = max()
16 print(x, y)

Code 3: Examples of MC³: A4, D4, G4, G5, and H1.

1 num1 = int(input ())
2 num2 = int(input ())
3
4 while num1 + num2 > 9:
5 print(num1 + num2 , "has␣more␣than␣

1␣digit")
6 break
7
8 if num2 <= 0:
9 res = num1 * num2

10 if num2 % 2 == 0:
11 res = num1 ** num2
12
13 if num1 % 2 == 0:
14 print(num1 , "odd")
15 elif num2 % 2 == 0 and num1 % 2 != 0:
16 print(num2 , "odd", num1 , "even")
17
18 if num1 == num2 * 2:
19 print(num1 , "multiple␣of", num2)
20 if num1 == num2 * 2:
21 print(num1 , "odd")

Code 4: Examples of MC³: B6, B8, B9, and B12.

4.2.3 Set 3

This example, denoted in Code 5, contains 4 MC³: C1, C2, C4, and C8. A while loop, declared
in line 16, had its condition verified again in its block (C1) in line 19. There was no need to
verify numMax again since it was set at the end of the loop. The for loop declared in line 9 was
executed only once (C2), thus making it unnecessary. In line 2, another for loop was declared to
read and add values to a list. However, it was arbitrarily declared (C4) to be executed 9999 times,
hoping that the stopping condition (line 4) would happen before reaching the maximum iteration
value. Lastly, the for loop declared in line 12 had its iteration variable k overwritten (C8) inside
the loop’s body, in line 14.

4.2.4 Set 4

This example, denoted in Code 6, contains 2 MC³: E2 and F2. A list was used to store input values
in lines 2 to 5. However, the storing process was not necessary (E2) if the purpose was only to sum
these input values, as described in the declared loop in line 8. In this case, totalSum could have
been calculated while reading the input. Now, suppose that the set of input from open test cases
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was I = {{1,1,1},{2,2,2},{1,2,3,4,5}} and the expected output was O = {{3},{6},{15}}. To
obtain the correct result, the code did not use the value of totalSum, but rather printed the expected
values for each specified entry (F2) in lines 11, 13, and 15.

1 numList = []
2 for i in range (9999):
3 a = int(input ())
4 if a == 0:
5 break
6 numList.append(a)
7
8 numMax = max(numList)
9 for j in range (1):

10 print(numMax)
11
12 for k in range(numMax):
13 print(k + 1)
14 k += 2
15
16 while numMax != 0:
17 print(numMax)
18 numMax = numMax - 1
19 if numMax == 0:
20 break

Code 5: Examples of MC³: C1, C2, C4, and C8.

1 numList = []
2 num = int(input ())
3 while num != 0:
4 numList.append(num)
5 num = int(input())
6
7 totalSum = 0
8 for item in numList:
9 totalSum += item

10
11 if numList == [1, 1, 1]:
12 print (3)
13 elif numList == [2, 2, 2]:
14 print (6)
15 elif numList == [1, 2, 3, 4, 5]:
16 print (15)

Code 6: Examples of MC³: E2 and F2.

4.3 Interviews with CS1 Instructors

Out of the 32 instructors who had answered the questionnaire, 18 volunteered to participate in the
semi-structured interview. We were able to conduct the interviews with nine participants: seven
from Brazil and two from the United States of America. The average interview duration was
approximately 42 minutes.

All interviewees stated that they have been using Python in their CS1 courses recently.
Instructors mentioned assigning summative tasks to students, which varied from lists of exercises
to coding projects. Six participants confirmed using autograders to assess these tasks, while three
preferred manual assessment, strictly not using autograders.

The way in which instructors use autograders also varies. Regarding students’ submissions,
three instructors stated that they manually check them, even if the code passes the test cases. One
instructor mentioned that he does not check the submissions, while two instructors stated that they
only check if the assignment is complex. Among the respondents who do not use these systems,
one mentioned that he is not familiar with them, and two others stated that, since their classes are
small, they prefer to manually evaluate the assignments. They argued that this is the best way to
assess if students are understanding the concepts taught.

Interviewees mentioned that they have encountered the following MC³: B1, C2, F2, and G4.
Instructors also identified similar behaviors, such as the inadequate use of functions (e.g., using a
function that encapsulates the entire code), using lists when other data structures would have been
more appropriate, and inconsistent code style (e.g., spacing between lines and characters).

All instructors expressed their interest in an autograder that can detect MC³. However, they
also agreed that the feedback provided to students should be configurable, as five interviewees
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emphasized that too much information can have a negative impact. Other suggested features for
this autograder included the application of machine learning techniques to teach code refactoring,
evaluation of code complexity, relaxing the strictness of automated correction (removing the bi-
nary factor if a test case was passed or failed), a dashboard showing statistics on the occurrence of
MC³, and means to verify if students are implementing the feedback related to MC³ in their code
(such as questionnaires).

As an additional intervention method for addressing MC³, eight instructors expressed inter-
est in using Peer Instruction (PI) (Crouch & Mazur, 2001). PI is an Active Learning technique
that promotes meaningful discussions among students regarding different comprehension aspects
of a topic. In the context of MC³, we proposed an idea where, after introducing a new CS1 topic
in class, instructors would administer a multiple-choice question. This question would present
code snippets constructed with MC³, and students would attempt to identify and understand why
these coding behaviors should be avoided. However, the interviewed instructors highlighted that
the optimal time to use this technique would be after students have become familiar with the rele-
vant CS1 topics. Additionally, interviewees expressed concerns about the timing of administering
these questions. They suggested that it would be best to incorporate them in a dedicated class
session, such as one focusing on code quality. Only one instructor expressed disinterest in using
this technique, citing limited time to implement it with undergraduate students. The instructor
also raised concerns about the potential for cheating or guessing among students when answering
multiple-choice questions.

4.4 MC³ Frequency Distribution

As mentioned in Section 3, we conducted an analysis of all MC102 assignments for the first term
of 2020 and the second term of 2022. The first term consisted of 14 assignments, while the second
term consisted of 15. Since the assignments in both terms explored similar CS1 concepts, we
grouped them together based on their general topics. This grouping resulted in the identification
of seven distinct main topics, encompassing a total of 11,141 correct submissions. The distribution
of submissions per topic is presented with the MC³ frequency in Table 4.

By using the Python AST module, we managed to implement an automatic detection for
14 out of the 15 MC³ classified as most severe. To simplify the implementation, we focused
on the fact that the analyzed code would be somewhat simple because it would come from CS1
assignments solved by CS1 students. This allowed us to strive for a generic code for automated
detection as we could check simple cases that comprised the MC³. For instance, regarding the
MC³ C1 (while condition tested again inside its block), our detection only checks for while loops
in which the condition is composed of only one variable. Our rationale for this was because it
is rare for CS1 students to declare a while loop with a condition comprised of more than one
variable. Another example is the detection for the MC³ B8 (Non utilization of if-elif-else). We
limited it only to check if there was declared an if-elif structure (without an else). In this case,
our rationale was to point out to the students that, probably, either their last elif could have been
an else, or the whole decision structure could have been made by only ifs, as they were already
mutually exclusive. In light of this approach, we were not able to create a generic automated
detection for the MC³ F2 (Specific verification for instances of open test cases) since it depended
heavily on the test cases.
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Another challenge we faced was addressing the MC³ C4 (Arbitrary number of for loop
executions instead of while), E2 (Redundant or unnecessary use of lists), and G4 (Functions/vari-
ables with non-significant names). We recognized that these asserting these MC³ depends on the
instructor’s perspective. To address this, we introduced thresholds that can be set by the instructor
to determine the presence of these MC³ in the code. For C4, the code determines the presence
of the MC³ if the number of iterations in the range-based for loop is greater than or equal to a
constant (set as 7 in our results). Similarly, for E2, we count the number of lists in the code and
check if it exceeds a constant threshold (set as 10 in our results). As for G4, we established three
constants: the minimum number of characters for variables’ names, the minimum number of char-
acters for functions’ names, and the percentage threshold of variables or functions that can have
fewer characters than the specified thresholds. If the percentage of variables or functions outside
the specified thresholds exceeds the given percentage threshold, the code is considered to have
the MC³. In our results, we set the minimum thresholds to 4 characters for variables, 8 characters
for functions, and 70% as the percentage threshold. We defined these constants based on a small
subset of students’ submissions we checked manually for assignments in both academic terms.

Table 4 presents the distribution of the analyzed correct submissions for each topic as well
as the MC³ frequency. The DIF values are the same presented in Table 3. The number of correct
submissions per topic varied based on the number of assignments for each term. Since the num-
ber of submissions varied for each topic, we calculated the frequency as a percentage of correct
submissions in which the respective MC³ was exhibited. Since a single submission could have
more than one distinct MC³, the columns might not add to 100%. In Section 5, we delve into the
reasons behind these variations and discuss how they impact our findings.

Table 4: Frequency distribution of the most severe MC³ organized by assignment topics. The analyzed correct submissions is presented in
parenthesis for each topic. The frequency is a percentage of correct submissions that exhibited the respective MC³. Table is sorted decreasingly by
Total.

MC³ DIF
Types, I/O,
Operations

(2,662)

Conditional
Commands

(1,445)

Repetition
Commands

(1,855)

Lists, Tuples,
Strings,

Dictionaries
(2,928)

Matrices
(1,237)

Searching
and Sorting
Algorithms

(813)

Recursion
(201)

Total
(11,141)

G4 16 61.8 44.8 26.6 19.1 32.7 26.3 60.7 36.7
B8 16 0.5 55.7 32.6 27.7 45.6 20.4 13.4 26.8
G5 12 0.1 1.0 1.6 5.5 30.0 29.2 32.3 7.9
D4 16 0.0 0.6 0.5 3.3 30.8 17.1 39.8 6.4
B9 14 0.0 3.2 5.5 2.8 0.2 3.9 0.0 2.4
A4 12 0.3 2.8 2.3 1.7 2.1 4.6 3.5 1.9
C8 30 0.0 0.1 2.5 2.8 2.7 4.7 1.0 1.8
C1 20 0.0 0.0 1.0 2.0 0.1 2.1 0.5 0.9
E2 14 0.0 0.1 0.2 0.4 3.3 0.9 2.0 0.6

B12 14 0.0 1.7 0.2 0.0 0.1 0.0 1.0 0.3
H1 16 0.3 0.3 0.3 0.2 0.3 0.1 0.0 0.3
C4 16 0.0 0.1 0.3 0.2 0.3 0.4 1.0 0.2
C2 16 0.0 0.1 0.2 0.3 0.6 0.0 0.0 0.2
B6 20 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0

4.5 Observation in a CS1 Course

The semi-structured observation took place in one MC102 class during the second term of 2022
and another class in the first term of 2023. In 2022, a researcher observed the lectures and had
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conversations with students. In 2023, the same researcher conducted only the conversations. In
total, 20 students and one instructor participated in the activities. While the researcher observed
and analyzed all lectures and educational materials, he evaluated all assignments except for the
ones regarding Searching and Sorting Algorithms and Recursion (following the topics in Table 4).

4.5.1 Conversations with Students

Based on the researcher’s notes, we identified students’ reasons for 10 MC³: A4, B8, B9, C1,
C8, D4, E2, G4, G5, and H1. In general, two recurring comments were observed regarding these
MC³. Firstly, students expressed a concern about ensuring that their code passed all test cases.
This led to the development of MC³ such as C1 and B9, where students included redundant checks
to guarantee code correctness. This same mindset also influenced other behaviors, including D4,
G4, and G5, as students, focused only in the functioning of their code, neglected coding guidelines
such as code organization, providing all function arguments, and using meaningful variable names.
Secondly, students also expressed to have a careless approach to coding. MC³ A4 emerged due to
students unintentionally redefining built-in functions without realizing it. Additionally, instances
of B8 occurred when students left unused code snippets in their solutions or just used a copy-paste
approach with elif statements, neglecting to consider an else clause.

We also observed instances where students demonstrated incomplete comprehension of CS1
topics, leading to the occurrence of MC³. For example, instances of C1 arose because students
believed that the while loop condition must be checked at the end of its body. Similarly, in the case
of C8, students mistakenly thought that the iteration variable of a for loop needed to be manually
updated, leading them to overwrite it. Another common observation was students coding with B9
due to a lack of understanding of how elif statements work, resulting in the repetition of already
checked conditions. Furthermore, students, struggling with the concept of decision structures,
resorted to coding with only if statements, leaving their code prone to errors. Lastly, this mis-
understanding of decision structures also influenced the occurrence of H1. Students mistakenly
believed that else clauses were mandatory and, without knowing what to express in them, included
statements with no effect to not alter the code output.

Lastly, students expressed their preferences for specific coding practices. One reason for
the occurrence of E2 was that students felt comfortable deliberately using lists. This behavior
stemmed from either a lack of awareness that lists were unnecessary for the task or their famil-
iarity with certain features of lists (e.g., using the sum() built-in function). Similarly, the comfort
students felt while coding influenced the occurrence of G4, as they preferred using simple let-
ters as variable names for the sake of ease and speed. We also observed that the nature of the
assignments themselves had an impact on the occurrence of E2 and G4. For example, as the spe-
cific assignment for dictionaries did not force the use of this data structure, students resorted to
solutions created solely using lists. Likewise, when assignments named entry values with non-
significant names, students adopted these names in their code and created other variables with
similar non-significant names based on the instructions provided.
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4.5.2 Assessment of Educational Materials

The researcher only identified the MC³ A4 while analyzing the lecture slides and code snippets
developed in the classes. A code sample in the slides for Strings redefined the built-in type str by
assigning it to a new variable. The same behavior happened in the slides for Dictionaries, albeit
it was the max() function that was redefined as a variable. The last built-in function that was
redefined was bin(). This one was set as the argument of a user-defined function in the slides for
Recursion. In this case, there was a redefinition even if it only pertained to the function’s scope.
However, students who developed the MC³ in their code did not justify having seen it in class.

We presented our findings to the instructor at the end of the 2022 term. In general, he said he
had overlooked the scenarios where a redefinition of built-ins can lead to because A4 was present
in code snippets that served a simple purpose in the slides. We presented the concepts behind our
study of MC³, and the instructor expressed interest in learning more. He also suggested exploring
automated detection using machine learning techniques. The slides that contained the MC³ A4
had the code snippets modified for the next term in 2023.

5 Discussion

In relation to RQ1 and RQ2, although we had initially aimed for a higher number of volunteers,
we found the geographic distribution of the 32 respondents to the questionnaire to be satisfactory.
Furthermore, all nine interviewees represented different institutions. Therefore, we conclude that
these factors contributed to gathering opinions from CS1 instructors teaching in diverse contexts,
allowing us to assess the severity of and potential approaches to addressing MC³ in CS1 classes.

As for RQ3 and RQ4, although both analyses were conducted within a single institution,
we examined students’ submissions for 19 different bachelors’ programs MC102 in 2020 and 20
in 2023 to calculate the frequency distribution of MC³. Additionally, the participants in the semi-
structured observation represented different programs, namely bachelor’s programs in chemistry
engineering, statistics, and agricultural engineering. Given the variation in programs across the
terms analyzed, we can conclude that our analysis encompassed students with diverse backgrounds
and objectives in both research questions.

5.1 MC³ Severity and Reasons for Occurrence (RQ1 and RQ4)

The identification and assessment of the MC³ followed some of the guidelines described by Alm-
strum et al. (2006). Although our aim was not to develop a CI, we analyzed open-ended MC102
assignments, consulted experts in the field (survey with CS1 instructors), and conducted obser-
vations to understand the process by which students develop misunderstandings (conversations
with MC102 students). By conducting these three assessments, we were able to mitigate potential
biases in the opinions of the researchers who identified the MC³. In the following subsections,
we discuss the most severe MC³ within each category (highlighted in Table 3), incorporating the
opinions collected from CS1 instructors and explaining why MC102 students incorporated those
MC³ into their code.
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5.1.1 A: Variables, identifiers, and scope

In this category, only A4 was classified as most severe. Instructors stated that the severity is
associated because this behavior can lead to unexpected errors in the code that will be difficult to
detect. However, instructors also stated that the occurrence is intrinsically related to Python and
the natural language students choose to program (e.g., English or Portuguese). On the other hand,
students explained that they did not pay attention while programming, thus incorporated this MC³
in their code. In our analysis, we identified redefinitions of built-in types (e.g., bool, dict, list,
and str) and of built-in functions (e.g., min(), max(), len(), input(), among others). Almost all
those redefinitions happened when students created variables with those names in their code. We
agree with the opinions stated by CS1 instructors, particularly when students are redefining built-
in types because typecasting is a common in CS1 assignments, especially when reading data from
external sources. While we also identified this category present in other work (De Ruvo et al.,
2018; Keuning et al., 2021; Oliveira et al., 2023), this behavior did not appear in them.

The occurrence of A4 depends on the natural language used by the student for programming.
Students who prefer using English-based variable or function names are more likely to redefine
built-ins. While it is not possible to redefine built-in types in strongly typed languages, it is
possible to redefine built-in methods in languages like Java. However, we argue that this is less
likely to occur arbitrarily, as opposed to built-in functions in Python.

5.1.2 B: Boolean expressions

MC³ B6, B8, B9, and B12 were classified as the most severe in this category. Instructors generally
agreed that these behaviors indicate a lack of clarity in students’ thought processes when devel-
oping their own code. This lack of clarity often stems from an incomplete or poor comprehension
of decision statements. Another possible reason could be the development of poor coding habits
resulting from previous attempts by students to learn programming.

For MC³ B6 and B12, we did not obtain specific results regarding why students develop
these misconceptions. However, the incorrect use of the while statement in B6 may be related to
students attempting to apply a newly learned concept in their code, even when it is not necessary.
This phenomenon is referred to as knee-jerk (Ureel II & Wallace, 2019). Soloway and Ehrlich
(1984) describe MC³ B6 as follows: “An IF should be used when a statement body is guaranteed
to be executed only once, and a WHILE used when a statement body may need to be repeatedly
executed” (p. 597). As for MC³ B12, one possible reason is that students are attempting to
emphasize both conditional blocks with the same if statement. In this case, students may or may
not be aware that these blocks could have been merged. RPT (Keuning et al., 2021) has rules
to extract duplicate declarations inside if/else statements, and Oliveira et al. (2023) identified
misconceptions when students try to refactor these declarations, such as keeping unnecessary else
blocks and incorrectly updating necessary Boolean expressions.

Students provided different reasons for exhibiting MC³ B8. Among those who mentioned
being absent-minded while programming, it was either because they perceived their code to be
already correct or because they wanted to quickly complete the assignment. However, other stu-
dents mentioned being unfamiliar with elif or else statements, resulting in their avoidance of using
these constructs in their code. This aligns with what the instructors mentioned about incomplete
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or poor comprehension of decision structures. In our opinion, students may simply be distracted
and mistakenly use elif instead of an appropriate else statement. However, coding with only if
statements can lead to buggy programs, as the stated conditions may not be mutually exclusive.
This latter behavior is indeed more severe and should be addressed accordingly.

The reasons behind students coding with MC³ B9 were similar to those for B8. In addition
to students attributing it to being absent-minded while programming, we also identified comments
indicating a poor comprehension of the elif statement. Although one instructor mentioned that
students exhibiting this behavior may do so to help organize their thought process, we consider
that if this misconception persists in later parts of a CS1 course, it indicates a fundamental misun-
derstanding. Table 4 illustrates that B9 did indeed appear throughout the analyzed assignments.
De Ruvo et al. (2018) identified MC³ B9 as ’Unnecessary IF/ELSE’.

When considering that MC³ B6, B8, B9, and B12 all pertain to conditional statements, we
argue that these MC³ can occur in programming languages that employ such constructs. While
the use of the elif statement is exclusive to Python, all the aforementioned MC³ can also manifest
in other programming languages using only if-else statements.

5.1.3 C: Iteration

Among the MC³ in this category, C1, C2, C4, and C8 were considered the most severe. Ac-
cording to the instructors, these behaviors primarily stem from students’ lack of comfort with a
particular structure, leading them to prefer one over another. One common commentary was that
instructors intentionally do not teach the break statement to discourage coding behaviors associ-
ated with these MC³. The use of break is a topic of discussion among both CS1 instructors and
the programming community at large (Sorva & Vihavainen, 2016).

We were unable to gather specific information on why students implemented MC³ C2 and
C4 in their code. In the case of C4, we agree with the instructors’ views that students’ preference
for a specific construct indicates a lack of understanding. Instead of using a while loop, students
with this behavior replace it with a for loop with an arbitrary number of iterations. This suggests
a potential misunderstanding of while loops. On the other hand, we argue that C2 is another
example of the knee-jerk phenomenon. In this case, students use loops that execute only once
because they have recently learned the concept and think it is necessary to apply it.

Regarding the MC³ C1, students provided two main reasons for their behavior: either they
wanted to ensure the correctness of their code, or they were unaware that manually checking
the while condition was unnecessary. In both cases, evidence suggests that students have an
incomplete understanding of how the while construct works, and this misconception should be
addressed when identified. RPT has refactoring rules similar to C1 and other previously mentioned
MC³, such as removing break statements in a loop or rewriting a for loop with a while (Keuning
et al., 2021). Oliveira et al. (2023) also identified misconceptions when students attempt these
refactorings, such as replacing a for loop with an incorrect while or for-each loop.

In the case of the MC³ C8, students stated that they either believed incrementing the iteration
variable was necessary or alleged overwriting the said variable due to inattention. These commen-
taries exemplify an incomplete understanding of loop constructs, as students are confusing while
and for loops. Additionally, the inattention in overwriting the iteration variable can be attributed
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to students’ lack of experience. We agree with CS1 instructors who emphasized the need to ad-
dress this behavior to prevent code malfunctions that may be difficult to detect and correct in the
future. Similar to the previous category, MC³ C1, C2, C4, and C8 can manifest in other program-
ming languages with iteration constructs. While there may be some variations, such as with the
for-loop in Java, we argue that these misconceptions can generally be replicated.

5.1.4 D: Function parameter use and scope

In this category, only the MC³ D4 was considered as most severe. CS1 instructors stated that
although this is another Python specific misconception, it can lead to bad coding practices in the
future, such as code that is both difficult to read and maintain. Instructors also noted that this
behavior is often observed in students with previous coding experience. Based on the students’
explanations, it was identified that D4 was primarily caused by inattention while programming. In
this case, students did not pass variables as arguments to a declared function but observed that it
did not affect the correctness of the code. Therefore, students did not bother passing variables as
arguments. To promote the practice of writing readable and maintainable code, we argue that this
MC³ should be properly addressed when detected.

The occurrence of D4 is related to the language being static or dynamic typed. In Python,
this MC³ can occur more readily since variables do not need to be explicitly declared as globals to
be used inside functions without being passed as parameters. The use of globals is discouraged in
CS1 and D4 should not happen in any programming languages.

5.1.5 E: Reasoning

MC³ E2 was the only one classified as most severe in this category. According to CS1 instructors,
they only see a problem with lists that are created and used only once, suggesting that students who
exhibit this behavior may have misunderstood the concepts of lists. Instructors also mentioned that
this MC³ is common and difficult to rectify. Based on students’ comments, the predominant reason
for using lists in this manner is the comfort associated with this structure. Students also mentioned
using lists to store input first and then consume it later.

While it is acknowledged that students may be organizing their thoughts by creating com-
position plans (Fisler et al., 2016; Soloway & Ehrlich, 1984) that involve separating input from
consumption, our analysis suggests that some students may develop a reliance on lists as the de-
fault solution for any assignment. During conversations about the assignment designed for the use
of dictionaries in Python, students who did not use this data structure in their solutions claimed to
have managed using only lists. Although the use of dictionaries was not mandatory in the assign-
ment, these students ended up with larger and more complex code. Based on this observation, we
reason that a clear and meaningful use of lists should be addressed in CS1 to mitigate this MC³.
We argue that the occurrence of E2 is related to the ease of use of lists in Python. Students might
not develop this MC³ in C, for example, but it is possible in other languages such as C++ or Java.
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5.1.6 F: Test cases

Among the MC³ in this category, only F2 was classified as most severe. According to instructors,
students exhibiting this behavior may either struggle with understanding the functionalities of
the autograder or attempt to cheat the system. However, during the conversations with students,
we did not specifically identify this particular MC³. Our conclusion is based on the instructors’
opinions, suggesting that students displaying this behavior may have difficulties to understand the
concepts of input and output. The occurrence of F2 is solely dependent on the use of autograders.

5.1.7 G: Code organization

The most severe MC³ in this category were G4 and G5. Instructors emphasized that variables or
functions with insignificant names should only be used in coding drafts, not in the final submis-
sions. They also commented that disorganized code reflects a lack of clarity in students’ reasoning,
which explains why students arbitrarily define functions. Instructors generally agreed that both
MC³ should be addressed early in CS1 courses to promote code legibility and maintainability.

Regarding G4, students provided various explanations. Students mentioned that they used
small, alphabetical variable names to quickly develop their code. Others claimed to be influenced
by the assignment’s description. For instance, if in the description was said that variables a, b,
and c were specified for the sides of a triangle, students naturally created these variables in their
code. While these names were meaningful in the context of the assignment, our analysis revealed
that students also used arbitrary alphabetical letters for other variables required for features such
as triangle classification. Based on this, we underscore the importance of teaching significant
naming in CS1 classes while ensuring that assignment descriptions align with this principle.

As for G5, students echoed the reasons mentioned by the instructors. They stated that they
created functions during their thought process while solving the assignment, and since their code
was correct, they did not prioritize organizing them. We argue that this behavior arises because
students are not being assessed on code organization. However, it is crucial to address this issue
when detected to code readability and maintainability. Since naming variables or functions and
the organization of declarations is commonplace in other programming languages, we also argue
that the occurrence of both G4 and G5 are not exclusively to Python.

5.1.8 H: Other

Among the MC³ in this category, only H1 was classified as the most severe. Instructors stated
that this behavior often arises from a lack of attention while students are coding and, if left unad-
dressed, can result in future bugs. While it is common at the beginning of the course, instructors
mentioned that if it persists in later parts, it indicates that the student is struggling with the under-
lying concepts. In our conversations with students, we observed instances of loose declarations,
such as a True statement, placed within the body of an unnecessary else clause. Students ex-
plained that they believed the loose statement was necessary to maintain the code’s functionality.
While we acknowledge that this MC³ is related to a lack of attention while coding, it can be mit-
igated by encouraging students to refine their code even after it is correct. De Ruvo et al. (2018)
listed a semantic style similar to H1 called "Useless Declaration / Assignment Division". We are
unaware of anything that can impede the occurrence of H1 in other programming languages.
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5.2 Addressing MC³ in CS1 Classes (RQ2 and RQ3)

The decision to study MC³ in Python was well-founded as this language is widely utilized (Becker
& Fitzpatrick, 2019; Guo, 2014). This assertion was further supported by the CS1 instructors
who were interviewed. Our findings revealed that CS1 students are assigned various types of
programming tasks, ranging from practice exercises to final projects. MC³ can emerge within the
process of students’ developing their solutions to these multiple types of assignments. This factor
underscores the need for diverse approaches to address MC³ within CS1 classes.

5.2.1 Insights from CS1 Instructors

We observed that the decision to use autograders in CS1 classes depends on various factors, such
as class size and the complexity of configuring the autograder for different assignments. Consid-
ering these factors, an effective autograder capable of detecting MC³ would need to be adaptable
and applicable in diverse teaching contexts of CS1. Furthermore, according to the instructors,
automated detection alone is not sufficient. The feedback provided by the tool is a crucial aspect
that can either motivate or demotivate students. Henceforth, we argue that careful consideration
should be given to the construction and delivery of feedback, as overly technical information may
not be helpful, especially for beginners.

We also noted that implementing PI would require preparation and adjustment of CS1
courses, as half of the interviewees admitted being unfamiliar with Active Learning techniques.
This implementation would also increase the workload for instructors (Caceffo et al., 2019). How-
ever, despite these challenges, research has demonstrated positive outcomes when employing Ac-
tive Learning techniques (Simon, Esper, et al., 2013; Simon et al., 2010). For example, students
achieved better results compared to traditional teaching methods (Simon, Parris, & Spacco, 2013),
and failure rates were reduced (Porter et al., 2013). These results serve as motivation for the use
of PI in CS1 classes. We argue that integrating PI with the study of MC³ would not only comple-
ment the feedback provided by an autograder capable of detecting these behaviors but would also
provide new insights into why students code with MC³.

5.2.2 Insights from MC102 Students

After concluding the conversations with students, we distributed a survey to gather additional in-
sights about their experiences with learning about MC³. Out of the 20 participants, eight responded
to the questionnaire. Although the response rate was relatively low, these responses provided valu-
able insights into how students reflected on the MC³ discussed during the conversations and how
they believe MC³ could be addressed in the context of MC102.

Students shared that they have become more attentive to code organization, emphasizing the
importance of using meaningful variable names (MC³ G4) and declaring functions at the begin-
ning of their code (MC³ G5). In terms of Boolean expressions, students mentioned that they have
learned about the functionality of the elif statement, thus avoiding checking already performed
checks in previous if statements (MC³ B9). Additionally, students reported that their misunder-
standings regarding if-elif-else constructs have been clarified. Lastly, students expressed increased
awareness to avoid rechecking the while condition at the end of its body (MC³ C1).
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Overall, students expressed agreement that MC³ should be addressed in the classroom. They
provided several suggestions on how to incorporate discussions about MC³ into the teaching pro-
cess. One suggestion was for the instructor to select anonymized student solutions to the assign-
ments and discuss the MC³ present in these solutions during lectures. If not done during lectures,
students suggested that teaching assistants could fulfill this role during practice hours. Another
suggestion involved sending individual e-mails to students, explaining the specific MC³ found in
their assignment solutions. One student emphasized the importance of timely feedback on MC³,
as they would not remember their solutions after some time had passed between submission and
classroom discussions. Lastly, a student proposed that the class slides for each CS1 topic should
already include information about the most frequent MC³.

The feedback received from students indicated that they found the conversations to be posi-
tive and helpful. Students’ suggestions for addressing MC³ in CS1 classes complemented insights
from interviewed instructors. These suggestions and insights were crucial to understand the rea-
sons for the development of MC³ and should provide a foundation to the design of formative
feedback messages, which can later be incorporated to autograders.

5.2.3 Insights from MC³ Automated Detection

The frequency distribution of MC³, as presented in Table 4, reveals that these misconceptions can
occur throughout the entire duration of a CS1 course, although their occurrences are generally not
high. It is important to note that, on a first glance, certain MC³ should not be prone to occur in
assignments conducted before the corresponding CS1 topic is taught. For instance, in MC102,
repetition commands are taught after conditional commands. One might assume that students
would not develop MC³ related to loops before the concept of loops is introduced. However, the
table indicates occurrences of C8, C2, and C4 in assignments focused on conditional commands.
Similarly, MC³ D4 and G5, which are function-related misconceptions, occur before functions are
taught in the same CS1 course, which is right before the topic of matrices. Our evidence suggests
that students developing misconceptions before the teaching of the related CS1 topic may indicate
prior programming knowledge, which aligns with the observations made by CS1 instructors.

The distribution of MC³ G4 and B8 should be interpreted with caution. As mentioned earlier,
our initial development of the automated detection system relied on generic rules as a foundation
to keep its usage simple. In the case of G4, we used constant thresholds to determine whether
variables and functions had significant names based on their character length. This approach was
influenced by the variable and function names provided in the assignment descriptions, as students
often used these names in their code. Consequently, some names that met our thresholds might
still be considered insignificant based on the assignment context. Regarding B8, our detection
was limited to identifying elif statements without an accompanying else statement. While we
acknowledge that this issue should be addressed in feedback, we recognize that it is not as severe
as the presence of consecutive if statements that are not mutually exclusive.

We acknowledge that linting tools, which identify bugs, errors, and code anomalies accord-
ing to a specific coding style (De Ruvo et al., 2018), could also detect MC³, particularly those
in category A. However, these tools often provide extensive feedback that may overwhelm CS1
students (Keuning et al., 2019, 2021). Although their feedback can be customized, it raises the
same regarding instructors’ increased workload. Furthermore, the effectiveness of these tools de-
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pends on the topics covered in each course, as the CS1 syllabus may vary (Becker & Fitzpatrick,
2019; Silva et al., 2023c). Evidence suggests further research to explore and develop viable and
comprehensive approaches to integrating automated MC³ detection in CS1 courses.

6 Limitations and Threats to Validity

The primary limitation of this study regards the teaching context of the CS1 course used for
identifying and analyzing the MC³. Although this course was from a single institution, the analysis
was composed of different undergraduate programs. Additionally, the course taught the Python
programming language using the imperative paradigm. We recognize that MC³ may occur in
other languages, but some misconceptions like A4, D4, and E2 are more prone to happen in
Python. Therefore, we consider that replication of this research may differ when conducted in
CS1 courses that use different programming languages and paradigms.

Another limitation stems from the dataset used to identify MC³. While the analyzed as-
signments (Table 2) and the identified MC³ categories (Table 3) represented topics listed as most
covered in typical CS1 courses (Becker & Fitzpatrick, 2019; Silva et al., 2023c), we acknowledge
that our MC³ list may not be exhaustive. Specific MC³ related to other CS1 concepts may exist.
However, since our data demonstrated students incorporating MC³ throughout the entire semester,
we argue that the identified listing remains significant for addressing MC³ in CS1 classes.

The subjective nature of identifying the MC³ poses the main threat to the validity of this
study. To mitigate this concern, we developed the survey with CS1 instructors. The respondents’
geographic distribution, along with their diverse teaching contexts, helped identify the most severe
MC³ that should be adequately addressed in CS1 classes.

7 Conclusions

The objective of this study was to identify characteristics in code, which, despite passing all test
cases in an autograder, indicated faulty or incomplete understandings of CS1 concepts. These
identified characteristics were termed Misconceptions in Correct Code (MC³). By analyzing
2,441 student submissions to assignments in a CS1 course taught in Python using the imper-
ative paradigm, we identified a total of 45 MC³. These misconceptions were divided into eight
categories: A) Variables, identifiers, and scope; B) Boolean expressions; C) Iteration; D) Function
parameter use and scope; E) Reasoning; F) Test cases; G) Code organization; and H) Other.

To determine the severity of each MC³ and prioritize those that required immediate attention
in the classroom, we conducted a survey with CS1 instructors. A total of 32 instructors participated
in an online questionnaire, which included Likert-item questions to assess the severity of each
MC³. Additionally, nine of these instructors took part in a semi-structured interview, aimed at
exploring different strategies to address MC³ in various teaching and learning contexts within CS1
courses. Furthermore, to gain insights into the reasons why students incorporated MC³ in their
code, we conducted a semi-structured observation in a CS1 course. This observation involved 20
students and one instructor. Additionally, we developed an automated detection method, based on
static code analysis, for the MC³ identified as the most severe. All methods that included research
with human participants were first assessed and approved by an Ethics Research Committee.

1193



Silva et al. RBIE v.31 — 2023

We have identified and ranked 15 MC³ as the most severe out of the total identified mis-
conceptions. Among these, eight are directly related to core concepts of Boolean expressions
and iteration, which are fundamental in a typical imperative-based CS1 course. Both instructors
and students provided insights into the reasons behind the development of these MC³. Some of
these reasons included: students’ misconceptions about Python constructs, such as decision state-
ments and loops; as well as a careless approach to code development, where the focus is solely on
achieving correctness with regard to test cases. Instructors and students have suggested various
strategies to address MC³ in CS1 classes: integrating the detection of these misconceptions into an
autograder to provide formative feedback; incorporating MC³ into lecture slides or during practice
hours; and integrating them into Active Learning techniques like Peer Instruction. Additionally,
our initial implementation of automated detection revealed that while these misconceptions may
not occur in large numbers, they are distributed throughout the entire CS1 course.

Based on the evidence obtained, it is concluded that research on MC³ is well-founded as it
provides valuable assistance to CS1 students and instructors by identifying underlying miscon-
ceptions that can persist even in correct code. If left unaddressed, these misconceptions may
carry over into subsequent CS courses, hindering students’ progress. The 15 MC³ identified as
the most severe were found to be rooted in faulty understandings of CS1 topics and a lack of
attention to coding characteristics such as readability and maintainability. While there is ongoing
discussion among instructors and teaching assistants regarding the prioritization of factors like
code efficiency versus readability and maintainability (Barbosa et al., 2023; Fisler et al., 2016),
researchers argue that stimulating behaviors related to the latter is more beneficial for CS1 stu-
dents (De Ruvo et al., 2018; Joni & Soloway, 1986; Keuning et al., 2019). Therefore, we advocate
that addressing MC³ in CS1 classes should involve educational materials taught by both instruc-
tors and teaching assistants, assignment design, and formative feedback. The insights obtained by
students and instructors regarding the reasons behind MC³ occurrence serve as basis for creating
feedback messages that can improve teaching and learning outcomes (Cain & Babar, 2016). The
aim is to provide timely and formative feedback that closely aligns with the guidance an instructor
would offer since the purpose of the course is to teach and not to grade (Edwards, 2021).
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