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Resumo
A descoberta de padrões sequenciais no comportamento dos estudantes em ambientes de ensino de programação
online é essencial para a personalização do aprendizado e otimização do processo educacional. Com a transformação
digital no ensino, plataformas voltadas ao aprendizado de algoritmos ganharam destaque, mas ainda carecem de um
sequenciamento personalizado de atividades que auxilie na progressão educacional. Neste cenário, a aplicação da
Mineração de Padrões Sequenciais (MPS) pode revelar padrões de aprendizagem e desafios recorrentes enfrentados
pelos alunos, tornando-se uma ferramenta valiosa para personalização da experiência de aprendizagem. Assim, o
presente estudo compara duas abordagens de MPS: algoritmos clássicos e metaheurísticas evolutivas, para avaliar
suas eficácias na detecção de padrões. A pesquisa analisa as interações de 313 alunos em um ambiente de ensino de
algoritmos, observando o desempenho das abordagens quanto à precisão, custo computacional e aplicabilidade. Os
algoritmos clássicos mostram-se eficientes em bases menores, enquanto as metaheurísticas evolutivas revelam padrões
complexos com maior eficácia em grandes volumes de dados. Os resultados indicam que ambas as abordagens podem
beneficiar o ambiente de ensino, ajudando o professor a antecipar sinais de desmotivação e intervir de forma proativa
para manter o aluno interessado e ativo na plataforma. Como contribuição, demonstra-se que, tanto os algoritmos
clássicos quanto as metaheurísticas evolutivas, podem gerar insights valiosos, como a necessidade de revisar um
problema específico ou fornecer mais exemplos práticos aos alunos.
Palavras-chave: Mineração de Padrões Sequenciais; Metaheurísticas Evolutivas; Personalização do Ensino de
Programação.

Abstract
Discovering sequential patterns in student behavior in online programming teaching environments is essential for
personalizing learning and optimizing the educational process. With the digital transformation in education, platforms
focused on algorithm learning have gained prominence but still lack personalized sequencing of activities to assist
in academic progression. In this scenario, the application of Sequential Pattern Mining (SPM) can reveal learning
patterns and recurring challenges students face, becoming a valuable tool for personalizing the learning experience.
Thus, the present study compares two SPM approaches: classical algorithms and evolutionary metaheuristics, to
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evaluate their effectiveness in detecting patterns. The research analyzes the interactions of 313 students in an algorithm
teaching environment, observing the performance of the approaches in terms of accuracy, computational cost, and
applicability. Classical algorithms prove efficient in smaller datasets, while evolutionary metaheuristics reveal
complex patterns more effectively in large volumes of data. The results indicate that both approaches can benefit
the teaching environment, helping the teacher anticipate signs of demotivation and intervene proactively to keep the
student interested and active on the platform. As a contribution, it is demonstrated that both classical algorithms and
evolutionary metaheuristics can generate valuable insights, such as the need to review a specific problem or provide
more practical examples to students.
Keywords: Sequential Pattern Mining; Evolutionary Metaheuristics; Personalization of Programming Education.

Resumen
El descubrimiento de patrones secuenciales en el comportamiento de los estudiantes en entornos de enseñanza de
programación en línea es esencial para la personalización del aprendizaje y la optimización del proceso educativo.
Con la transformación digital en la enseñanza, las plataformas orientadas al aprendizaje de algoritmos han ganado
protagonismo, pero aún carecen de un secuenciamiento personalizado de actividades que ayude en la progresión
educativa. En este escenario, la aplicación de la Minería de Patrones Secuenciales (MPS) puede revelar patrones de
aprendizaje y desafíos recurrentes enfrentados por los alumnos, convirtiéndose en una herramienta valiosa para la
personalización de la experiencia de aprendizaje. Así, el presente estudio compara dos enfoques de MPS: algoritmos
clásicos y metaheurísticas evolutivas, para evaluar sus eficacias en la detección de patrones. La investigación analiza
las interacciones de 313 alumnos en un entorno de enseñanza de algoritmos, observando el desempeño de los enfoques
en cuanto a precisión, costo computacional y aplicabilidad. Los algoritmos clásicos se muestran eficientes en bases de
datos más pequeñas, mientras que las metaheurísticas evolutivas revelan patrones complejos con mayor eficacia en
grandes volúmenes de datos. Los resultados indican que ambos enfoques pueden beneficiar el entorno de enseñanza,
ayudando al profesor a anticipar señales de desmotivación e intervenir de forma proactiva para mantener al alumno
interesado y activo en la plataforma. Como contribución, se demuestra que tanto los algoritmos clásicos como las
metaheurísticas evolutivas pueden generar insights valiosos, como la necesidad de revisar un problema específico o
proporcionar más ejemplos prácticos a los alumnos.
Palabras clave: Minería de Patrones Secuenciales; Metaheurísticas Evolutivas; Personalización de la Enseñanza de
Programación
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1 Introdução

Nos últimos anos, o ensino de programação vem passando por uma transformação significativa,
saindo do formato tradicional em sala de aula para ambientes de ensino online. Isso pode ser
atribuído, em grande parte, à mudança global para o ensino à distância provocada pela pandemia da
COVID-19, que acelerou a adoção de ferramentas e recursos de aprendizagem online. O surgimento
de plataformas especializadas na preparação para entrevistas técnicas também tem contribuído para
difundir a importância dos algoritmos e da resolução de problemas como um meio para alcançar
melhores posições no mercado de trabalho.

A facilidade de acesso a essas plataformas vem democratizando a educação, permitindo que
alunos de todo o mundo consigam adquirir novas competências em programação de qualquer lugar
ligado à Internet. Com a multiplicação das plataformas online, o conteúdo ofertado aumentou
significativamente, assim como o volume de dados gerado pela navegação dos alunos. No entanto,
ainda se observa uma lacuna no quesito da personalização do aprendizado. Nesse sentido, acredita-
se que a chave para melhorar a experiência dos estudantes está na análise cuidadosa de suas
interações com a plataforma.

Uma abordagem promissora para esse tipo de análise é a Mineração de Padrões Sequenciais
(MPS), que permite identificar padrões frequentes de comportamento dos alunos ao longo do tempo.
Essa abordagem pode ser utilizada para prever o desempenho dos estudantes, detectar dificuldades
no aprendizado e sugerir intervenções personalizadas. Padrões de comportamento frequentes
revelam como os alunos interajem com os recursos didáticos, contribuindo para a melhoria contínua
do ensino online (Zhang & Paquette, 2023; Zhou et al., 2010)

Os algoritmos clássicos de MPS, como PrefixSpan (Pei et al., 2001), GSP (Srikant &
Agrawal, 1996) e SPADE (Zaki, 2000), utilizam métodos determinísticos para explorar sequências
frequentes, aplicando estratégias de poda para reduzir a quantidade de padrões candidatos e
aumentar a eficiência. Esses algoritmos garantem exaustividade e precisão na descoberta de padrões,
sendo altamente eficazes em bases de dados menores. No entanto, podem enfrentar desafios de
escalabilidade quando aplicados a grandes volumes de dados, nos quais a quantidade de possíveis
sequências cresce exponencialmente, impactando negativamente o desempenho computacional.

Por outro lado, metaheurísticas evolutivas oferecem uma abordagem promissora para a tarefa
de MPS. Inspiradas em processos naturais e biológicos, técnicas como Algoritmos Genéticos (AG),
Otimização por Colônia de Formigas (OCF), Otimização por Enxame de Partículas (OEP) e Algo-
ritmo de Busca de Harmonia (ABH) apresentam uma forma robusta de explorar grandes espaços
de busca. Essas metaheurísticas têm a capacidade de escapar de ótimos locais, proporcionando
soluções quase ótimas em um tempo computacional aceitável, mesmo em cenários onde a aplicação
de algoritmos determinísticos se torna inviável por causa do custo computacional.

Em trabalhos anteriores, investigou-se a aplicação isolada de algoritmos clássicos (Maranhão
et al., 2023) e de metaheurísticas evolutivas (Maranhão & Neto, 2024) na tarefa de MPS. Nesse
estudo, realiza-se um comparativo qualitativo entre ambas as abordagens, evidenciando que os
algoritmos clássicos são mais adequados em cenários que exigem exaustividade, enquanto as
metaheurísticas se destacam em problemas de maior escalabilidade e ampla exploração de soluções.
Além de avaliar o desempenho de ambas as abordagens, discute-se a relevância dos padrões
descobertos para a melhoria das estratégias de ensino e a personalização do aprendizado.
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Por fim, optou-se por realizar um estudo de caso em um ambiente real de aprendizado,
denominado Cosmo, desenvolvido e mantido pelo Laboratório de Sistemas Multimídia, da Univer-
sidade Federal do Maranhão (UFMA). Essa decisão reflete tanto o caráter exploratório da pesquisa,
que busca revelar padrões de aprendizado pouco mapeados, quanto sua dimensão explicativa,
ao investigar causas e implicações desses padrões na motivação e na aprendizagem. Ao focar
na exploração desse ambiente, pode-se observar com mais profundidade a interação dos alunos,
permitindo identificar possíveis relações entre as sequências de interação e possíveis dificuldades.

O presente artigo está organizado como segue: a Seção 2 apresenta a fundamentação teórica
acerca da mineração de padrões sequenciais usando a abordagem clássica e as metaheurísticas
investigadas; a Seção 3 apresenta os trabalhos que se relacionam a esta pesquisa; a Seção 4 descreve
a metodologia de análise dos dados e modelagem do problema; a Seção 5 discute os resultados
obtidos e compara as abordagens; e a Seção 6 apresenta a conclusão do trabalho.

2 Mineração de Padrões Sequenciais (MPS)

A MPS consiste em encontrar subsequências interessantes em um banco de dados de sequências
(Agrawal & Srikant, 1995). O interesse de uma subsequência pode ser definido de várias maneiras,
como sua frequência ou seu comprimento. Uma sequência é formada por um conjunto não vazio de
itens i j, formalmente representada como {i1, i2, · · · , in}, em que i j é chamado de itemset. No ensino
de algoritmos, um item representa uma ação realizada por um aluno ao interagir com a plataforma,
seja acessando um conteúdo teórico seja submetendo a solução de um determinado problema.

A Tabela 1 apresenta um conjunto de sequências para alunos hipotéticos. A sequência do
aluno 1 possui duas interações. O primeiro itemset contém dois itens, a e b, indicando que o aluno
interagiu com os objetos de aprendizagem a e b na sessão 1, enquanto a sessão 2 indica que o aluno
interagiu com o problema c, depois, na sessão 3, com o problema d e, finalmente, na sessão 4 com
o problema e. A ordem dos itens em um itemset não é relevante. Todas as sessões do aluno formam
uma sequência.

Tabela 1: Exemplo de Banco de Sequências.

Id do Aluno Sequência
1 ⟨{a,b},{c},{d},{e}⟩
2 ⟨{a,c},{e, f}⟩
3 ⟨{b},{c,d,e},{ f ,b},{c}⟩
4 ⟨{b,c},{d},{ f},{g}⟩

Formalmente, uma sequência {i1, i2, · · · , in} contém uma subsequência {p1, p2, · · · , pm} se
houver números inteiros k1 < k2 < · · · < kn tais que p1 ⊆ ik1 , p2 ⊆ ik2, pm ⊆ ikn . Por exemplo,
para avaliar se as sequências da Tabela 1 contêm a subsequência S = ⟨{b},{c}⟩, verifica-se se a
sequência possui algum item contendo {b} e, posteriormente, outro contendo {c}, respeitando a
ordem em que aparecem na sequência. Sendo assim, pode-se observar que:

• a sequência 1 contém S, porque, respectivamente, {b} aparece no primeiro item e {c}
aparece no segundo item;

• a sequência 2 não contém S, pois não há itens contendo {b};
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• a sequência 3 contém S, pois {b} aparece no primeiro item para e {c} aparece tanto no
segundo quanto no quarto itens, mantendo a ordem exigida;

• a sequência 4 não contém S, pois, apesar de {b} e {c} aparecerem juntos no primeiro
item, não há segundo item apenas com {c} para satisfazer a subsequência em dois passos.

Muitos algoritmos permitem definir o gap máximo para reduzir padrões ruidosos (padrões
identificados como frequentes em virtude de erros aleatórios) e limitar a quantidade de padrões
retornados (Srikant & Agrawal, 1996; Zaki, 2000). Por exemplo, se o intervalo máximo for 1, o
algoritmo inferirá que a sequência do aluno 1 não contém ⟨{b},{e}⟩, pois {b} aparece na primeira
posição, em {a,b}, e {e} está na quarta posição, resultando em um gap de 4−1 = 3. Os ruídos
devem ser removidos porque eles podem não fornecer informações confiáveis sobre os processos
que geraram as sequências.

A sequência de um aluno suporta uma subsequência se ela estiver contida na sequência do
aluno. O valor de suporte de uma subsequência é definido como a proporção de sequências que
contém essa subsequência (Agrawal & Srikant, 1995). Ou seja, para obter o valor de suporte,
deve-se contar em quantas sequências cada subsequência aparece e dividir pelo total de sequências
analisadas. Se o valor de suporte de uma subsequência não for menor que um limite pré-especificado
(chamado de suporte mínimo), essa subsequência é considerada um padrão sequencial frequente.

Se o suporte mínimo é definido como sup_min = 0,5, então todas as sequências com suporte
mínimo acima desse limiar serão consideradas frequentes. Tomando-se como exemplo as sub-
sequências S1 = ⟨{b},{c}⟩, S2 = ⟨{b},{d}⟩, S3 = ⟨{c},{d}⟩ e S4 = ⟨{a},{c}⟩, observa-se que,
pelo critério do suporte mínimo, S1, S2 e S3 são padrões frequentes, enquanto S4 não. Isso ocorrre
porque o valor de suporte de:

• S1 é 2/4 = 0,5≥ sup_min, pois S1 aparece em duas (alunos 1 e 3) das quatro possíveis
sequências;

• S2 é 3/4 = 0,75≥ sup_min, pois S2 aparece em três (alunos 1, 3 e 4) das quatro possíveis
sequências;

• S3 é 2/4 = 0,5≥ sup_min, pois S3 aparece em duas (alunos 1 e 4) das quatro possíveis
sequências;

• S4 é 1/4 = 0,25 < sup_min, pois S4 aparece em uma (aluno 1) das quatro possíveis
sequências.

Os algoritmos clássicos, como o PrefixSpan (Pei et al., 2001), GSP (Generalized Sequential
Patterns) (Srikant & Agrawal, 1996) e SPADE (Sequential PAttern Discovery using Equivalent
Class) (Zaki, 2000), utilizam abordagens determinísticas para explorar o espaço de busca de
sequências frequentes. Para aumentar a eficiência da mineração, esses métodos frequentemente
empregam técnicas de poda para reduzir a quantidade de padrões candidatos a serem avaliados.

Embora bem estabelecidos e amplamente utilizados por causa da sua capacidade de garantir
exaustividade e precisão na descoberta de padrões sequenciais, os algoritmos clássicos enfrentam
desafios de escalabilidade quando aplicados a bases de dados muito grandes ou complexas, onde a
quantidade de possíveis sequências cresce exponencialmente (Zaki, 2001). É nesse cenário que a
utilização de metaheurísticas pode ser promissora. Inspiradas em processos naturais e biológicos,
elas têm sido aplicadas com sucesso para resolver problemas complexos de otimização.
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2.1 Algoritmos Clássicos para Mineração de Padrões Sequenciais

Vários algoritmos têm sido aplicados a dados educacionais, como GSP (Generalized Sequential
Patterns) (Srikant & Agrawal, 1996); SPADE (Zaki, 2000); FreeSpan (Han, Pei, Mortazavi-Asl
et al., 2000), PrefixSpan (Pei et al., 2001); SPAM (Sequential Pattern Mining) (Ayres et al., 2002)
e LAPIN (Last Position Induction) (Yang et al., 2007). Esses algoritmos podem ser divididos em
duas abordagens: Geração de Candidatos e Crescimento de Padrões.

2.1.1 Geração de Candidatos

Essa abordagem se baseia na execução de múltiplos passos sobre os dados. Em cada passo, começa-
se com um conjunto semente de uma quantidade grande de sequências, chamadas de sequências
candidatas. O suporte para essas sequências candidatas é computado durante a passada pelos dados.
Ao final do passo, são determinadas as maiores sequências candidatas. Tais sequências compõem a
semente para o próximo passo.

Como exemplos, pode-se citar os algoritmos GSP e SPADE. O algoritmo GSP (Generalized
Sequential Patterns) escala linearmente com a quantidade de sequências de dados, respeitando a
quantidade de transações por sequência de dados e a quantidade de itens por transação (Srikant
& Agrawal, 1996). O SPADE decompõe o problema original em subproblemas menores usando
propriedades combinatoriais. Os subproblemas são resolvidos na memória principal utilizando
técnicas de busca eficientes e operações de junção simples. Normalmente, são realizadas apenas
três varreduras na base de dados – uma para sequências frequentes de tamanho 1, outra para
sequências de tamanho 2 e mais uma para a geração das demais sequências (Chiu et al., 2004).

2.1.2 Crescimento de Padrões

Essa abordagem usa a estratégia de dividir para conquistar, começando com um conjunto de padrões
frequentes de tamanho 1. Em seguida, deriva, para cada padrão p, um banco de dados projetado de
p e o explora recursivamente. Como o conjunto de dados é decomposto progressivamente em um
conjunto de bancos de dados muito menores, o método de crescimento de padrões reduz o espaço
de pesquisa e leva a alta eficiência e escalabilidade.

A abordagem de geração de candidatos atinge um bom desempenho pela redução da quan-
tidade de candidatos gerado. Entretanto, quando o suporte mínimo é pequeno ou o tamanho dos
padrões gerados é grande, o algoritmo pode continuar tendo custos não triviais, independentemente
das técnicas de implementação detalhadas (Han, Pei & Yin, 2000).

Para vencer essas dificuldades, foi desenvolvida uma nova abordagem denominada de cresci-
mento de padrões frequentes. A ideia geral do FreeSpan (Frequent pattern-projected Sequential
pattern mining) é usar itens frequentes para projetar recursivamente bancos de dados de sequências
em um conjunto menor de bancos de dados e crescer os fragmentos de subsequências em cada
banco de dados projetado (Han, Pei, Mortazavi-Asl et al., 2000).

Por outro lado, a concepção do PrefixSpan (Prefix-projected Sequential Pattern Mining) é de
que, em vez de projetar sequências considerando todas as ocorrências possíveis de subsequências
frequentes, a projeção seja baseada apenas em prefixos frequentes porque qualquer subsequência
pode sempre ser encontrada a partir do crescimento de um prefixo (Pei et al., 2001).
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2.2 Metaheurísticas para Mineração de Padrões Sequenciais

As metaheurísticas são estratégias de otimização de propósito geral especialmente úteis em situações
em que métodos exatos de busca são inviáveis por causa da alta dimensionalidade ou da natureza
complexa do espaço de busca. Elas não necessariamente vão encontrar a solução ótima, mas
podem encontrar boas soluções em um tempo razoável. Outra vantagem das metaheurísticas é
sua flexibilidade e adaptabilidade, permitindo ajustes finos e hibridizações para diferentes tipos de
problemas (Parpinelli & Lopes, 2011).

2.2.1 Algoritmo Genético

O Algoritmo Genético (AG) foi proposto por J. H. Holland em 1975, inspirado na Teoria da
Evolução de Darwin (Holland, 1992). Os conceitos evolutivos são usados para definir uma técnica
de busca para resolver problemas de otimização. Nessa técnica, uma população de soluções
candidatas (inicializada aleatoriamente) evolui por meio da seleção dos indivíduos mais aptos
(melhores soluções candidatas), crossover e mutação.

Conforme mostra o Algoritmo 1, a metaheurística começa com um conjunto de indivíduos
(população), onde cada indivíduo representa uma solução candidata para o problema. Cada
indivíduo (ou cromossomo) corresponde a uma sequência de nós, C = (n1,n2,n3, · · · ,nk), com
tamanho fixo k, onde ni é um nó do grafo e a sequência deve seguir arestas válidas entre os nós. A
aptidão (fitness) de um cromossomo é determinada pela soma dos pesos das arestas entre os nós
que compõem a sequência, penalizando caminhos inválidos com uma redução na pontuação.

Durante a seleção dos pais, um conjunto de indivíduos é escolhido para reprodução. Os
métodos mais comuns de seleção incluem roleta, classificação e torneio. Os indivíduos selecionados
são recombinados por meio de crossover para gerar novos indivíduos. Uma das abordagens
mais simples é o cruzamento de pontos, onde um ou mais pontos de cruzamento são escolhidos
aleatoriamente e o filho é criado pela troca dos genes entre os pais.

A mutação envolve pequenas modificações nas soluções candidatas geradas. Nessa etapa, um
ou mais bits são alterados de acordo com uma probabilidade de mutação. A mutação é fundamental
para manter a diversidade genética da população e evitar a convergência prematura para soluções
subótimas.

Por fim, as novas soluções candidatas geradas pelo crossover e pela mutação são então
avaliadas em relação à função objetivo, e a população atual é atualizada. Muitas vezes, os
melhores indivíduos da população são mantidos, e até 10% das piores soluções candidatas podem
ser preservadas para manter a diversidade. O algoritmo termina quando o critério de parada é
alcançado.

2.2.2 Otimização por Enxame de Partículas

A Otimização por Enxame de Partículas (OEP), proposta por Russell Eberhart e James Kennedy, é
inspirada nos comportamentos coletivos observados em bandos de pássaros e cardumes de peixe
(Eberhart & Kennedy, 1995). Esse algoritmo utiliza informações tanto locais quanto globais para
guiar o movimento e melhorar a qualidade das soluções candidatas representadas pelas partículas.

918



Maranhão, D. S. S. & Soares Neto, C. S. RBIE v.33 – 2025

Algoritmo 1: Pseudocódigo do Algoritmo Genético.
Result: Sequência de materiais de aprendizagem

1 População← InicializarPopulação(T P, |M|);
2 // TP: Tamanho da população
3 // M: Conjunto de materiais de aprendizagem, |M| é o

número total de materiais
4 Ob jetivo← CalcularObjetivo(População);
5 Smelhor← ObterMelhorSolução(Ob jetivo);
6 while ¬CondiçãoDeParada() do
7 Pais← SelecionarPais(População,T T );
8 // TT: Tamanho do torneio de seleção (número de

indivíduos que competem para se tornar pais)
9 Filhos← /0;

10 for i← 0 to |Pais|−1 do
11 (Filho1,Filho2)← Cruzamento(Pais[i],Pais[i+1]);
12 // Cruzamento: Combinação de dois pais para gerar

dois filhos
13 Filho1←Mutação(Filho1,PM);
14 Filho2←Mutação(Filho2,PM);
15 // PM: Probabilidade de mutação aplicada aos filhos
16 Filhos← Filhos∪{Filho1,Filho2};
17 i← i+2;

18 Ob jetivo← CalcularObjetivo(Filhos);
19 Smelhor← ObterMelhorSolução(Ob jetivo);
20 População← Substituir(População,Filhos);
21 // Substituir a população antiga pela nova geração de

filhos

Conforme mostra o Algoritmo 2, cada partícula no OEP é caracterizada por três componentes
principais: velocidade, um vetor de valores contínuos que indica a direção e a magnitude do
movimento da partícula; posição, um vetor de valores contínuos que representa a solução candidata
atual; e melhor local (Pbest), a melhor posição encontrada pela partícula até o momento. A
metaheurística também armazena o Melhor Global (Gbest), que é a melhor posição encontrada por
qualquer partícula no enxame.

Cada partícula representa uma solução candidata modelada como um caminho no grafo.
Assim como nos outros algoritmos, a solução é expressa como uma sequência de nós, C =
(n1,n2,n3, · · · ,nk), com tamanho fixo k, onde ni é um nó do grafo e a sequência deve respeitar
conexões válidas entre os nós. A aptidão (fitness) de uma partícula é determinada pela soma dos
pesos das arestas no caminho percorrido, penalizando soluções inválidas.

O movimento das partículas é influenciado por suas experiências individuais (Pbest) e pela ex-
periência coletiva do enxame (Gbest). A cada iteração, as velocidades das partículas são atualizadas
considerando três componentes: a velocidade anterior de cada partícula, a diferença entre a posição
atual de cada partícula e sua melhor posição individual (Pbest), e a diferença entre a posição atual
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de cada partícula e a melhor posição global (Gbest) do enxame. Além disso, são aplicados fatores
de inércia e coeficientes que definem a influência das experiências individual e coletiva.

O processo de atualização continua até que um critério de parada seja atingido, que pode ser
uma quantidade máxima de iterações ou a convergência para uma solução aceitável.

Algoritmo 2: Pseudocódigo do Algoritmo de Otimização por Enxame de Partículas.
Result: Sequência de materiais de aprendizagem

1 População← InicializarPartículas(T P, |M|);
2 // TP: Tamanho da População
3 // M: Conjunto de materiais de aprendizagem, |M| é o

número total de materiais
4 while ¬CondiçãoDeParada() do
5 foreach x ∈ População do
6 vi (x)← AtualizarVelocidade(vi (x) , pb(x) ,gb,c1,c2,c3);
7 // Atualizar a velocidade da partícula com base em

parâmetros e melhores posições locais e globais
8 pi (x)← Avaliar(vi (x) ,EM);
9 // EM: Espaço de Materiais; calcular a nova posição

da partícula com base na velocidade
10 pb(x)←Melhor(pb(x) , pi (x));
11 // Atualizar a melhor posição local da partícula
12 gb←Melhor(gb, pb(x));
13 // Atualizar a melhor posição global

2.2.3 Otimização por Colônia de Formigas

A Otimização por Colônia de Formigas (OCF) foi proposta por Marco Dorigo em 1992, inspirada
no comportamento de busca de alimentos das formigas (Dorigo, 1992). As formigas depositam
feromônio ao longo de seu caminho, criando trilhas que outras formigas seguem, com a intensidade
do feromônio influenciando a probabilidade de escolha das trilhas.

No OCF (Algoritmo 3), uma população de formigas é utilizada para construir soluções para
um problema de otimização. Cada formiga constrói uma solução ao adicionar componentes à
solução parcial com base na quantidade de feromônio e em uma medida heurística da qualidade do
componente. O algoritmo inicia com a definição dos parâmetros, como a quantidade de formigas,
o coeficiente de evaporação do feromônio (ρ), e os parâmetros de controle (α e β ). Além disso, a
quantidade de feromônio em todas as arestas é inicializada com um valor inicial τ0.

Cada solução construída por uma formiga corresponde a um caminho no grafo, representado
como uma sequência de nós de tamanho fixo k, assim como no AG. Dessa forma, a estrutura da
solução pode ser descrita como C = (n1,n2,n3, · · · ,nk), onde ni representa um nó do grafo, e a
sequência deve seguir conexões válidas entre os nós. A aptidão da solução (fitness) é determinada
pela soma dos pesos das arestas percorridas, sendo que caminhos inválidos são penalizados.

Enquanto constroem suas soluções, as formigas escolhem os componentes de maneira
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probabilística, considerando tanto a quantidade de feromônio presente nas arestas (τi j) quanto a
informação heurística associada a elas (ηi j). A probabilidade Pk

i j de uma formiga k escolher um
determinado componente i após outro componente j é calculada com base em uma combinação
desses fatores, ajustada pelos parâmetros de controle.

Depois que todas as formigas completam suas soluções, a quantidade de feromônio nas
arestas é atualizada para refletir a qualidade das soluções encontradas. Esse processo de atualização
leva em conta a evaporação natural do feromônio e a quantidade depositada por cada formiga,
reforçando as arestas que fazem parte de soluções melhores. A evaporação é essencial para evitar a
convergência prematura, garantindo que a exploração continue ao longo das iterações.

O processo de construção de soluções e atualização de feromônio é repetido até que um
critério de parada seja atingido, como uma quantidade máxima de iterações ou a convergência para
uma solução aceitável.

Algoritmo 3: Pseudocódigo do Algoritmo de Otimização por Colônia de Formigas.
1 α,β ,ρ,τ0← InicializarParâmetros;
2 τi j← τ0,∀ i j;
3 // Inicializar todas as arestas com feromônio τ0
4 while ¬CondiçãoDeParada() do
5 foreach formiga k ∈ colônia do
6 Sk← ConstruirSolução(Pk

i j);
7 // Construir uma solução usando a regra de

probabilidade Pk
i j

8 Pk
i j←

[τi j]
α ·[ηi j]

β

∑l∈Ni [τil ]α ·[ηil ]β

9 // Pk
i j: probabilidade de a formiga k escolher o

componente j após i

10 foreach aresta i, j do
11 τi j← (1−ρ) · τi j +∑

m
k=1 ∆τk

i j;
12 // Atualizar o feromônio na aresta i j com evaporação e

depósito

13 return MelhorSolução();

2.2.4 Algoritmo de Busca de Harmonia

O Algoritmo de Busca de Harmonia (ABH) é uma heurística de busca baseada no processo de
improvisação dos músicos de jazz (Geem et al., 2001). No jazz, os músicos tentam ajustar os
tons de seus instrumentos, de forma que as harmonias gerais sejam otimizadas em virtude dos
aspectos estéticos. Começando com algumas harmonias, eles tentam alcançar melhores harmonias
utilizando a improvisação.

Essa analogia pode ser usada para derivar heurísticas de busca, que podem otimizar uma
determinada função objetivo em vez de harmonias. Nesse contexto, os músicos são identificados
com as variáveis de decisão e as harmonias correspondem às soluções. Tal como os músicos de
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jazz criam novas harmonias por meio da improvisação, o algoritmo ABH cria iterativamente novas
soluções baseadas em soluções passadas e em modificações aleatórias.

Conforme mostra o Algoritmo 4, a metaheurística ABH inicializa a Harmony Memory (HM)
com soluções geradas aleatoriamente. A quantidade de soluções armazenadas na memória HM é
definido pelo Harmony Memory Size (HMS). Então, iterativamente, uma nova solução é criada
como segue. Cada variável de decisão é gerada considerando a memória e uma possível modificação
adicional ou por seleção aleatória.

Os parâmetros utilizados no processo de geração de uma nova solução são chamados Harmony
Memory Considering Rate (HMCR) e Pitch Adjusting Rate (PAR). Cada variável de decisão é
definida como o valor da variável correspondente de uma das soluções na HM com probabilidade
de HMCR, e uma modificação adicional desse valor é realizada com probabilidade de PAR.

Caso contrário, com probabilidade de 1−HMCR, a variável de decisão é definida com um
valor aleatório. Após a criação de uma nova solução, ela é avaliada e comparada com a pior solução
da memória. Se o seu valor objetivo for melhor que o da pior solução, substitui a pior solução no
HM. Esse processo é repetido até que um critério de parada seja satisfeito.

Algoritmo 4: Pseudocódigo do Algoritmo de Busca de Harmonia.
1 iterações← 0;
2 for i = 0; i < HMS; i++ do
3 HM[i] = solução viável gerada estocasticamente;

4 Ordenar HM;
5 while iterações < IT do
6 for i = 0; i < n; i++ do
7 Escolher aleatoriamente r ∈ (0,1);
8 if r < HMCR then
9 H[i] = escolher aleatoriamente tom disponível na posição i em HM;

10 Escolher aleatoriamente k ∈ (0,1);
11 if k < PAR then
12 α = bw aleatório ∈ (−1,1);
13 H[i] = H[i]+α;

14 else
15 H[i] = escolher aleatoriamente tom disponível ;

16 if f (H) é melhor que f (HM [HMS−1]) then
17 HM [HMS−1] = H;
18 Ordenar HM;

19 iterações++;

20 return HM [0]
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3 Trabalhos Relacionados

Para compor esta seção de trabalhos relacionados, foi realizado um mapeamento sistemático
da literatura com o objetivo de identificar pesquisas que aplicassem metaheurísticas evolutivas
para o sequenciamento de currículos e personalização de aprendizado em contextos educacionais,
especialmente no ensino de algoritmos. As questões secundárias exploraram quais características
dos alunos e dos materiais didáticos são consideradas, quais técnicas de computação evolutiva são
aplicadas e como o sequenciamento de aprendizado foi realizado.

A estratégia de busca incluiu a construção de uma string baseada em termos como “curricu-
lum sequencing”, “learning path generation”, “personalized course generation” e “instructional
planning”, usando algoritmos clássicos de MPS ou metaheurísticas evolutivas. As fontes de pes-
quisa selecionadas foram Google Scholar, IEEE, Scopus, Springer e ACM, abrangendo publicações
de 2011 a 2023. Além disso, foram utilizadas as técnicas de “backward snowballing” e “forward
snowballing” para expandir a rede de trabalhos relevantes.

Os artigos selecionados estão relacionados ao presente estudo por explorarem a aplicação
dos algoritmos clássicos de MPS ou usarem metaheurísticas para analisar e melhorar a experiência
de aprendizagem dos alunos. Embora existam trabalhos que aplicam os algoritmos clássicos e
as metaheurísticas separadamente no contexto educacional, não foram encontrados trabalhos que
façam um paralelo entre as duas abordagens.

A MPS tem sido empregada em pesquisas com propósitos variados na área educacional,
incluindo a descoberta de comportamentos de aprendizagem, o enriquecimento de teorias educacio-
nais e a filtragem de recursos didáticos para a construção de sistemas de recomendação. Inserido
nesse contexto, o presente trabalho busca contribuir com o estado da arte ao comparar o uso
dos algoritmos clássicos com metaheurísticas para a tarefa de mineração de padrões sequenciais,
especificamente no contexto do ensino de algoritmos.

Os dados do processo de aprendizagem, como logs de eventos, registram informações
detalhadas sobre as interações dos alunos com os ambientes de aprendizagem, colegas e instrutores.
Nesse contexto, padrões sequenciais frequentes podem indicar comportamentos comuns entre
os alunos (Zhou et al., 2010). Esses padrões de comportamento podem revelar como os alunos
navegam em suas atividades dentro de um ambiente de aprendizagem e indicar como melhorar a
experiência de aprendizagem (Mirzaei & Sahebi, 2019).

Em Kang et al. (2017), os autores aplicaram o algoritmo cSPADE aos logs de Alien Rescue,
um jogo sério para ensinar habilidades científicas de resolução de problemas a alunos do ensino
médio. O estudo teve como objetivo analisar como os padrões sequenciais de interação podem
diferir ao longo de vários dias de uso do jogo educacional. Eles observaram como os padrões
sequenciais nos primeiros dias representavam comportamentos de exploração, enquanto os padrões
sequenciais nos dias restantes indicavam comportamentos científicos de resolução de problemas.

Alguns estudos mostram como a MPS pode ser utilizada para investigar trajetórias de grupos
com desempenhos acadêmicos diferentes para tentar identificar padrões frequentes no grupo de alto
desempenho, mas raros no grupo de baixo desempenho. Por exemplo, Slim et al. (2016) aplicaram
a MPS em sequências de matrículas em cursos de graduação em engenharia elétrica. O resultado
mostrou que os alunos que se formaram com uma média alta seguiram um padrão de matrícula
distinto daqueles que obtiveram uma média mais baixa.
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Por sua vez, as metaheurísticas AG, OCF, OEP e ABH têm sido aplicadas no contexto
educacional para personalizar e otimizar a experiência de aprendizagem dos estudantes. Os estudos
apresentados a seguir propõem abordagens para enfrentar os desafios de sobrecarga cognitiva e
desorientação dos alunos, proporcionando aprendizado mais eficaz e personalizado.

Em Bhaskar et al. (2010), é descrito um sistema que utiliza AGs para criar esquemas de
aprendizado adaptativos baseados no contexto específico de cada aluno. O método considera
múltiplos parâmetros, como perfil, preferências e infraestrutura, para gerar conteúdos de ensino
personalizados. A eficácia foi demonstrada com um curso de redes de computadores, onde o
algoritmo gerou esquemas de aprendizagem adaptados às necessidades e preferências individuais
dos alunos.

Em Sharma et al. (2012), é proposto um algoritmo baseado na metaheurística OCF que avalia
o nível de um aprendiz e recomenda os conceitos apropriados para ele. Esse algoritmo é sensível
às mudanças nos comportamentos de aprendizagem de cada aluno e ajusta suas estratégias para
recomendar o próximo conceito de acordo com a necessidade. Os comportamentos dos alunos
anteriores são capturados e utilizados para recomendar conteúdo a futuros alunos.

Em Li et al. (2012), é detalhado o uso de metaheurísticas para compor cursos personalizados,
atendendo às necessidades individuais dos alunos. O processo utiliza as metaheurísticas AG e
OEP na etapa de composição do curso personalizado. Os experimentos realizados mostraram que,
com até 300 materiais de aprendizagem, o OEP se destaca pela eficiência em termos de tempo
e quantidade de gerações necessárias para convergir para uma solução ótima. Com mais de 300
materiais, o AG foi mais eficiente.

Em Hnida et al. (2016), o algoritmo ABH foi sugerido como abordagem ao problema de
sequenciamento curricular. Esse algoritmo é inspirado no processo de improvisação musical, em
que um grupo de músicos improvisa o tom de seus instrumentos, buscando a harmonia perfeita.
A pesquisa adapta o ABH para sequenciar objetos de aprendizagem de maneira a maximizar a
relevância dos conteúdos apresentados aos alunos, considerando o nível de conhecimento dos
alunos e as inter-relações de conteúdos.

Em Machado et al. (2019), o Algoritmo Presa-Predador (APP) é empregado na geração
sequências curriculares adaptativas considerando características extrínsecas e intrínsecas dos
alunos. Os experimentos foram conduzidos em um ambiente real de aprendizado, demonstrando
que a abordagem personalizada melhora a qualidade da compreensão dos alunos e reduz a taxa de
desistência, sugerindo um efeito motivacional.

Em Martins et al. (2021), são comparadas diferentes metaheurísticas, incluindo AG, OEP,
APP e Evolução Diferencial (ED), aplicadas à geração de sequências curriculares personalizadas.
Além de propor um procedimento para criar conjuntos de dados sintéticos para avaliação das
abordagens, os experimentos indicaram que o algoritmo ED é mais eficaz em problemas menores
(até 500 materiais didáticos), enquanto OEP se destacou em instâncias maiores.

Em Almeida et al. (2022), é definido um modelo de sequenciamento e recomendação de
ações pedagógicas personalizadas em Ambientes Virtuais de Aprendizagem (AVA) que utiliza a
Taxonomia de Bloom para modelar as ações pedagógicas e o método RASI para definir o perfil
cognitivo do estudante. O estudo utiliza um AG multiobjetivo para recomendar ações pedagógicas
alinhadas ao perfil do estudante, otimizando o processo de ensino.
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Dessa forma, a presente pesquisa busca contribuir para o estado da arte ao comparar o uso
de algoritmos clássicos de MPS com metaheurísticas para o sequenciamento de aprendizado,
particularmente no contexto do ensino de algoritmos. A expectativa é que, após entender as
limitações de cada abordagem, o uso combinado delas possibilite a criação de um modelo mais
robusto e flexível, capaz de lidar com desafios como sobrecarga cognitiva e recomendação de
conteúdo didático.

4 Metodologia

Esta seção descreve o processo de análise de dados adotado no presente estudo. A Seção 4.1 detalha
o processo de obtenção, tratamento e visualização dos dados, proporcionando entendimento mais
claro ao leitor. A Seção 4.2 apresenta e discute os resultados obtidos por meio de duas abordagens
para a descoberta de padrões sequenciais: uma usando os algoritmos clássicos da MPS e outra
usando metaheurísticas evolutivas.

4.1 Obtenção, Tratamento e Visualização dos Dados do Ambiente de Aprendizagem

Esta etapa consiste em entender um pouco da dinâmica do ambiente de aprendizagem de programa-
ção onde foram produzidos os dados em análise. A plataforma de ensino em questão é utilizada
na disciplina de Algoritmos I do Curso de Ciência da Computação da Universidade Federal do
Maranhão.

A disciplina é organizada para ser realizada em um semestre e abrange os seguintes tópicos:

• variáveis e atribuição: conceitos de armazenar e manipular dados;

• comandos condicionais: uso de estruturas como “se” e “senão” para tomada de decisões
no código;

• laços de repetição: execução repetitiva de instruções com estruturas como “para”, “en-
quanto"e “faça ... enquanto”; e

• vetores e listas: manipulação de coleções de dados para armazenar múltiplos valores.

Entre 2021 e 2023, período em que os dados foram coletados, a plataforma disponibilizou
materiais teóricos e atividades práticas acerca desses quatro tópicos. Durante esse tempo, os alunos
tiveram liberdade para explorar os conteúdos sem suporte adicional à navegação, e as aulas foram
ministradas sempre pelo mesmo professor.

A Figura 1 exibe a tela “Minhas Atividades”, que serve como ponto de partida para os alunos
acessarem os conteúdos teóricos e atividades práticas disponibilizados na plataforma. Também, são
exibidas as telas relativas aos conteúdos teóricos dos tópicos “Variáveis e Atribuição” (Figura 2) e
“Comando Condicionais” (Figura 3).

A plataforma funciona internamente como um sistema de juiz online, sendo capaz de:

• compilar os códigos-fonte submetidos pelos alunos;

• executar esses códigos contra casos de teste previamente definidos; e

• avaliar o resultado das submissões, classificando-as em:
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Figura 1: Tópicos disponibilizados na plata-
forma.

Figura 2: Conteúdo teórico do tópico “variáveis
e atribuição”.

Figura 3: Conteúdo teórico do tópico “comandos
condicionais”.

– sucesso: se nenhum caso de teste falhar;
– erro de compilação: se houver qualquer falha no processo de compilação, como

erros de sintaxe;
– tempo limite excedido: se o código não gerar os resultados esperados no tempo

previsto; e
– erro de execução: se algum caso de teste falhar durante a execução.

A Figura 4 ilustra a escolha da questão “Olá, Mundo!”. Nessa questão, como mostra a
Figura 5, o aluno deve apenas imprimir a expressão que a intitula. Havendo sucesso na submissão
(Figura 6) ou se identificados erros de execução (Figura 7) ou de compilação (Figura 8), a plataforma
fornece feedback ao aluno no momento da submissão, facilitando a compreensão dos conceitos e o
aperfeiçoamento das habilidades de programação dos estudantes.
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Figura 4: Tela “Minhas Atividades". Figura 5: Tela exibindo a questão “Olá,
Mundo!".

4.1.1 Obtenção dos Dados

A coleta foi realizada mediante consulta direta à base de dados da plataforma de ensino. O conjunto
de dados foi obtido a partir do cruzamento entre as tabelas de questões e submissões, sendo com-
posto pelas seguintes colunas: usuario_id, questao_id, conceito_id, turma_id, tipo_resultado_id,
tipo_linguagem_id, codigo, data_criacao, tempo_execucao e resultado. A Tabela 2 exemplifica
algumas das submissões contidas no conjunto de dados.

Tabela 2: Exemplos de Submissões Contidas no Conjunto de Dados

ID Usuário
ID

Questão
ID

Turma
ID

Tipo
Resultado

ID

Tipo
Linguagem

ID
Código

Tempo
de

Execução

Data
de

Criação
Resultado

121 36 3 1 1 5 print("Hello World!") 0,037 2021-03-03 Hello World!
122 19 3 1 2 5 print("Hello World!") 0,037 2021-03-03 Hello World!
124 36 3 1 1 5 print("Hello World!") 0,032 2021-03-03 Hello World!
125 37 6 1 1 5 base = float(input())

altura = float(input())
area = base * altura
print(":.1f".format(area))

0,147 03/03/2021 9.5
9.9
11.1
2.0

126 29 3 1 1 5 print("Hello World!") 0,035 03/03/2021 Hello World!
127 13 3 1 1 5 base = float(input())

altura = float(input())
area = base * altura
print(f"area:.2f")

NaN 03/03/2021 File "codigo.py", line 5
print(f"area:.2f")
SyntaxError: invalid
syntax
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128 37 3 1 1 5 num_1 = int(input())
print(2*num_1)

0,169 03/03/2021 4
-6
2
8
-10

129 36 3 1 2 5 print("Hello World!") 0,032 03/03/2021 Hello World!
130 27 4 1 2 5 a = input("Digite um nu-

mero:")
print(a*2)

0,181 03/03/2021 Digite um numero:22
Digite um numero:-3.3
Digite um numero:11
Digite um numero:44
Digite um numero:-5.5

131 16 3 1 1 5 print("Hello World!") 0,031 03/03/2021 Hello World!

O conjunto de dados brutos contém o total de 17.945 (dezessete mil, novecentas e quarenta
e cinco) submissões realizadas por 329 alunos de 7 turmas (semestres) diferentes, todas escritas
utilizando a linguagem de programação Python. Além disso, estão presentes o total de 68 (sessenta
e oito) problemas, distribuídos em 4 (quatro) tópicos distintos.

4.1.2 Limpeza e Transformação dos Dados

A limpeza envolveu a remoção dos alunos com quantidades de interações muito discrepantes
(outliers), identificados por meio do método do intervalo interquartílico 1. Antes da limpeza, o
primeiro quartil (Q1) da distribuição de interações por aluno era de 21, enquanto o terceiro quartil
(Q3) era de 72, resultando em um IQR = Q3−Q1 = 72−21 = 51. Foram considerados outliers
quaisquer observações menores que Q1− 1,5× IQR = 21− 1,5× 51 = −55,5 ou maiores que
Q3 +1,5× IQR = 72+1,5×51 = 148,5. Como resultado desse processo, 16 usuários e 4.029
submissões foram excluídos da análise.

Em seguida, os registros de submissão foram convertidos de um formato relacional para uma
estrutura de lista encadeada, o que envolveu agrupar as submissões por usuário e, em seguida,
ordenar cada grupo pela data e hora das interações, criando sequências temporais das atividades. O
objetivo dessa transformação é simplificar a identificação de padrões de comportamento e outros
fatores relevantes ao desempenho dos alunos, conforme apresentado nas seções seguintes.

4.1.3 Análise Exploratória e Visualização dos Dados

A etapa de análise exploratória e visualização tem como principal objetivo entender a estrutura
dos dados, buscando identificar padrões e detectar anomalias, assim como resumir as principais
características dos dados com a ajuda de métodos visuais. Após a etapa de limpeza, o conjunto
de dados possui o total de 13.916 submissões realizadas por 313 alunos de 7 turmas (semestres)
diferentes, todas escritas em Python.

Estão presentes no conjunto de dados o total de 68 (sessenta e oito) problemas, dos quais
7 são sobre variáveis e atribuição; 12 sobre comandos condicionais; 29 sobre laços de repetição;
e 20 sobre vetores e listas, conforme apresentado na Tabela 3. As questões possuem níveis de
dificuldade variados, partindo de um simples “Olá, Mundo!” até questões mais avançadas, como o
cálculo dos números primos em um determinado intervalo.

1O intervalo interquartílico (IQR - InterQuartile Range) é a diferença entre o 3º Quartil (Q3) e o 1º Quartil (Q1),
representando os 50% centrais dos dados.
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Figura 6: Tela com resultados do processamento,
exibindo mensagem de “sucesso”.

Figura 7: Tela com resultados do processamento,
exibindo mensagem de “erro de execução”.

Figura 8: Tela com resultados do processamento,
exibindo mensagem de “erro de compilação”.

Tabela 3: Distribuição das questões por tópico.
Tópico Identificadores

Variáveis e Atribuição 3,4,6,7,8,12,210
Comandos Condicionais 5,10,11,13,14,15,18,19,30,94,106,216

Laços de Repetição 16,17,26,31,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,
236,238,240,242,244,246,248,250

Vetores e Listas 25,27,29,56,57,58,59,60,65,67,69,71,72,73,74,75,76,254,256,262

Nesse momento, é pertinente apresentar exemplos de algumas questões analisadas. Isso
proporcionará uma visão mais clara dos tipos de problemas que os alunos enfrentaram e facilitará a
compreensão das análises subsequentes. A seguir, na Tabela 4, são apresentados os enunciados de
sete questões selecionadas do conjunto de dados.

Ainda, podem ser encontradas no conjunto de dados cerca de 6.557 submissões bem-
sucedidas; 5.155 submissões com erros de compilação; 2.140 submissões resultaram em erros de
tempo de execução; e 64 submissões que excederam o limite permitido. Os tipos de resultado estão
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distribuídos pelas questões conforme representado na Figura 9.

Conforme mostra a Figura 10, os dados revelam significativa desigualdade na distribuição
de submissões: 80% delas estão concentradas em apenas 19 questões, que representam cerca de
27,9% dos problemas disponíveis na plataforma. Além disso, cerca de 50% de todas as submissões
estão concentradas em apenas 9 questões. Esse desequilíbrio pode ser parcialmente explicado
pelo cadastro contínuo de novos problemas a cada semestre, o que justifica a menor quantidade de
submissões em questões mais recentes.

Tabela 4: Enunciados das Questões
Id Enunciado Tópico
3 Imprima a mensagem “Hello World!” na tela. Atenção para caracteres maiúsculos e minúsculos e para

a exclamação, que também precisa ser impressa.
Variáveis e Atribui-
ção

4 Escreva um programa que pede para o usuário digitar um inteiro. O programa deve exibir como
resultado o dobro desse número inteiro.

Variáveis e Atribui-
ção

5 Escreva um programa que pede para o usuário informar a medida da base e da altura de um retângulo
(ambos inteiros). Depois, o programa imprime em uma linha isolada o valor da área desse retângulo.

Comandos Condici-
onais

6 Faça um programa que pede para o usuário informar a medida da base e da altura de um retângulo
(ambos reais, com uma casa decimal). Depois, o programa imprime em uma linha isolada o valor da
área desse retângulo, com uma casa decimal de precisão.

Variáveis e Atribui-
ção

7 Crie um programa que receba dois números inteiros do usuário: o primeiro é o número de gols feitos
por uma determinada equipe no campeonato e o segundo é o número de gols sofridos. Visto que o
saldo de gols é a diferença entre o número de gols feitos e gols sofridos, e que o campeonato tem 38
jogos, calcule a média do saldo de gols de cada equipe por jogo.

Variáveis e Atribui-
ção

11 Faça um programa em que o usuário informa dois inteiros, que chamaremos de SOMA e SUBTRAÇÃO.
A SOMA é a soma de maçãs e bananas que o usuário comeu durante a semana. Já SUBTRAÇÃO
corresponde à diferença entre a quantidade de bananas e de maçãs que aquele usuário comeu durante a
semana. Dados os dois inteiros SOMA e SUBTRAÇÃO, seu programa deve exibir a quantidade de
maçãs que o usuário comeu durante a semana.

Comandos Condici-
onais

12 Faça um programa em que o usuário informa três inteiros em três linhas isoladas. O primeiro inteiro
corresponde à soma de maçãs e laranjas que ele comeu durante a semana. Já o segundo inteiro
corresponde à soma de maçãs e bananas que ele comeu. Por fim, o terceiro inteiro corresponde à soma
de laranjas e bananas que ele comeu. Dadas as três somas, imprima em três linhas isoladamente a
quantidade de maçãs (primeira linha), laranjas (segunda linha) e bananas (terceira linha) que o usuário
comeu durante aquela semana.

Variáveis e Atribui-
ção

Figura 9: Distribuição dos tipos de resultado por questão.

Outro aspecto importante é a distribuição relativa das submissões por tópico e tipo de resul-
tado. Conforme ilustra a Figura 11, os dados indicam que 25% das submissões estão concentradas
no tópico de Variáveis e Atribuição, 24% em Comandos Condicionais, 33% em Laços de Repetição
e 18% em Vetores e Listas. Quanto aos tipos de resultado, a Figura 12 mostra que 37% das
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Figura 10: Distribuição dos tipos de resultado por questão.

submissões foram bem-sucedidas, enquanto 47% resultaram em Erro de Execução, 15% em Erro
de Compilação e apenas 1% em Tempo Limite Excedido.

Figura 11: Distribuição Relativa das Submis-
sões por Tópico.

Figura 12: Distribuição Relativa das Submis-
sões por Tipo de Resultado.

Por fim, a Tabela 5 mostra que, em média, cada aluno teve 44,46 interações, mas com uma
grande variação, refletida no desvio padrão de 32,95. O aluno menos participativo teve apenas uma
interação, enquanto o mais ativo teve 184. Além disso, a Tabela 6 mostra que cada questão recebeu
em média 400,69 interações, com um desvio padrão ainda maior, de 404,27. A questão menos
popular teve 16 submissões, enquanto a mais popular teve 1.801. Esses dados demonstram grande
diversidade tanto na participação dos alunos quanto no interesse pelas questões.

4.2 Modelagem do Problema

A abordagem adotada neste trabalho é estruturada em torno de um modelo de grafo, onde cada
nó representa uma questão específica com a qual os alunos interagiram na plataforma de ensino.
Esse grafo é enriquecido com informações detalhadas sobre a interação dos alunos, incluindo a
quantidade de tentativas feitas para resolver cada questão, proporcionando uma visão dos desafios
enfrentados ao longo das trajetórias de aprendizado. As arestas entre os nós, por sua vez, repre-
sentam as transições de uma questão para outra, refletindo as sequências de navegação e interação
entre tópicos.

Os experimentos são organizados em duas abordagens distintas para facilitar a análise
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Medida-resumo Valor
Média 44,46

Desvio Padrão 32,95
Mínimo 1

1o. Quartil (25%) 20
2o. Quartil (50%) 33
3o. Quartil (75%) 63

Máximo 147

Tabela 5: Medidas-resumo da distribuição
de interações por usuário.

Medida-resumo Valor
Média 204,64

Desvio Padrão 289,16
Mínimo 4

1o. Quartil (25%) 23
2o. Quartil (50%) 70
3o. Quartil (75%) 299,5

Máximo 1464

Tabela 6: Medidas-resumo da distribuição
de interações por questão.

comparativa: algoritmos clássicos de mineração de padrões sequenciais e metaheurísticas evolutivas.
Na primeira abordagem, aplicam-se algoritmos clássicos para identificar padrões sequenciais de
aprendizagem com base nas trajetórias mais recorrentes. Na segunda, explora-se o uso de quatro
metaheurísticas evolutivas, especialmente vantajosas na detecção de padrões complexos que os
algoritmos clássicos podem não captar em razão de sua natureza determinística e menos flexível.

Para avaliar a eficácia da modelagem proposta, os experimentos foram conduzidos em uma
máquina com as seguintes especificações: processador Intel Core i7-8550U de 1.80 GHz (turbo
até 1.99 GHz), 16 GB de memória RAM DDR4 e SSD de 512 GB, rodando o sistema operacional
Windows 11 x64.

4.2.1 Algoritmos Clássicos

A primeira estratégia adotada neste trabalho utiliza a ferramenta SPMF (Fournier-Viger et al., 2014),
uma biblioteca de código-fonte aberto composta por diversos algoritmos relacionados à tarefa de
descoberta de padrões sequenciais em datasets. Para extração dos padrões, foram escolhidos os
algoritmos GSP, SPADE, FreeSpan, SPAM e LAPIN. Esses algoritmos foram executados contra o
dataset considerando valores de suporte mínimo variando no intervalo de 0,1 a 1.

A quantidade de padrões detectados, o tempo de processamento e a memória consumida
em KB estão representados, respectivamente, nas Figuras 13, 15 e 17. Como os algoritmos se
comportam de forma similar a partir de um valor de suporte mínimo igual a 0,30, também foram
analisados o comportamento de tais algoritmos no intervalo de 0,1 a 0,30, conforme detalham as
Figuras 14, 16 e 18.

Os algoritmos clássicos apresentam desempenhos similares em termos de tempo de pro-
cessamento, memória consumida e quantidade de padrões detectados. Nesse sentido, apenas o
algoritmo SPAM foi selecionado para uma análise detalhada, pois é mais flexível que os demais,
possibilitando a escolha do tamanho mínimo da sequência. Para um limiar de 0,2%, foram encon-
tradas 1.202 sequências frequentes com cinco interações; 258 com seis interações; e 15 com sete
interações, resultando no total de 1.475 padrões com pelo menos cinco interações. As Tabelas 7 e
8 detalham, respectivamente, as cinco sequências mais frequentes e as cinco maiores sequências
identificadas.
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Figura 13: Quantidade de Padrões vs. Suporte
Mínimo

Figura 14: Detalhamento do Número de Padrões

Figura 15: Tempo de Processamento vs. suporte
mínimo

Figura 16: Detalhamento do Tempo de Processa-
mento

Figura 17: Memória Consumida vs. suporte
mínimo

Figura 18: Detalhamento do Consumo de Me-
mória

4.2.2 Metaheuríticas Evolutivas

A segunda estratégia consiste na geração de soluções candidatas utilizando quatro metaheurísticas
distintas: AG, OEP, OCF e ABH. A função objetivo utilizada para avaliar a qualidade dessas
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Sequência Frequência
3_1,6_1,6_2,6_3,6_4 122
6_1,6_2,6_3,6_4,6_5 115
3_1,6_1,6_2,6_3,8_1 107

3_1,6_1,8_1,14_1,15_1 104
3_1,4_1,14_1,15_1,19_1 97

Tabela 7: Cinco sequências mais frequentes

Sequência Frequência
3_1,6_1,6_2,6_3,6_4,6_5,6_6 91
6_1,6_2,6_3,6_4,6_5,6_6,6_7 87
3_1,6_2,6_3,6_4,6_5,6_6,6_7 84
3_1,6_1,6_2,6_3,6_4,6_5,6_7 83
3_1,6_1,6_2,6_3,6_4,6_6,6_7 83

Tabela 8: Cinco maiores sequências.

soluções foi a maximização do somatório das arestas do grafo. Essa função objetivo, quando
aplicada a uma solução candidata, gera um valor chamado fitness, que reflete quão consistente e
frequente é a trajetória de aprendizado identificada entre os alunos.

Cada metaheurística foi configurada para buscar sequências de tamanho 7, pois análises
preliminares mostraram que esse valor corresponde ao tamanho máximo de padrões identificados
pelos algoritmos clássicos. A quantidade de 10.000 gerações foi adotada após experimentos iniciais
indicarem que, a partir desse ponto, as soluções tendiam a se estabilizar. Além disso, cada algoritmo
foi executado 30 vezes para que a média amostral se aproximasse da normalidade e as estimativas
fossem mais representativas. Os parâmetros de inicialização dos algoritmos estão detalhados na
Tabela 9.

As Figuras 19, 20 e 21 detalham, respectivamente, o valor da função de fitness por geração, o
tempo de execução (em segundos) e a memória consumida (em MB).

Figura 19: Fitness vs. Geração

Os resultados indicam que o algoritmo OCF apresenta desempenho superior em termos de
fitness em comparação com os demais, para o conjunto de dados em análise. Na prática, isso
significa que o algoritmo é capaz de descobrir a trajetória de aprendizagem mais adotada pelos
alunos de forma mais rápida. O desempenho superior do OCF pode ser atribuído à sua capacidade
natural de representar sequências. Como as soluções são construídas incrementalmente com base na
probabilidade de transições entre estados e na influência dos feromônios depositados ao longo das
iterações, o algoritmo explora de forma mais direcionada o espaço de busca, reforçando trajetórias
promissoras.
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Tabela 9: Comparação dos Parâmetros de Inicialização das Metaheurísticas Evolutivas

Parâmetro Descrição AG ABH OCF OEP
Tamanho da Sequência Número de componentes da solução ou dimen-

são do problema
7 7 7 7

Número de Iterações Limite máximo de iterações (ou gerações) 10.000 10.000 10.000 10.000
População / Enxame / Colônia Quantidade de soluções consideradas em cada

iteração
100 – 100 100

Taxa de Mutação
(mutation_rate) Probabilidade de alteração de genes para garantir

diversidade
0,2 – – –

Taxa de Elitismo
(elitism_rate) Percentual de indivíduos de melhor desempenho

preservados intactos
0,3 – – –

Penalização à Diversidade
(diversity_penalty) Fator para desestimular convergência prematura,

punindo soluções muito similares
0,2 – – –

Harmony Memory Size
(HMS) Quantidade de harmonias (soluções) armazena-

das em memória.
– 500 – –

Harmony Memory Considering
Rate

(HMCR)
Probabilidade de selecionar valores diretamente
da memória ao criar nova harmonia.

– 0,9 – –

Pitch Adjusting Rate
(PAR) Taxa de ajuste fino para modificar valores já se-

lecionados da memória
– 0,4 – –

Bandwidth
(BW) Intervalo (amplitude) de variação para ajuste de

tom.
– 10 – –

Taxa de Evaporação
(evaporation_rate) Taxa de dissipação do feromônio depositado pe-

las formigas
– – 0,1 –

alpha Fator de influência dos feromônios na escolha
do caminho

– – 1,0 –

beta Fator de influência das informações heurísticas
na escolha do caminho

– – 1,0 –

Fator de Inércia Controla a velocidade de deslocamento das par-
tículas de uma iteração para outra

– – – 0,5

Fator de Influência Individual Define a influência de atração em torno da me-
lhor posição encontrada pela própria partícula,
estimulando a busca local

– – – 1,5

Fator de Influência Coletiva Determina a influência de atração em torno da
melhor posição global do enxame, fomentando a
busca global

– – – 1,5

Outros algoritmos que apresentaram bom desempenho foram o OEP e o AG, pois também
conseguiram encontrar sequências relevantes dentro da quantidade de gerações anteriormente
configurado. Em contrapartida, o algoritmo ABH apresentou desempenho consideravelmente
inferior, necessitando cerca de 50.000 gerações para alcançar a convergência. O mecanismo de
ajuste das soluções no ABH é baseado em perturbações aleatórias nas posições da harmonia,
sem um mecanismo explícito para garantir a continuidade lógica das sequências geradas. Como
resultado, o ABH pode gerar caminhos que não refletem padrões reais na base de dados, impactando
negativamente sua eficiência na descoberta de sequências válidas.

Em termos de tempo de execução e consumo de memória, o algoritmo OCF apresenta
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Figura 20: Tempo de Execução vs. Geração Figura 21: Memória Consumida vs. Geração

desvantagens em relação aos concorrentes. Seu tempo de execução é quase duas vezes maior que
o dos outros algoritmos, e seu consumo de memória também é mais elevado. Por outro lado, os
algoritmos OEP e AG conseguem alcançar resultados similares em termos de fitness, mas com
menor uso de recursos. O algoritmo ABH destaca-se pelo menor tempo de processamento, pois
realiza apenas um ajuste na população a cada geração, substituindo a pior harmonia por uma
solução candidata melhor, quando essa é encontrada.

A Tabela 10 detalha os padrões mais frequentes identificados pelos algoritmos.

Tabela 10: Dez maiores sequências.
Id. Padrão Sequencial Soma Id. Padrão Sequencial Soma
1 inicio,3_1,6_1,6_2,6_3,6_4,6_5 830 6 6_1,6_2,6_3,6_4,6_5,6_6,6_7 717
2 inicio,3_1,4_1,6_1,6_2,6_3,6_4 759 7 inicio,3_1,6_2,6_3,6_4,6_5,6_6 699
3 inicio,3_1,3_2,3_3,6_1,6_2,6_3 737 8 5_1,6_1,6_2,6_3,6_4,6_5,6_6 683
4 inicio,3_1,6_1,6_2,6_3,6_4,7_1 728 9 inicio,3_1,4_1,12_1,12_2,12_3,12_4 663
5 inicio,3_1,6_1,6_2,6_3,6_4,7_2 723 10 inicio,3_1,4_1,5_1,11_1,11_2,11_3 620

5 Discussão dos Resultados

As sequências obtidas por meio dos algoritmos clássicos (em especial, o SPAM) revelam não
apenas a dificuldade recorrente dos alunos com a questão 6, mas também destacam alguns padrões
de navegação atípicos entre os tópicos. A análise das sequências mostra que muitos alunos realizam
a transição direta da questão 4, pertencente ao tópico de “variáveis e atribuição”, para as questões
14, 15 e 19, do tópico “comandos condicionais”. Esse padrão de navegação, identificado com
frequência, sugere que os alunos estão buscando resolver problemas de temas mais avançados antes
de consolidar o entendimento das bases iniciais.

No mesmo sentido, os resultados obtidos por meio das metaheurísticas evolutivas evidenciam
que os alunos enfrentam grandes dificuldades para superar as questões 6, 7, 11 e 12. Essas questões
se destacam em relação às demais, justificando a dificuldade adicional enfrentada pelos alunos. Nas
questões 6 e 7, por exemplo, o professor exige a formatação da saída com quantidade específica de
casas decimais, porém, a plataforma não fornece exemplos de como fazer isso. As questões 11 e

936



Maranhão, D. S. S. & Soares Neto, C. S. RBIE v.33 – 2025

12 envolvem comandos condicionais e conceitos matemáticos de sistemas lineares, acrescentando
um nível extra de complexidade.

Ainda com base nos padrões obtidos pelas metaheurísticas, a Figura 22 mostra que alunos
normalmente resolvem a questão 3 (“Hello World”) e, em seguida, avançam diretamente para a
questão 6 (“Área de um Retângulo Real”), que exige a formatação da saída com duas casas decimais,
o que ajuda a justificar a quantidade excessiva de erros na questão 6. Outra característica observada
é que os alunos tentam responder às questões do tópico “comandos condicionais” (questões 5
e 11) sem terem concluído as questões de “variáveis e atribuição”, o que não condiz com o
comportamento desejado pelo professor.

Figura 22: Grafo obtido a partir das maiores sequências.

Observa-se que ambas as abordagens podem contribuir bastante para a melhoria do ambiente
de aprendizagem. Elas podem tanto ajudar a identificar quais questões precisam de revisão quanto
auxiliar na definição da sequência mais adequada de atividades na interface gráfica. Como resultado,
os alunos percebem aumento gradual de dificuldade, o que os mantém motivados a continuar usando
o ambiente. Além disso, essas técnicas oferecem ao professor uma visão mais profunda do processo
de aprendizagem, mostrando como os estudantes interagem com a plataforma e possibilitando
intervenções rápidas para prevenir a desmotivação.

Por fim, comparando as duas abordagens, percebe-se que os algoritmos clássicos são mais
indicados quando a exaustividade e a precisão são fundamentais, desde que o volume de dados não
seja muito grande. Por outro lado, em cenários onde a escalabilidade é um problema e se deseja
explorar um espaço de soluções mais amplo, as metaheurísticas representam uma alternativa efici-
ente e flexível. Além disso, elas podem ser combinadas aos algoritmos clássicos em hibridizações,
aproveitando o que cada estratégia tem de melhor.

5.1 Ameaças à Validade

Embora os resultados obtidos sejam promissores, é importante considerar fatores que podem
comprometer a validade da pesquisa. A seguir, analisam-se as quatro dimensões clássicas:

• Validade Interna: as metaheurísticas utilizadas (AGP, OEP, OCF e ABH) dependem
de parâmetros como número de gerações, tamanho da população e critérios de parada.
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Embora essas configurações sigam recomendações da literatura, variações nesses parâme-
tros poderiam alterar significativamente os resultados. Além disso, o uso de um único
ambiente de execução ajuda a minimizar, mas não elimina totalmente, variações de tempo
causadas por fatores externos.

• Validade Externa: os algoritmos foram avaliados em um único conjunto de dados, o que
limita a generalização dos resultados. Mesmo que o conjunto represente bem o contexto
de uso da plataforma, bases com características diferentes (como sequências mais longas,
maior variedade de questões ou comportamentos mais ruidosos) podem produzir padrões
distintos. A escolha dos algoritmos, embora representativa, também não abrange todas as
abordagens possíveis.

• Validade de Conclusão: cada algoritmo foi executado 30 vezes com o objetivo de reduzir
o impacto de variações aleatórias, o que favorece a aproximação da média amostral à
distribuição normal. Com isso, é possível obter medidas descritivas mais representativas.
No entanto, a ausência de testes estatísticos formais limita a força das comparações entre
algoritmos.

• Validade de Construção: as métricas utilizadas — número de padrões, uso de memória,
tempo de execução e valor de fitness — foram consideradas adequadas para representar
o desempenho dos algoritmos. Contudo, outras dimensões, como a utilidade prática
dos padrões descobertos ou sua relevância pedagógica, não foram avaliadas. Isso pode
restringir a interpretação dos resultados em contextos educacionais mais amplos.

Portanto, as decisões metodológicas adotadas neste estudo buscaram equilibrar rigor expe-
rimental e viabilidade prática. Com isso, mesmo diante das ameaças identificadas, os resultados
obtidos se mantêm relevantes para a compreensão do comportamento dos alunos, além de oferece-
rem subsídios valiosos para o aprimoramento de plataformas educacionais com base na mineração
de padrões sequenciais.

6 Conclusão

O presente trabalho realiza um comparativo qualitativo entre algoritmos determinísticos clássicos e
metaheurísticas evolutivas na tarefa de descoberta de padrões sequenciais em um ambiente real de
ensino de algoritmos. O conjunto de dados analisado no presente trabalho diz respeito ao total de
13.916 submissões de código, escritas na linguagem de programação Python, realizadas por 313
alunos matriculados em 7 turmas diferentes, para o total de 68 problemas.

A modelagem adotada neste trabalho está baseada na construção de um grafo para representar
a interação dos alunos com questões de uma plataforma de ensino. Os nós representam as questões,
enriquecidos com informações sobre a quantidade de tentativas, e as arestas indicam as transições
entre questões, criando trajetórias de aprendizado. Os experimentos foram organizados em duas
abordagens distintas para facilitar a análise comparativa: algoritmos clássicos de mineração de
padrões sequenciais e metaheurísticas evolutivas.

Na primeira abordagem, aplicam-se algoritmos clássicos (GSP, SPADE, FreeSpan, SPAM
e LAPIN) para identificar padrões sequenciais de aprendizagem com base nas trajetórias mais
recorrentes. Os algoritmos foram executados contra o dataset para valores de suporte mínimo
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variando no intervalo de 0,1 a 1. As sequências obtidas revelam a dificuldade recorrente dos
alunos com a questão 6 e destacam alguns padrões de navegação atípicos entre os tópicos, como a
transição direta da questão 4, que pertence ao tópico de variáveis e atribuição, para as questões 14,
15 e 19, que abordam comandos condicionais.

Na segunda, explora-se o uso de metaheurísticas evolutivas (AG, OEP, OCF, ABH), especial-
mente vantajosas na detecção de padrões complexos que os algoritmos clássicos podem não captar
em virtude de sua natureza determinística e menos flexível. As metaheurísticas foram usadas para
gerar soluções candidatas, buscando maximizar o somatório das arestas do grafo para sequências
de tamanho igual a sete. As soluções foram avaliadas ao longo de 10.000 gerações, detalhando
o valor de fitness por geração, tempo de execução e memória consumida. Experimentos foram
realizados 30 vezes, resultando em um banco de sequências ordenado pelos pesos das arestas.

Os resultados indicam que o algoritmo OCF teve o melhor desempenho em identificar
trajetórias de aprendizado, embora com maior tempo de execução e consumo de memória. O OEP e
AG também mostraram bom desempenho, com menor uso de recursos, enquanto o ABH necessitou
de mais gerações para convergir. Os padrões mais frequentes revelaram dificuldades dos alunos nas
questões 6, 7, 11 e 12, muitas vezes por causa da complexidade adicional não exemplificada pela
plataforma.

As duas abordagens podem melhorar o ambiente de aprendizagem de diferentes maneiras,
seja ajudando a identificar quais questões precisam de revisão ou facilitando para que os alunos
as superem com menos tentativas. Além disso, permitem definir uma sequência eficaz para a
apresentação das questões na interface gráfica, garantindo que os alunos percebam aumento gradual
na dificuldade e se mantenham motivados a continuar usando a plataforma. Finalmente, oferecem
ao professor compreensão mais profunda do processo de aprendizagem, mostrando como os alunos
interagem com a plataforma e permitindo intervenções rápidas para evitar a desmotivação.

Como trabalhos futuros, vislumbra-se a investigação do emprego de abordagens híbridas entre
algoritmos clássicos e metaheurísticas evolutivas para extração de padrões sequenciais, bem como a
integração dessa abordagem na plataforma de ensino com o objetivo de automatizar a recomendação
de problemas com base na navegação de usuários com comportamentos de aprendizagem similares.
Além disso, essa integração pode fornecer feedback imediato ao professor, permitindo ajustes
conforme os alunos utilizam a plataforma.
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