AR Revista Brasileira de Informatica na Educagdo — RBIE
¢ OS R I E Brazilian Journal of Computers in Education
: BeS INCORMATICA NA EDUCACHD (ISSN online: 2317-6121; print: 1414-5685)

https://sol.sbc.org.br/journals/index.php/rbie

..........

Submission: 03/Dec/2024; 1* round notif.: 19/Mar/2025; New version: 02/May/2025; 2" round notif.: 13/Jul/2025
Camera ready: 21/Sep/2025; Edition review: 13/Oct/2025; Available online: 27/0ct/2025; Published: 27/0ct/2025

Dificuldades no aprendizado de programacao: Um exame
baseado em mapeamento sistematico da literatura e
interpretaciao analitico-comportamental

Title: Difficulties in Learning Programming: An Examination Based on a Systematic
Literature Mapping and a Behavioral-Analytical Interpretation

Titulo: Dificultades en el Aprendizaje de la Programacion: Un Examen Basado en un Mapeo
Sistemadtico de la Literatura y una Interpretacion Analitico-Conductual

Marcelo H. Oliveira Henklain Leandro Silva Galvdo de Carvalho Eduardo Luzeiro Feitosa

Universidade Federal de Roraima Universidade Federal do Amazonas Universidade Federal do Amazonas

ORCID: 0000-0001-9884-8592 ORCID: 0000-0003-2970-2084 ORCID: 0000-0001-6401-3992

marcelo.henklain@ufirr.br galvao@icomp.ufam.edu.br efeitosa@icomp.ufam.edu.br
Resumo

Aprender a programar é uma demanda para muitos cidaddos do século XXI. Contudo, dificuldades nesse
aprendizado persistem desafiando educadores. Para colaborar com a mitiga¢do desse problema, definimos dois
objetivos para este estudo: (1) Identificar dificuldades de alunos no aprendizado inicial de programagdo a partir de
um mapeamento sistemdtico da literatura (MSL), e (2) Propor variaveis, baseadas na teoria psicologica analitico-
comportamental e passiveis de investiga¢do por pesquisas futuras, associadas a essas dificuldades. Para o MSL,
definimos uma string de busca que foi aplicada em trés bases de dados, Web of Science, ACM Digital Library e IEEE
Xplore. Encontramos 503 estudos. Apos a aplicagdo dos criterios de inclusdo e exclusdo, restaram 11. Apenas quatro
pesquisadores apresentaram mais de uma publicagdo. Esses estudos se concentram na ultima década e sdo,
tipicamente, publicados em periodicos, tém natureza empirica e identificam dificuldades em programacgdo a partir
da percepgdo de estudantes ou professores, com destaque para caracteristicas da linguagem e conceitos de
programagdo, bem como comportamentos como resolver problemas, ler e interpretar codigo e identificar fonte de
erros. Para o segundo objetivo, consideramos que a teoria analitico-comportamental interpreta fenomenos
psicologicos como comportamentos e os analisa como sistema de interagoes entre ambiente antecedente, acoes da
pessoa e ambiente consequente. Assim, a partir dos resultados do MSL e da experiéncia dos autores, propusemos 9
variaveis relativas ao ambiente antecedente que sdo dificeis de aprendermos a discriminar e, por isso, favorecem
dificuldades em programagdo, bem como 9 relativas ao ambiente consequente, relacionados ao contexto de ensino,
que podem tornar o processo de aprendizado menos efetivo. Destacamos, ainda, alguns repertorios comportamentais
importantes de desenvolver para o sucesso em tarefas de programacgdo. Esperamos com este trabalho fomentar
estudos de base analitico-comportamental que busquem compreender e intervir sobre dificuldades no aprendizado
de programacdo.

Palavras-Chave: Educag¢do em Computagdo, Dificuldades para Aprender a Programar; Andlise do Comportamento

Abstract

Learning to program is a demand for many 2lst-century citizens. However, difficulties in this learning process
persist, challenging educators. To help mitigate this problem, we defined two objectives for this study: (1) To identify
students’ difficulties in the initial learning of programming based on a systematic literature mapping (SLM); and (2)
To propose variables, based on behavioral-analytical psychological theory and open to future research, associated
with these difficulties. For the SLM, we defined a search string that was applied in three databases: Web of Science,
ACM Digital Library, and IEEE Xplore. We found 503 studies. After applying inclusion and exclusion criteria, 11
remained. Only four researchers had more than one publication. These studies are concentrated in the last decade

Cite as: Henklain, M. H. O., Carvalho, L. S. G. & Feitosa, E. L. (2025). Dificuldades no aprendizado de
programagdo. Um exame baseado em mapeamento sistemdtico da literatura e interpreta¢do analitico-
comportamental. ~ Revista Brasileira de Informdtica na Educacdo, 33, 1484-1521.
https://doi.org/10.5753/rbie.2025.5272

https://sol.sbc.org.br/journals/index.php/rbie
https://orcid.org/0000-0001-9884-8592
mailto:marcelo.henklain@ufrr.br
https://orcid.org/0000-0003-2970-2084
mailto:galvao@icomp.ufam.edu.br
https://orcid.org/0000-0001-6401-3992
mailto:efeitosa@icomp.ufam.edu.br

Henklain et al. RBIE v.33 — 2025

and are typically published in journals, are empirical in nature, and identify programming difficulties based on the
perceptions of students or teachers, with emphasis on language features and programming concepts, as well as
behaviors such as problem-solving, reading and interpreting code, and identifying sources of errors. For the second
objective, we considered that behavioral-analytical theory interprets psychological phenomena as behaviors and
analyzes them as a system of interactions between the antecedent environment, the person’s actions, and the
consequent environment. Thus, based on the SLM results and on our experience, we proposed 9 variables related to
the antecedent environment that are difficult for us to discriminate and, therefore, contribute to difficulties in
programming, as well as 9 variables related to the consequent environment, associated with the teaching context,
that may make the learning process less effective. We also highlight some behavioral repertoires that are important
to develop for success in programming tasks. With this work, we hope to foster behavior-analytic studies aimed at
understanding and addressing difficulties in learning programming.

Keywords: Computer Education; Difficulties in Learning to Program,; Behavior Analysis

Resumen

Aprender a programar es una demanda para muchos ciudadanos del siglo XXI. Sin embargo, las dificultades en este
aprendizaje persisten, desafiando educadores. Para colaborar en la mitigacion de este problema, definimos dos
objetivos: (1) Identificar dificultades de los estudiantes en el aprendizaje inicial de programacion a partir de un
mapeo sistematico de la literatura (MSL); y (2) Proponer variables, basadas en la teoria psicologica analitico-
conductual y susceptibles de ser investigadas en futuras investigaciones, asociadas a estas dificultades. Para el MSL,
definimos una cadena de busqueda aplicada en tres bases de datos: Web of Science, ACM Digital Library e IEEE
Xplore. Encontramos 503 estudios. Tras aplicar los criterios de inclusion y exclusion, quedaron 11. Solo cuatro
investigadores presentaron mas de una publicacion. Estos estudios se concentran en la ultima década y son,
tipicamente, publicados en revistas, tienen naturaleza empirica e identifican dificultades en programacion a partir
de la percepcion de estudiantes o profesores, destacando caracteristicas del lenguaje y conceptos de programacion,
asi como comportamientos como resolver problemas, leer e interpretar codigo e identificar la fuente de errores. Para
el segundo objetivo, consideramos que la teoria analitico-conductual interpreta los fenomenos psicologicos como
comportamientos y los analiza como un sistema de interacciones entre el ambiente antecedente, las acciones de la
persona y el ambiente consecuente. Asi, a partir de los resultados del MSL y en nuestra experiencia, propusimos 9
variables relativas al ambiente antecedente que son dificiles de discriminar y favorecen dificultades en
programacion, asi como 9 relativas al ambiente consecuente, relacionadas con el contexto de ensefianza, que pueden
hacer que el proceso de aprendizaje sea menos efectivo. También destacamos algunos repertorios conductuales
importantes de desarrollar para tener éxito en tareas de programacion. Esperamos que este trabajo fomente estudios
de base analitico-conductual que busquen comprender e intervenir en las dificultades del aprendizaje de la
programacion.

Palabras clave: Educacion en Computacion, Dificultades para Aprender a Programar; Andlisis del Comportamiento

1485

Henklain et al. RBIE v.33 — 2025

1 Introducao

Programar computadores, de um ponto de vista analitico-comportamental, ¢ um comportamento
humano complexo, mas isso ndo significa que aprendé-lo precise ser uma experiéncia aversiva ou
frustrante (Lazzari, 2013; Fontoura-Junior et al., 2023). Nao obstante, as taxas de retengdo e
evasdo em disciplinas do ensino superior de introdugdo a programacgao persistem elevadas no
Brasil e no mundo (Pereira et al., 2019; Castro & Tedesco, 2020). Devemos perguntar, entdo,
quais sdo as dificuldades relacionadas ao ensino de programacao que justificam esse cenario e
como essas dificuldades podem ser interpretadas pela teoria analitico-comportamental de modo a
orientar mais pesquisas sobre essa tematica?

Essas sdo questdes relevantes de serem respondidas. Estudo recente projetou que, no periodo
de 2021 a 2025, a industria de tecnologia da informagdo e comunicagdo precisou contratar em
média 159 mil profissionais de informatica por ano no Brasil. Contudo, sdo formados apenas 53
mil, ou seja, tivemos um déficit de 106 mil profissionais a cada ano nesse periodo (Brasscom,
2021). Para muitos desses profissionais, a programagdo de computadores ¢ uma habilidade
crucial. Mesmo em um cendrio pessimista de perda de empregos em razao de crise economica ou
evolucdo de ferramentas de Inteligéncia Artificial (IA), capazes de substituir postos de trabalho,
¢ preciso considerar que precisaremos de profissionais ainda mais capacitados para a tarefa de
programacao de modo a manter e evoluir IAs e outras tecnologias (Yusoff et al., 2020).

Além disso, em um mundo marcado pela digitalizacdo de todos os processos, necessitamos
de uma sociedade minimamente letrada para interpretar codigos e, caso ndo seja para criar
programas, adapta-los para as suas necessidades, nas mais diversas areas de atuacdo profissional
e esferas da vida (Unesco, 2014; Satub & Chothia, 2022). Ademais, para desenvolvermos o
pensamento computacional em todos, visto que se trata de habilidade necessaria para o cidadao
do século XXI, também precisamos do ensino de introdu¢do a programacao desde a educacio
basica. Programar ¢ um dos principais meios identificados de promog¢ao desse tipo de pensamento
que, hoje, ja compde, inclusive, curriculos da educacio basica em diferentes paises do mundo,
incluindo o Brasil (Wing, 2006; BNCC, 2018; Santana et al., 2021).

E, portanto, evidente a demanda pela superacio de obstaculos em relagdo ao aprendizado de
programacdo. Também ¢ preciso que as pessoas que desejem trabalhar com programacao
aprendam a “programar computadores com conforto e sentido”, isto €, sem que a tarefa de
programar seja exaustiva e sem que a pessoa dependa excessivamente de auxilio para entender o
que esta fazendo ou como deve proceder para programar corretamente (Lazzari, 2013). Nesse
contexto, descobrir, especificamente, quais sdo as dificuldades dos alunos ¢ importante porque
professores precisam desse conhecimento para planejar o ensino. Afinal, sabendo os obstaculos
que poderdo enfrentar, estardo melhor preparados para supera-los ou atenud-los (Qian & Lehman,
2022). As dificuldades também nos indicam aprendizagens que deveriam ter sido garantidas
previamente, permitindo um conhecimento mais preciso do que, efetivamente, ¢ requerido de uma
pessoa na tarefa de programacao, o que permite ao professor aperfeigoar recursos avaliativos e de
ensino (Fontoura-Junior et al., 2023). O conhecimento das dificuldades ¢ relevante também para
desenvolvedores de linguagens de programagdo e ambientes de desenvolvimento, pois
conhecendo-as € possivel, por exemplo, melhorar mensagens de erro.

No que diz respeito ao mapeamento de dificuldades no aprendizado de programacao,
dispomos de muitos estudos (e.g., Qian & Lehman, 2017; Yusoff et al., 2020; Araugjo et al., 2021;
Alasmari et al., 2024). Nao obstante, poucos se dedicam a identificar motivos para as dificuldades
e tipos de dificuldades mais complexas, existindo uma tendéncia a enfatizar problemas relativos
ao aprendizado de sintaxe de uma linguagem (Satub & Chothia, 2022). Notamos também que,
geralmente, na literatura de informética na educagdo e educagdo em computacao, poucos estudos
examinam os processos de ensinar e aprender ou dificuldades neles a luz da teoria analitico-

1486

Henklain et al. RBIE v.33 — 2025

comportamental. Em uma consulta rapida a Biblioteca Digital da SBC, em abril de 2025, com a
string "andlise do comportamento" OR "analitico-comportamental" OR "behaviorismo radical"
OR "behaviorismo" e o critério de que o descritor poderia aparecer em qualquer lugar do artigo,
podendo ter sido publicado em anais ou periddicos, em qualquer data, encontramos apenas 24
estudos. Desses, apenas 7 eram analitico-comportamentais. Nenhum deles examinava os
processos de ensinar e aprender programacdo. Esse dado é preocupante porque a Analise do
Comportamento ¢ uma teoria cientifica que estuda e intervém sobre fendémenos psicologicos,
tendo sido bem-sucedida quando aplicada a diversos contextos, com destaque para o campo
educacional (Cianca et al., 2020). A proposito, a Analise do Comportamento Aplicada a Educagao
tem sido efetiva at¢é mesmo nos casos mais desafiadores, envolvendo pessoas com
desenvolvimento atipico e transtornos de aprendizagem (Heward et al., 2022). Por esse motivo, ¢
razoavel trazé-la para o debate sobre dificuldades no ensino de programagao.

Neste estudo, o que pretendemos foi (1) identificar dificuldades de alunos no aprendizado
inicial de programacao a partir de um mapeamento sistematico da literatura (MSL) e (2) propor
variaveis, baseadas na teoria psicologica analitico-comportamental e passiveis de investigacao por
pesquisas futuras, associadas a essas dificuldades. Tais varidveis sdo, conforme explicaremos,
propriedades de estimulos associados a programagao ou do repertorio comportamental requerido
para que se consiga programar. Complementarmente, apresentamos uma atualizacdo da analise
do comportamento de “programar computadores com conforto e sentido”, elaborada por Lazzari
(2013) (ver Apéndice 1), que busca descrever os comportamentos mais especificos que o
constituem e que podem ser adotados como objetivos de aprendizagem (tecnicamente
denominados de “comportamentos-objetivo”) em disciplinas de introducdo a programacao. Esse
exame pode ser Util para indicar quais aprendizagens devem ser garantidas, quando almejamos
que alguém saiba programar, e, portanto, também ajuda a entender dificuldades com a
programacao. Conforme exposto, essas 2 contribui¢des, proposicdo de varidveis e analise do
comportamento de programar computadores, serdo feitas com base na ciéncia da Andlise do
Comportamento (AC), que serd apresentada neste trabalho de forma introdutoria.

O nosso MSL contribui com a literatura porque (1) incluiu a Web of Science, base de dados
internacional de prestigio, mas pouco adotada nas revisdes de literatura existentes sobre
dificuldades com a programagdo, (2) incluiu estudos com diferentes publicos de alunos
aprendendo programacao (criangas, jovens, adultos, cursando ou ndo graduagdo em computagao),
permitindo uma visdo mais ampla dos tipos de dificuldades dos iniciantes, (3) enfatizou o exame
de dificuldades basicas e complexas no aprendizado de programacao e (4) disponibilizou a base
de dados da pesquisa, para que possa ser criticada e aperfeicoada por estudos futuros. Com relagao
a proposi¢ao de varidveis associadas a dificuldades e a analise do comportamento de programacao
de computadores, ressaltamos que consiste em uma proposta dos autores a partir de nossa
experiéncia com AC e educacdo em computacdo, bem como da leitura realizada dos estudos
incluidos no MSL. Nao temos a pretensdo de que esta proposta seja definitiva. Por ser algo
preliminar, ndo adotamos procedimento sistemdtico na confec¢do desses dois produtos. A
expectativa ¢ que ambos ilustrem possibilidades de aplicagdo da AC ao exame de dificuldades no
aprendizado de programagdo e que sirva como subsidio para pesquisas futuras, em relagdo as
quais apresentaremos propostas concretas.

Organizamos este trabalho em 6 se¢des. Na fundamentacdo teorica, caracterizamos a AC
enquanto disciplina cientifica e apresentamos uma breve nota sobre aspectos a considerar em um
exame analitico-comportamental acerca do comportamento de programar computadores. Na
secdo de trabalhos relacionados, revisamos a literatura e destacamos as novidades deste estudo.
No método, explicitamos os critérios para a condu¢do do MSL e descrevemos como propusemos
variaveis e atualizamos o exame de Lazzari (2013). Na secdo de resultados e discussao,

1487

Henklain et al. RBIE v.33 — 2025

descrevemos os nossos achados e, na conclusdo, apresentamos a nossa resposta ao problema de
pesquisa, destacando implica¢des educacionais, limitagcdes e proposta para trabalhos futuros.

2 Fundamentacio tedrica

2.1 Perspectiva psicologica adotada

Neste estudo, interpretaremos os fendmenos psicologicos envolvidos na programagdo de
computadores a luz da Andlise do Comportamento (AC). Essa ciéncia pode ser caracterizada
(Carvalho-Neto, 2002; Todorov, 2007; Carrara & Strapasson, 2014; Botomé, 2015; Zilio &
Neves-Filho, 2018) como analitica, pois decompde fendmenos em seus processos constituintes
para entendé-los melhor e, assim, alcangar a compreensdo do todo. Possui natureza experimental
e, por isso, requer o teste sistematico de relagdes entre variaveis independentes sobre dependentes,
tanto em ambientes controlados, como naturais, aceitando, nesse cenario, as limitagdes inerentes
de controle experimental. Notabiliza-se por eleger o comportamento como seu objeto de estudo e
ndo como uma medida indireta de outros processos. Entende o comportamento como fendmeno
natural, em uma perspectiva monista materialista, que consiste em um complexo sistema de
interagdes entre ambiente (historico ou imediato, interno ou externo, fisico ou social, que antecede
e sucede o que o organismo faz) e agdes que um organismo como um todo pode apresentar, a
partir de seu aparato bioldgico. A AC se dedica a teorizar sobre o comportamento a partir de
dados, em uma légica indutiva e buscando encontrar meios de descrever da forma mais precisa e
parcimoniosa possivel correlagdes observadas entre (1) eventos ambientais antecedentes, (2)
acdes do organismo e (3) eventos ambientais consequentes. Esses trés tipos de eventos constituem
a unidade de analise do fendmeno comportamental, sendo denominada de triplice contingéncia.

Se consideradas multiplas ocorréncias de um comportamento, ¢ possivel notar que cada um
dos seus trés componentes (antecedente, acao e consequente) pode ocorrer de formas ligeiramente
distintas, mas mantendo a func¢do. Por exemplo, uma ac¢do de digitar pode ocorrer de diferentes
formas (com uma s6 mao, com as duas), mas sempre com a mesma fun¢do de produzir palavras
na tela do computador. Estimulos, por sua vez, antecedentes ou consequentes, podem variar em
suas propriedades de duracdo, intensidade etc. Por isso, analistas do comportamento usam a
“expressdo” classe de acdes ou de antecedentes e consequentes. A ideia ¢ que diferentes formas

de apresentacdo compdem uma mesma classe, quando compartilham uma fung¢ao.

Sobre o termo comportamento, importa esclarecer que, na tradicdo fisiologica, ele pode
aparecer associado apenas a dimensdo observavel de movimentos ou atividades de partes do
organismo, podendo envolver desde o funcionamento de um o6rgdo até o recrutamento da
musculatura esquelética para a promocao do deslocamento do corpo (Carvalho-Neto, 2002).
Contudo, o sentido dado ao termo comportamento na teoria analitico-comportamental ¢ distinto,
por isso a énfase nas expressoes “organismo como um todo” e “relacdo entre ambiente e acdes”.
Trata-se, portanto, de considerar como pessoas interagem com o seu mundo, no lugar de um
exame da acdo em si mesma, por exemplo, em termos de sua forma de apresentagao.

Processos de interesse para a educagdo em computacdo, como “raciocinar logicamente
sobre a relacdo existente entre componentes de um problema”, “resolver problemas considerando
requisitos do problema” e “programar computadores com conforto e sentido” sdo interpretados
pela AC como comportamentos. Neles, a dimensdo da agdo ¢ representada por um verbo no
infinitivo e a dimensdao do ambiente ¢ sintetizada em um complemento, como “... logicamente
sobre a relagdo existente entre componentes de um problema”. Para a AC, ndo ha problema algum
que processos envolvidos no comportamento, como ¢ o caso do raciocinio 16gico, ocorram de

modo que s6 a pessoa que se comporta possa observa-los (Todorov, 2007). A publicidade ou

1488

Henklain et al. RBIE v.33 — 2025

externalidade do fendmeno ndo ¢ o que importa para que se possa realizar um exame analitico-
comportamental (Zilio & Neves-Filho, 2018).

O foco estd, repetimos, no exame das relacdes de intercdmbio entre ambiente e agdes.
Algumas perguntas podem ilustrar a que relagdes estamos nos referindo: em que contexto a pessoa
agiu? como esse contexto impactou esse fazer, favorecendo-o ou niao? contextos ligeiramente
distintos continuariam produzindo o mesmo efeito? contextos sem qualquer relagao fisica entre si
podem ter o mesmo efeito? que mudangas no mundo esse fazer produziu apo6s ter sido emitido?
como tais alteragdes no mundo impactaram a probabilidade de recorréncia desse fazer, sua
frequéncia de emissdo e for¢a (no sentido de persisténcia ao longo do tempo e diante de novas
circunstancias)? em que medida essas mudangas no mundo repercutiram sobre o significado que
o contexto atual passard a ter em futuras interagdes? etc. Portanto, da definicdo de comportamento
apresentada, deve ficar explicito que ndo hé limitag@o a priori sobre a sua aplicag@o a processos €
fendmenos psicoldgicos, tradicionalmente, denominados como cognitivos ou emocionais, ou
aqueles que sd3o chamados de complexos, criativos e subjetivos.

Contudo, ¢ preciso lembrar que as explicagdes para o comportamento segundo a AC podem
diferir do que aquelas do senso comum. No dia a dia, € usual que se observe uma pessoa agir e,
entdo, que se infira ou crie uma entidade que habita dentro dessa pessoa, para explicar a sua a¢ao.
Por exemplo, se uma crianga, tipicamente, faz muitas perguntas (acao), isso ¢ explicado em fung¢ao
da sua “curiosidade” (entidade interna). Essa entidade foi apenas inferida do que pode ser
observado e, na pratica, acrescenta pouco ao conhecimento cientifico sobre porque a crianga
pergunta tanto. O motivo ¢ que a “curiosidade” ¢ apenas uma repeticdo do que ja sabemos,
gerando uma explicagdo circular: sabe-se que a pessoa € curiosa porque faz muitas perguntas, e
faz tantas perguntas porque ¢ curiosa. Em um exame cuidadoso, vemos que a expressao
“curiosidade”, provavelmente, surge com a fun¢do de nomear um conjunto de comportamentos,
que envolve perguntar sobre temas diversos, em muitas situagdes. De nome, passa, entdo,
inadvertidamente, a adquirir o papel de entidade com capacidade de causar o comportamento. Na
AC, explicar requer descrever as complexas relagdes histdricas e presentes entre ambiente e agdes
da pessoa para fornecer explicagdes sobre por qual motivo a pessoa se comportou de determinado
modo (Ledo & Laurenti, 2009; Carrara & Strapasson, 2014). Cabe a fisiologia e neurociéncia e
ndo a AC o papel de explicar como, biologicamente, esse comportamento foi viabilizado.

A interpretacdo de processos e fendmenos psicologicos como comportamentos € a estratégia
analitica e experimental da AC, levaram a descoberta de multiplos principios de aprendizagem
que ajudam a compreender e manejar comportamentos de modo mais efetivo (Moreira &
Medeiros, 2018). A aplicagdo dessas descobertas permitiu o desenvolvimento de uma ciéncia e
tecnologia com um relevante arcabouco de contribui¢des para a humanidade. Tal impacto social
abarca desde o tratamento de pessoas em sofrimento mental e com desenvolvimento atipico, com
destaque para o transtorno do espectro autista, até intervengdes para a promocdo de
comportamentos pro-ambientais, preven¢do de acidentes no trabalho, manejo de condutas em sala
de aula, desenvolvimento de habilidades de informética, adesdo a tratamentos de satde, ampliacao
do potencial criativo, prevencao de evasdo em cursos, reducdo de comportamentos violentos,
atenuagdo na propagacdo de fake nmews, mudanga de comportamento alimentar, entre outros
exemplos. Até o momento, além do que citamos, existe um rol proposto de 350 dominios, que
ilustram como a AC pode ser util para nos ajudar a manejar de modo mais efetivo diferentes
classes de comportamento humano (Heward et al., 2022).

Tendo em vista o sucesso da AC em outros ambitos, com destaque para a educagdo (Cianca
et al., 2020), acreditamos que ela também pode trazer contribui¢cdes ao campo da informatica na
educacdo e da educacdo em computagdo. Um tema importante nessa subarea da computagdo diz
respeito as dificuldades no aprendizado de programacao. Identificamos que ele ja comegou a ser
investigado por analistas do comportamento (Lazzari, 2013) e pretendemos, neste estudo, como

1489

Henklain et al. RBIE v.33 — 2025

parte do nosso segundo objetivo, ampliar esse exame, bem como incentivar que continue € se
fortaleca a colaboragao entre analistas do comportamento e educadores.

2.2 Breve interpretacio analitico-comportamental sobre o comportamento de programar
computadores

Interpretar a luz da AC em que consiste programar envolve examinar esse fendmeno a luz da
triplice contingéncia, isto ¢, como processo comportamental, composto por classes de eventos
ambientais antecedentes, classes de agdes e classes de eventos ambientais consequentes
interrelacionadas (Lazzari, 2013; Botomé, 2015). Classes de comportamentos podem manter entre
si uma relacdo de encadeamento, na qual o ambiente consequente produzido por uma classe de
acio ¢ ambiente antecedente para a ocorréncia de outra classe de a¢do. E possivel existir também
uma relagdo de composicao, em que varias classes de comportamento mais especificas sdo pré-
requisitos para que outra classe, mais abrangente, possa ocorrer.

Neste estudo, com base em Lazzari (2013), consideramos a classe geral de comportamentos
“programar computadores com conforto e sentido” como composta por sete classes de
comportamentos mais especificas, encadeadas entre si de modo que, diante de um problema, seja
possivel encontrar uma solugdo algoritmica e construir um programa para implementa-la,
resolvendo o problema. Essas classes sdo as seguintes, conforme a ordem de seu encadeamento:
(1) Avaliar argumentos de acordo com regras logicas; (2) Caracterizar funcionamento de
computadores; (3) Resolver problemas; (4) Construir algoritmos; (5) Formalizar algoritmos; (6)
Escrever programas de computador; (7) Avaliar programas de computador. Cada uma das sete
classes de comportamentos mais especificas pode, por sua vez, ser decompostas em classes de
comportamento ainda mais especificas, sendo que o grau de especificidade dessa descricao
depende de quanta precisdo ¢ necessaria para um determinado fim, como o ensino desses
comportamentos. Para um processo de ensino pode ser util chegar a descrigdes de
comportamentos tdo simples que o professor poderia comegar por eles, pois, provavelmente,
seriam aprendidos com menos esfor¢o, permitindo uma evolucdo gradual do estudante, indo do
aprendizado de comportamentos mais simples para os mais complexos (Cortegoso & Coser,
2023). Esse processo de andlise e decomposi¢do de comportamento ¢ util para o professor
identificar claramente o que precisa ser ensinado e como avaliar se cada aprendizagem relevante
foi alcancada e em que grau. Esclarecemos que, ao descrever comportamentos, o verbo no
infinitivo indica a acdo e os complementos ao verbo podem conter informacdes sobre eventos
ambientais antecedentes e/ou consequentes. Usar apenas verbo e complemento gera uma
descri¢do mais genérica, mas que € util por ser mais facil de comunicar, do que descrever o
comportamento em formato de tabela com uma descri¢do pormenorizada da triplice contingéncia.

Uma davida comum em relagdo a AC diz respeito a como interpretar processos cognitivos
tipicamente associados a programacdo de computadores, como ‘“raciocinio logico” e
“pensamento”. A solugdo consiste em tratar esses termos e construtos cognitivos como respostas
verbais do cientista ou do educador em computacao e buscar, entdo, os seus significados entre os
determinantes ambientais dessas respostas verbais (Sério, 2005). Precisamos, portanto, avaliar sob
que condigdes termos como ‘“raciocinio 16gico” e “pensamento” sdo usados para falar sobre
programacao de computadores ou, ainda, que tipos de comportamentos costumam ser entendidos
como “raciocinio l6gico” ou “pensamento”. De acordo com Bandini e Delage (2012), o raciocinio
¢, tipicamente, usado no contexto de ser um tipo de pensamento, motivo pelo qual vamos ilustrar
como examina-lo. Esse exame sera util para a interpretagdo que faremos nas tltimas se¢des do
estudo sobre as dificuldades no aprendizado de programagao.

O termo pensamento, segundo Bandini e Delage (2012), parece ser usado em diferentes
contextos, com destaque para falar de: (1) comportamentos especificos que pessoas podem emitir,
como nos casos de “pensar matematicamente”; (2) agir em relagdo a um estimulo especifico, como

1490

Henklain et al. RBIE v.33 — 2025

quando falamos que estamos “pensando sobre...”; (3) algum processo comportamental, como ter
discriminado a forma correta de agir em uma situacao, que ¢ quando falamos que a pessoa “pensou
ou julgou corretamente como agir’; (4) no contexto de uma ac¢do fraca, pois o controle
discriminativo existente ¢ insuficiente para sinalizar a agdo esperada, condicdo em que falamos
“eu penso que devo agir assim” no lugar de “eu sei que devo agir assim”; e, principalmente, de
(5) comportamentos precorrentes, no sentido do que a pessoa faz antes de produzir uma solucao
e que aumenta as chances de que tal solucao ocorra, sendo, portanto, uma parte fundamental do
processo de resolucdao de problemas. Esse quinto uso, possivelmente, ¢ o uso mais comum do
termo pensamento e envolve, dentre outros, dois comportamentos mais basicos e precorrentes em
relacdo a solugdo de problemas que sdo atentar e decidir.

O termo atencao ¢, tipicamente, usado para falar de agdes que produzam como consequéncia
melhorias no contato da pessoa com os estimulos antecedentes que precisam ser discriminados,
para a adequada solu¢do de um problema (Bandini & Delage, 2012). “Olhar para um estimulo”,
“procurar propriedades de um estimulo”, “afastar estimulos potencialmente distratores” e
“responder adequadamente a certas propriedades do estimulo” podem ser comportamentos mais
especificos envolvidos no comportamento mais abrangente de “atentar para um estimulo de modo
a aumentar as chances de solucdo do problema”. A anélise de que pensar envolve atentar ¢ util
para a educagdo porque orienta o professor sobre como, concretamente, ensinar estudantes de
programacao a pensar. Esse aprendizado pode comegar por ensina-los a atentar para os estimulos
relevantes, como os requisitos do problema. Para a AC, o ambiente ndo tem um significado
inequivoco, mudando em funcdo da nossa histéria de aprendizagem em relagdo a ele. Por
exemplo, a partir do ensino, partes do ambiente, antes sem significado especifico, como a
expressdo “até que” em “o programa deve ser executado até que o usudrio clique na tecla S”,
presente no enunciado de um problema, podem adquirir fungdes de sinalizagdo do caminho mais
promissor para a resposta correta, como adotar um laco de repeticdo com uma condi¢do de
verificagdo sobre se a letra ‘S’ foi pressionada. Além de atentar, pensar para resolver um problema
requer tomar decisdes sobre o melhor curso de acao.

O termo decidir, por sua vez, também parece se referir a um comportamento precorrente
que envolve “selecionar um curso de a¢do quando dois ou mais estdo em conflito”, pois sdo,
inicialmente, igualmente provaveis (Bandini & Delage, 2012). Para que uma decisdo ocorra, ¢
critico “manipular o ambiente antecedente, em busca de um novo arranjo de estimulos que torne
mais provavel de ser emitido o curso de acdo com maior potencial de sucesso para a solugdo do
problema”. Dessa andlise, o educador em computacdo pode notar que ensinar a pensar passa por
ensinar seus alunos estratégias sobre como “buscar informagdes adicionais acerca do problema”
ou sobre como “representar com diagramas os requisitos que precisam ser atendidos”, de modo a
tornar mais evidente qual a melhor solucdo do problema. Avangando em nosso exame, podemos
perguntar: o que ¢ um problema e por que pensar sobre ele pode ser util para soluciond-lo?

Segundo a AC, problema ¢ uma situacdo na qual uma ac¢do que produz a solucdo do
problema ndo ¢ possivel de ser emitida, exceto se os comportamentos precorrentes forem
apresentados e, por meio deles, um novo arranjo contextual for construido de tal modo que a agao
que soluciona o problema possa, entdo, ser apresentada (Bandini & Delage, 2012). Note que, para
falarmos que uma situagdo ¢ problematica para uma pessoa, ndo ¢ admissivel que ela tenha sido
diretamente treinada sobre como resolver tal situagdo. Os comportamentos precorrentes precisam
ocorrer. Contudo, isso ndo significa dizer que essa pessoa ndo tenha tido algum treino em sua
histéria de vida que possa lhe servir em face de um problema. Desconsiderando os casos de sorte,
um problema sé € passivel de solu¢do por alguém quando ela ja teve algum treino relativo aos
comportamentos especificos que compdem o comportamento mais geral, capaz de produzir a
solugdo. No paradigma de recombinagdo de repertorios (Bandini & Delage, 2012), pesquisadores

1491

Henklain et al. RBIE v.33 — 2025

estudam como comportamentos distintos, aprendidos na historia da pessoa, podem, sob controle
de uma situagdo-problema especifica, se recombinar e, com isso, levar a solu¢ao do problema.

Um exemplo pode ajudar a entender como repertérios podem se recombinar. E o caso de
primatas que aprendem, em uma secdo de treino, a puxar para perto de si um cacho de bananas
fora de sua gaiola com auxilio de uma ferramenta e, em outro treino, aprendem a conectar varetas
para ganhar bananas. Em uma situac¢do na qual bananas sio colocadas fora da gaiola, mas a uma
distancia inalcancavel, mesmo com a ajuda da ferramenta do Treino 1, se uma vareta que possa
se conectar a essa ferramenta estiver disponivel, a conexao de ambas pode aumentar o tamanho
da ferramenta de captura de bananas, resolvendo o problema. Assim, quando entendemos a
histéria de aprendizagem e as relagdes presentes entre eventos ambientais antecedentes, agdes e
eventos ambientais consequentes, ficam mais evidentes quais sdo os aspectos criticos no que
chamamos de resolver problemas ou, de modo mais genérico, pensar e raciocinar. Também fica
mais evidente para o educador em computacdo que € preciso precisdo sobre o que significa
programar computadores, para que consigamos ensinar esse comportamento de modo efetivo.

Para a AC, o nosso primeiro desafio ¢ descobrir a historia de aprendizagens e as intrincadas
relacdes entre ambiente e acdes do organismo, para que possamos entender melhor como sdo
adquiridos comportamentos como pensar, raciocinar, resolver problemas e programar. Outro
desafio crucial ¢ o de mapear quais sdo as classes de comportamento que, se aprendidas, sdo
suficientes para tornar uma pessoa apta a apresentar um comportamento que depende desses pré-
requisitos. No contexto do ensino, cada classe de comportamento que precisa ser aprendida pode
ser denominada de “comportamento-objetivo” (Kienen et al., 2021). Esse termo enfatiza que o
processo de ensino deve iniciar pela proposi¢cdo do que é esperado que o aluno aprenda, pois € a
partir desse alvo que se podem construir instrumentos de aprendizagem e propor metodologias de
ensino. Tal légica supera a nocao de que se ensinam “conteudos”, enfatiza o aluno como central
no processo de ensino-aprendizagem e abre caminho para que se adotem, com alta efetividade,
metodologias ativas, nas quais tarefas dos alunos, dentro e fora da sala de aula, serdo orientadas
para o desenvolvimento de comportamentos de valor, capazes contribuir com as suas vidas e
atuagdes nas realidades sociais em que vivem (Cortegoso & Coser, 2023).

Neste estudo, coerentemente com nosso segundo objetivo, pretendemos atrair a atencao de
pesquisadores de informatica ne educacdo, educagdo em computacdo e tecnologias na educagdo
em computagdo para que conduzam exames conceituais e pesquisas empiricas sobre aprendizado
de programacao de computadores a luz da AC. Para tanto, fornecemos nesta se¢do algumas
explicagdes tedricas basicas. Na secdo de resultados e discussdo, apresentaremos tendéncias e
lacunas no conhecimento cientifico a partir do Mapeamento Sistematico da Literatura (MSL) e
discutiremos variaveis relevantes, de um ponto de vista analitico-comportamental, associadas as
dificuldades com o aprendizado de programagdo. Por fim, retomaremos o trabalho de Lazzari
(2013), relacionado a descoberta das classes de comportamento mais especificas, constituintes da
classe geral “programar computadores com conforto e sentido”. Assim, esperamos estimular o
desenvolvimento de estudos sobre ensino de programagdo baseados em AC.

As referéncias que selecionamos para este texto tem uma funcdo adicional de serem
didaticas e mesclarem textos classicos e atuais, de modo que pesquisadores interessados tenham
elementos para avangar em estudos sobre AC. Destacamos que conceitos fundamentais de AC,
como os de refor¢o e equivaléncia de estimulos, ndo foram suficientemente desenvolvidos ou
mencionados em razao de limitacdo de espacgo, devendo ser examinados em trabalhos futuros.

1492

Henklain et al. RBIE v.33 — 2025

3 Trabalhos relacionados

Nesta se¢do, apresentamos estudos que nos permitiram identificar lacunas no conhecimento
cientifico sobre aprendizado de programac¢do de computadores e que, portanto, justificam este
estudo. Silva et al. (2022), por exemplo, investigaram quais sdo os topicos mais abordados na
primeira disciplina de programagdo (CS1) que ¢ ofertada em cursos de computacdo das
universidades federais brasileiras. Foram obtidas 150 ementas de CS1 de 61 universidades
federais dentre as 69, sendo a maior parte do Nordeste e, na sequéncia, do Sudeste. Nenhum tépico
isoladamente esteve em todas as 150 ementas analisadas. Os topicos com mais de 50% de
ocorréncia foram: variaveis, constantes ¢ atribuicdes (92,7%); comandos condicionais (92%);
comandos de repeticdo (90%); fungdes, modularizagdo e subprogramas (86%); expressoes
aritméticas, logicas e relacionais (85,3%); varidveis compostas homogéneas unidimensionais
(83,3%); variaveis compostas homogéneas multidimensionais (80,7%); representacdes de
algoritmos (76%); entrada e saida de dados (63,3%); e varidveis compostas heterogéneas (60%).
Esses topicos sdo compativeis com o que tem sido encontrado em referéncias internacionais. Tais
resultados sugerem que ainda ndo existe clareza sobre topicos ou conteudos a serem abordados
pelo professor em sala de aula, sendo possivel inferir que o conhecimento sobre comportamentos
que precisam ser desenvolvidos em CS1, ou seja, o que se espera que os alunos aprendam a fazer
em relacdo a esses topicos e contetidos, ¢ ainda menor.

Com o MSL deste estudo, pretendemos conhecer mais sobre quais sdo as dificuldades mais
comuns em programacdo e, a partir disso, complementar a andlise do comportamento de
“programar computadores com conforto e sentido” realizada por Lazzari (2013) e que ¢ subsidio
para a proposicdo de comportamentos-objetivo no contexto do ensino de programacdo. Nesse
sentido, Silva et al. (2019) verificaram, por meio dos altos indices de reprovacao nas disciplinas
de programacao, que de fato existe dificuldade para aprender programagao, sendo a metodologia
de ensino um aspecto importante para explica-las. Por isso apresentamos neste estudo uma lista
de varidveis associadas a dificuldades de aprendizado e de comportamentos-objetivo que
professores podem considerar ao planejar e avaliar o ensino de programagao.

No contexto das dificuldades no aprendizado de programacgdo, Medeiros et al. (2020)
buscaram por artigos brasileiros, publicados entre 2010 a 2016, sobre desafios de ensino e
aprendizagem nas disciplinas de introdugdo a programacao no ensino superior. Verificou-se que
a falta de habilidades de interpretacdo de texto e déficits na formacdo em matematica, bem como
infraestrutura fisica e de recursos humanos deficitaria, sdo varidveis determinantes para as
dificuldades no aprendizado de programacdo. Os pesquisadores concluiram, entdo, que o ensino
superior brasileiro precisa de auxilio da comunidade de educagdo em computacdo. Atendendo ao
chamado de Medeiros et al. (2020), decidimos conduzir o presente estudo, avancando em relacao
a esse trabalho ao buscarmos estudos em bases de dados internacionais.

Aratjo et al. (2021), por sua vez, investigaram quais sdo 0s principais tipos de concepgdes
equivocadas em estudantes de introdu¢do a programacgdo, que nao cursam graduagdes em
informatica. Foram coletados dados de 39 alunos de Engenharia Mecanica em 2018 e 42 alunos
de Engenharia de Materiais em 2019, sendo que essa turma de 2019 obteve a maior taxa de
reprovacgdo de uma série historica de 20 semestres. Verificou-se que a turma de 2018 apresentou
mais dificuldades com o0 médulo de vetores e strings, enquanto a turma de 2019 demonstrou maior
dificuldade no médulo de lago por contagem. De modo geral, os tipos de concepgdes equivocadas
mais frequentes se relacionaram a erros sintaticos e logicos simples e erros especificos da
linguagem Python. Neste trabalho, incluimos estudos envolvendo estudantes de computacdo e de
outras areas, desde criancas a adultos, o que nos permite ter uma visdo ampla sobre o
conhecimento que tem sido produzido acerca das dificuldades no aprendizado de programacao.

1493

Henklain et al. RBIE v.33 — 2025

Em sintese, observamos que as lacunas no conhecimento envolvem a falta de descricao de
propriedades dos estimulos associados a programagdo que podem gerar dificuldades e do
repertorio que precisa ser desenvolvido para que se possa afirmar que uma pessoa sabe programar.
Ademais, notamos uma énfase na elaboracdo de recursos para ensinar € menos para auxilio ao
processo de planeja-lo. Neste estudo, nos concentramos na identificagdo de dificuldades em
programacao e na proposi¢do de variaveis associadas a essas dificuldades, o que pode repercutir
positivamente sobre planejamento, implementagao e avaliagdo do ensino.

4 Meétodo

Conduzimos um Mapeamento Sistematico da Literatura (MSL), cuja finalidade é caracterizar a
producdo de conhecimento cientifico sobre determinado fendmeno e, assim, subsidiar a
proposicao de novos estudos (Wazlawick, 2021). Neste MSL adotamos as seguintes etapas, que
sdo compativeis com as recomendagdes de Petersen et al. (2015): (1) Formulagdo das perguntas
de pesquisa a serem respondidas pelo MSL; (2) Defini¢do dos critérios de inclusdo e exclusdo dos
estudos; (3) Definicao da string de busca; (4) Defini¢do das fontes de busca dos estudos; (5) Coleta
e analise de dados; e (6) Defini¢do de estratégia para garantia da qualidade do estudo.

Ap6s a execucao do MSL, para estimular a conducao de estudos analitico-comportamentais,
executamos mais duas etapas: (7) Organizacao de lista de varidveis associadas as dificuldades no
aprendizado de programacdo derivadas do MSL, bem como (8) Condugdo de andlise dos
comportamentos mais especificos constituintes do comportamento de “programar computadores
com conforto e sentido”, complementando o exame iniciado por Lazzari (2018).

4.1 Etapas do Mapeamento Sistematico da Literatura

4.1.1 Etapa 01 - Perguntas de pesquisa

Este MSL responde a trés questdes de pesquisa sobre pesquisas relativas as dificuldades no
aprendizado de introdugdo a programacao, a saber: PP01. Quando, por quem e onde os estudos
sdo tipicamente publicados? PP02. O que geralmente tem sido investigado e como? PP03. Quais
sdo as dificuldades mais comuns no aprendizado de programagao?

4.1.2 Etapa 02 - Critérios de inclusdo e exclusdo

Incluimos estudos (1) completos, (2) publicados como artigos em periédicos ou eventos
cientificos ou capitulos de livro, (3) redigidos em portugués, espanhol ou inglés, (4) disponiveis
na Internet via open access ou acesso institucional de um dos autores, bem como por meio do
Portal de Periddicos da CAPES, e cujo objetivo (5) envolvesse o exame sobre quais sdo as
dificuldades de estudantes no aprendizado de introducdo a programacao de computadores. Esses
estudos poderiam ser exames tedricos, revisdes de literatura ou investigacdes empiricas
envolvendo, por exemplo, estudantes de programagdo e professores que lecionam disciplinas
como introdu¢do a programagdo (no inglés, Computer Science 1 ou CS1). Nesta pesquisa, em
fun¢@o do nosso escopo ir além do MSL, adotamos critério mais restritivo de ndo coletar estudos
disponiveis em outras fontes como o ResearchGate.

Excluimos estudos que ndo atendiam a esses critérios e cujo objetivo fosse investigar (1)
tema diverso da area de educacdo em computacdo, (2) avaliacdo ou aperfeicoamento de
mensagens de erro de compiladores / interpretadores, (3) proposta, intervengdo ou caracterizagao
de praticas para ensinar programagao ou aperfeigoar repertorio, (4) énfase exclusiva no exame da
relacdo entre estados psicologicos e aprendizado de programacdo, (5) técnica de detecgdo,
classificagdo ou mensuragao de dificuldade de tarefa, (6) técnica de detecgdo, classificacdo ou

1494

Henklain et al. RBIE v.33 — 2025

mensuracdo de erros, (7) técnica de verificagdo de plagio e, de modo geral, (8) estudos que ndo
abordassem dificuldades no aprendizado inicial de programacgdo, mas, por exemplo, em
disciplinas mais avancadas de programacgao.

4.1.3 Etapa 03 - String de busca

Foi adotada a seguinte string de busca com apenas a restri¢ao de que os termos buscados deveriam
ser identificados no titulo: ("introduct®* programming" OR "novice programm*" OR "CS1" OR
"CS 1" OR '"learn* programm*" OR "programming") AND ("misunderstand*" OR
"misconception" OR "difficult*" OR "mistake" OR "error"). No caso da pesquisa na IEEE Xplore,
foi necessario adaptar essa string para: (("Document Title":"introduct* programming" OR
"Document Title":"novice programm™*" OR "Document Title":"CS1" OR "Document Title":"CS
1" OR "Document Title":"learn* programm®*" OR "Document Title":"programming") AND
("Document Title":"misunderstand*" OR "Document Title":"misconception" OR "Document

Title":"difficult*" OR "Document Title":"mistake" OR "Document Title":"error")).

4.1.4 Etapa 04 - Fontes de busca

Consultamos trés bases de dados: (1) Web of Science (WOS), por ser uma base de dados
consolidada e mais seletiva em relagdo aos periddicos indexados (Singh et al., 2021), (2) ACM
Digital Library e (3) IEEE Xplore, por serem bases de dados que indexam periddicos e
conferéncias da area de ciéncia da computagdo, permitindo complementar os achados da WOS,
principalmente em relagdo a artigos publicados em conferéncias. O fato de ndo termos incluido
outras bases de dados como Scopus foi uma limitagdo deste estudo.

4.1.5 Etapa 05 - Coleta e andlise de dados

Coletamos os dados nas bases de dados em trés momentos: na WOS e na ACM realizamos a
primeira coleta no dia 04/06/2023 e a repetimos, para obter novos artigos, no dia 26/08/2024. Na
IEEE, por sua vez, a coleta foi realizada no dia 02/09/2024. Ao acessar o site de cada base de
dados, abrimos a busca avancada e, no campo apropriado, inserimos a string de busca. Os
resultados obtidos foram integralmente exportados e organizados em uma unica planilha
eletronica, na qual foram, entdo, analisados (consultar OMITIDO a planilha). A partir dessa
planilha, seguimos o fluxo exibido na Figura 1. Duplicacdes de estudos foram removidas.

1495

Henklain et al. RBIE v.33 — 2025

Processo de Obtencao da Amostra de Artigos Constituintes do MSL
L m—) 04 artigos duplicados entre cole¢des da WOS

01 artigo duplicado entre colegdes da ACM e 22 entre ACM e WOS

92 artigos duplicados entre IEEE e registros da ACM+WO0S

Artigos excluidos:

> Sem resumo ou informagdes no Google ou CAPES (n = 5)
> Artigo relativo a pesquisa em desenvolvimento (n = 3)

> Lingua diversa de inglés, espanhol ou portugués (n = 2)
> Ndo era artigo cientifico (n = 1)

A a > Fugiu ao objetivo deste estudo por motivo diverso aos listados abaixo (n = 219)
Anilise de Titulo e >>> Area diversa da educagdo em computagéo (n = 32)
Resumo >>> Técnica para detectar, classificar ou mensurar erros (n = 24)
o n =384 >>> Avaliagdo ou aperfeicoamento de mensagens de erro (n = 22)

>>> Ndo abordou aprendizado de programagao (n = 20)

>>> Proposta, intervengdo ou caracterizagdo de ensino de programagao (n = 13;
>>> Técnica para detectar, classificar ou mensurar dificuldade de tarefa (n = 13
>>> Relacdo entre estados psicoldgicos e aprendizado de programagéo (n = 2)
>>> Técnica para verificar plagio (n = 1)

Verificagao de
Disponibilidade
n=27

Artigos excluidos:
> Artigo indisponivel como open access ou via CAPES/Acesso institucional (n = 16)

Figura 1: Fluxograma do processo para obtencdo da amostra de artigos deste MSL.

O titulo de cada artigo foi lido para examinar se atendia ao critério de investigar
dificuldades no aprendizado de introdugdo a programacdo. Quando havia davida, o resumo do
artigo era consultado. Para os trabalhos aprovados nesse primeiro crivo, seguimos para a fase de
download dos textos. Nesse processo, detectamos trabalhos que nao estavam disponiveis, ou ndo
atendiam ao critério de lingua definido ou que ndo foram publicados em periddico, conferéncia
ou capitulo de livro (ex.: publicacdo em magazine, sendo um artigo de opinido).

Fizemos o download apenas dos artigos que atenderam a todos os critérios de inclusdo, os
quais foram, entdo, lidos na integra. Quando a leitura evidenciava que de fato se tratava de trabalho
completo e examinando dificuldades de estudantes no aprendizado de introdugdo a programacao
de computadores, registravamos seus dados para andlise e realizdvamos anotagdes sobre as
dificuldades reportadas no estudo. Essas anotac¢des enfatizavam conceitos e conclusdes relativas
a quais sao as dificuldades no aprendizado de programacdo e/ou por quais motivos aprender
programacdo pode ser dificil. Caso a leitura indicasse que se tratava de trabalho em
desenvolvimento ou que ndo apresentava dados explicitos sobre dificuldades no aprendizado de
programacao, fariamos apenas o registro do motivo identificado para a exclusdo do artigo.

Tabela 1: Categorias de dificuldades com programacao e defini¢des correspondentes.

Id Nome da categoria Defini¢iao

01 Cognigdo e Resolugdo de Caracteristicas cognitivas da pessoa, incluindo raciocinio 16gico, conhecimento e
problemas experiéncias com resolucdo de problemas, atitudes e estratégias diante de problemas.

02 Dominio de inglés ou outra Conhecimento da lingua inglesa ou outra, que seja necessaria para o entendimento de
lingua termos das linguagens de programagdo e de mensagens de etrro.

03 Conceitos de computacdo Conceitos sobre como um computador funciona e que ajudam a entender como o

c6digo de um programa ¢ executado pela maquina.

1496

Henklain et al. RBIE v.33 — 2025

04 Conceitos de programagao Conceitos como estruturas condicionais e lagcos de repeti¢do, paradigma de
programacao e outros afins.

05 Conceitos relativos ao problema Conhecimento de mundo necessario para resolver o problema, o que pode requerer,

que precisa ser resolvido por exemplo, conceitos de matematica e/ou de outras areas.
06 Dominio do Ambiente de Conhecimento dos recursos e requisitos para uso adequado do ambiente de
desenvolvimento desenvolvimento.
07 Sintaxe da linguagem Conhecimento da estrutura que o cddigo deve assumir para que possa funcionar, tais
como a necessidade de indentac¢do e o modo correto de escrever um comando.
08 Semantica da linguagem Conhecimento do significado e dos usos possiveis para os comandos e recursos de uma
linguagem de programagao.
09 Formulagdo do problema Grau de qualidade do comportamento de caracterizar o problema que precisa ser
solucionado e seus requisitos.
10 Formulagdo de algoritmos Grau de qualidade do comportamento de formular algoritmos.
11 Leitura e Codificagdo Grau de qualidade do comportamento de codificar e ler cédigo com compreensao.
12 Identificagdo de erros Grau de qualidade do comportamento de identificar e compreender erros em codigo
(ex.: mensagens de erro).
13 Avaliagdo de programa Grau de qualidade do comportamento de avaliar adequagdo do programa aos
requisitos.
14 Comportamento de estudo Grau de qualidade do comportamento de estudar, envolvendo disciplina, planejamento

€ organizagao.

15 Caracteristicas psicologicas Experiéncias aversivas relacionadas ao contexto da programagdo, motivagdo para
estudar programagao e habitos que podem impactar no aprendizado.

16 Contexto de vida e de ensino Aspectos da vida do estudante, dentro e fora da sala de aula, que podem dificultar a
sua aten¢do ao estudo de programacao.

As andlises de dados para responder as perguntas PPOl e PP02 envolveram apenas
estatisticas descritivas (contagem de frequéncia, calculo de propor¢do, média e desvio padrdo). Ja
para a PP03 adotamos duas abordagens de andlise: considerando as anotagdes que fizemos ao ler
os artigos sobre as dificuldades com aprendizado de programacao, elaboramos um conjunto de 16
categorias de dificuldades e, em seguida, registramos, para cada artigo, quais dessas 16 categorias
eram indicadas no estudo. A Tabela 1 exibe os nomes das categorias e suas defini¢des.

Na segunda abordagem, transformamos cada anotacdo, de cada estudo, em um termo que
consideramos representar o resultado anotado. Obtivemos um conjunto de 102 termos, sendo: 45
sobre habilidades técnicas de programacao e de resolugdo de problemas que o estudante precisa
desenvolver e que, quando ausentes, geram dificuldades no aprendizado; 10 sobre variaveis
cognitivas do estudante relacionadas aos processos de raciocinio logico, memoria, atencdo,
representacdo e transferéncia de aprendizagem; 6 sobre varidveis psicoldgicas no sentido estrito
de personalidade e sofrimento mental; 1 sobre varidveis de contexto da vida do estudante ou sobre
sua dedicacdo aos estudos; 6 sobre praticas de ensino as quais o estudante ¢ exposto; 8 sobre
caracteristicas da tarefa de programacao; 17 sobre conceitos da computacdo; 3 especificamente
sobre conceitos de programagdo orientada a objetos; e 6 sobre caracteristicas da linguagem de
programacao. A partir desses dois procedimentos de andlise, que sdo, na pratica, representacdes
dos achados das pesquisas examinadas, realizamos contagens de frequéncias.

4.1.6 Etapa 06 - Estratégia para garantia de qualidade

Consideramos apenas artigos descrevendo trabalhos completos. Todos os textos foram lidos na
integra, sendo feitas marcacdes no texto sobre trechos relacionados a objetivo, método e
resultados e anotagdes em planilha acerca das dificuldades com o aprendizado de programacao
reportadas no estudo. Uma vez que este estudo ndo pretende ser uma revisdo sistematica, nem
realizar uma meta-analise, ndo estabelecemos critérios de avaliagdo do delincamento de cada
estudo, para efeito de inclusdo neste MSL. Nao obstante, a nossa escolha pela Web of Science,

1497

Henklain et al. RBIE v.33 — 2025

sem incluir outras bases que contemplam diversas areas da ciéncia, foi justamente para tentar
garantir a obtencao de estudos de melhor qualidade.

4.2 Proposicao de variaveis associadas a dificuldades no aprendizado de programacio e
de analise do comportamento de “programar computadores com conforto e sentido”

Com base na resposta a PP03 do MSL e em nossa experiéncia, construimos uma proposta de lista
de variaveis associadas a dificuldades, organizadas em fun¢ao de se referirem a: (1) caracteristicas
do ambiente antecedente, (2) repertdrios ausentes ou insuficientes associados as dificuldades com
o aprendizado de programacdo e (3) caracteristicas do ambiente consequente. Para essa tarefa,
lemos com atencdo os nossos achados e interpretamos, tendo por base conceitos analitico-
comportamentais, a qual dos trés tipos de categorias (antecedente, repertorio ou consequente) cada
achado se referia. Pela natureza interpretativa e propositiva desse exame, ndo conseguimos
sistematiza-lo de modo que possa ser replicado. Contudo, essa proposta explicita hipdteses sobre
variaveis relevantes a serem testadas em estudos futuros.

Além disso, ao ler na integra os artigos do MSL, ficamos atentos as referéncias feitas nos
textos a comportamentos considerados importantes no aprendizado de programagdo ou que
quando ausentes geravam dificuldades. Consideramos referéncias a termos como habilidades,
competéncias, capacidades, aptiddes e cogni¢des como indicativos de informacdes sobre
comportamentos. Além disso, essas referéncias foram identificadas nos textos porque continham
verbos, referindo-se a um aprendizado importante para introdugdo a programacdo. Consideramos
como validas mengdes a comportamentos em todas as se¢des do estudo.

Para a proposi¢cdo desses comportamentos (Apéndice 1), primeiro registramos todos os
comportamentos-objetivo propostos por Lazzari (2013), realizando algumas adaptagdes textuais,
para, do nosso ponto de vista, garantia de maior clareza. Em seguida, tendo por base as referéncias
a comportamentos que encontramos ao longo da leitura dos artigos selecionados no MSL e em
nossa experiéncia, cuidamos de adicioné-los aos comportamentos propostos por Lazzari (2013),
buscando inclui-los como constituintes de uma das 7 classes mais abrangentes de comportamento
propostas pela pesquisadora, conforme o seu significado. Nao encontramos comportamentos que
ndo se adequassem a uma dessas 7 classes, o que sugere que o exame de Lazzari (2013) foi
suficientemente abrangente. Os comportamentos que adicionamos foram destacados por um
asterisco, de modo que fique claro o que foi proposto por Lazzari (2013) e o que propusemos a
partir do MSL e de nossa experiéncia.

Uma vez que as referéncias a comportamentos obtidas nos textos estavam em diversos
formatos de escrita, adotamos uma adaptacdo do procedimento simplificado para descri¢ao de
partes funcionais de comportamentos desenvolvido por Cortegoso e Coser (2023). Esse
procedimento preveé que a representagdo textual de um comportamento deve conter apenas 1 verbo
no infinitivo, logo no inicio da sua descri¢gdo. Em seguida, deve ser incluido um complemento
verbal que faga referéncia a, pelo menos, 1 evento ambiental, seja antecedente ou consequente, de
modo a ampliar a clareza da descri¢do. Se possivel, o ideal é conter os dois tipos de eventos.
Contudo, para reduzir o volume textual da proposta preliminar de andlise, buscamos ser tao
concisos quanto possivel, optando, tipicamente, pela indicagdo de, pelo menos, 1 evento. Este
também foi um procedimento de natureza interpretativa e que nao buscamos conduzi-lo de modo
que pudesse ser replicado, embora seja possivel realizd-lo de modo sistematico tendo essa
finalidade (ver Cortegoso & Coser, 2023). Optamos por disponibilizar o produto desta andlise
como apéndice para permitir que no artigo pudéssemos focar nos achados do MSL e na proposi¢ao
de variaveis para estudos futuros.

1498

Henklain et al. RBIE v.33 — 2025

5 Resultados e Discussao

Recuperamos 503 artigos e a amostra final foi composta por 11, todos encontrados na WOS. Esse
dado sugere que a WOS pode ser considerada relevante em MSLs e RSLs que investiguem
dificuldades com o aprendizado de programag¢do. Embora ndo tenha sido adotada nas revisdes de
literatura que examinamos (Qian & Lehman, 2017; Yusoff et al., 2020; Alasmari et al., 2024),
pode comegar a ser considerada em estudos futuros. A seguir, responderemos as trés perguntas de
pesquisa deste MSL.

5.1 Objetivo 01 - PP01. Quando e por quem os estudos sio tipicamente publicados?

A Figura 2 exibe a producao de artigos ao longo dos anos e explicita uma tendéncia de aumento
gradual nos primeiros dois periodos, seguida por um aumento grande no ultimo, que correspondeu
a 73% desta amostra. Uma hipdtese para explicar esse aumento ¢ o surgimento de muitas a¢des
de empresas, entidades e da propria UNESCO no sentido de popularizar o ensino de programagao
a todas as pessoas (Unesco, 2014), bem como a disseminagdo do estudo e do incentivo ao ensino
do pensamento computacional (Wing, 2006).

No que concerne aos pesquisadores que se destacaram com mais publicagdes, identificamos
apenas 2, ambos com duas publicagdes: Qian, Y. e Lehman, J., que também publicaram juntos
por duas vezes. Identificamos outros 23 pesquisadores, com uma publica¢do cada. Esse dado
sugere que poucos grupos de pesquisadores podem estar sistematicamente envolvidos com a
investigacdo das dificuldades com a programagao. Isso pode tornar o avango da area mais lento,
sem uma comunidade para examind-lo e organiza-lo ao longo dos anos. Nao obstante, conforme
discutiremos — e outros estudos ja evidenciaram — os achados sdo robustos em torno de um mesmo
conjunto de dificuldades associadas ao aprendizado de programacao, mostrando que conclusdes
de diferentes estudos t€m sido replicadas (Aratjo et al., 2021).

Estudos publicados sobre dificuldades no aprendizado de
programacao no periodo de 1993 a 2024

12

-
o

oo

Quantidade de publicacoes

1993 a 2000 2001 a 2008 2009 a 2016 2017 a 2024
Periodos de publicagao

Figura 2: Estudos publicados (1993 a 2024) sobre dificuldades para aprender a programar.

Assim, o consenso sobre as conclusdes pode ter reduzido o incentivo para investigacao do
tema por diferentes grupos de pesquisadores. Argumentamos, porém, que, de um ponto de vista
analitico-comportamental, apesar das replicagcdes, ainda é preciso conhecer mais sobre o
comportamento de programar computadores. Dispomos de poucos dados evidenciando quais sdo
0s comportamentos mais especificos que o constituem. Também sabemos pouco sobre em que

1499

Henklain et al. RBIE v.33 — 2025

medida o desenvolvimento de todas as aprendizagens que ja identificamos e que viermos a
identificar promoverd de fato a capacidade de programar. O saneamento dessas duas lacunas no
conhecimento ¢ fundamental para mitigarmos dificuldades no aprendizado de programacao e
aperfeicoarmos praticas de ensino (Kienen et al., 2021; Cortegoso & Coser, 2023).

5.2. Objetivo 01 - PP01. Onde os estudos sio tipicamente publicados?

Com relacdo ao veiculo de publicacdo dos 11 estudos examinados, obtivemos numero igual de
estudos publicados em conferéncia (de informatica e/ou educagdo em computacdo ou de
engenharia) e periddicos (ambos com 45%), sem destaques nos dois casos. Encontramos um
estudo publicado como livro, embora no site da editora ela tenha usado o termo “conference
proceedings”. Na Tabela 2, exibimos a relagdo de periddicos e conferéncias identificadas neste
estudo. Destacamos que, com base em nossos dados, os pesquisadores Qian e Lehman (2017:
ACM Transactions on Computing Education (TOCE); 2022: Journal of Research on Technology
in Education), inicos com mais de um artigo nesta amostra, ndo publicaram as duas pesquisas no
mesmo local.

Observamos que nenhum periddico brasileiro ou conferéncia nacional apareceu em nossa
investigacdo, nem mesmo entre os estudos identificados como adequados, mas excluidos por
indisponibilidade, sendo importante avaliar em pesquisas especificas por quais motivos a
producdo em revistas e eventos nacionais ndo estd indexada nem em uma base de dados que
contempla diferentes areas da ciéncia (WOS), tampouco em bases especificas da computacao
(ACM e IEEE). Também ¢ importante que estudos futuros incluam bases de dados como a SBC
Open-Lib. Esse dado corrobora achados de que a producao de artigos em outras linguas, diferentes
do inglés, ¢ pouco contemplada em bases de dados internacionais como WOS e Scopus, ocorrendo
o mesmo com trabalhos publicados em conferéncias (Pranckute, 2021). Nas revisdes que
encontramos sobre dificuldades no aprendizado de programacdo, ndo identificamos esse dado
sobre veiculos com maior volume de publica¢des. Avaliamos, contudo, que existe um equilibrio
entre publicacdes em periddicos e conferéncias. Tal resultado reflete o que € esperado da producao
em ciéncia da computagao de modo geral (Pranckute, 2021).

Tabela 2: Veiculos de publicagdo dos estudos selecionados neste MSL.

Tipo Veiculos de publicaciao Qtd.
Periodico ACM Transactions on Computing Education (TOCE)

Computer Science Education

International Journal of Advanced Computer Science and Applications (IJACSA)
International Journal of Information and Communication Technology Education (IJICTE)
Journal of Research on Technology in Education

Subtotal
Conferéncia 2015 International Conference on Learning and Teaching in Computing and Engineering
2017 7th World Engineering Education Forum (WEEF)
IEEE Frontiers in Education Conference (FIE)
Proceedings of the 15th International Conference on Education Technology and Computers

SIGCSE '19: Proceedings of the 50th ACM Technical Symposium on Computer Science Education
Subtotal
Livro Innovative Techniques in Instruction Technology, E-learning, E-assessment, and Education
Subtotal
Total

| = A= = = = = = = = = =

—
o

5.3. Objetivo 01 - PP02. O que geralmente tem sido investigado?

Dos 11 estudos, 64% eram de natureza empirica, sendo que outros 2 mesclavam investigagdes do
tipo revisdo da literatura e estudo empirico. Identificamos apenas 1 estudo tedrico e 1 estudo que

1500

Henklain et al. RBIE v.33 — 2025

era exclusivamente revisdo da literatura. A Tabela 3 exibe uma relacdo das categorias de objetivos
dos estudos examinados, associada a uma breve descrigdo do método. Podemos notar que a
maioria dos estudos (55%) buscaram caracterizar padrdes de dificuldades ou erros no aprendizado
de programagdo, envolvendo multiplas estratégias de coleta de dados com destaque para a
investigacdo da percepcdo de alunos e professores. Em seguida, com 5 estudos, destacaram-se os
que caracterizaram padrdes de erro, envolvendo, tipicamente, o exame de cddigo submetido por
alunos.

Chama a aten¢do na Tabela 3 a elevada frequéncia de estudos baseados apenas na percepcao
de estudantes e/ou professores. Esses estudos envolveram coleta de dados a partir de questionario
(ocorreu em 3 estudos). O motivo do destaque € que a percep¢ao do participante ¢ uma fonte de
informacdo mais sujeita a vieses, como o de desejabilidade social, bem como a erros relacionados
a memoria (Gouveia et al., 2009). Por exemplo, o aluno pode ter vergonha de falar sobre os
proprios erros ou nao lembrar adequadamente o que gerou mais dificuldades.

Além disso, parece mais relevante o fato de que o aluno pode ndo conhecer suficientemente
o comportamento de programar computadores a ponto de identificar varidveis responsaveis pelas
dificuldades que reportou, além do fato de que nem sempre temos consciéncia sobre o que afeta
0 nosso comportamento (Sério, 2005; Bandini & Delage, 2012). Por exemplo, o aluno pode
identificar que ndo conseguia resolver um problema a partir de uma estrutura condicional, mas
pode ndo ser capaz de indicar que aprendizagens deveria ter desenvolvido para que ndo
enfrentasse essa dificuldade. Portanto, avaliamos que esse dado de percepg¢ao, isoladamente, além
de mais fragil, pode limitar o conhecimento sobre o que de fato ¢ critico para as dificuldades com
a programacao, pois tendemos a descrever mais os “sintomas” do problema do que suas causas.

Nos estudos sobre padrdes de erros e processos envolvidos no comportamento de programar,
notamos a predominancia de um dado mais robusto, pois esta pautado em teste de desempenho
do participante, ou seja, ¢ uma tentativa de medida direta do fendmeno de interesse que ¢ a
dificuldade no aprendizado. Nesse caso, as informagdes foram obtidas a partir do exame de codigo
produzido pelo participante (3 estudos), pedido de explicagdo de programa de computador
analisado pelo participante (1 estudo) e teste objetivo de conhecimento sobre programacgao (1
estudo). Todavia, € preciso considerar que sem clareza de quais sdo todos os comportamentos que
precisam ser avaliados em um teste de desempenho, corre-se o risco de identificar mais os erros
tipicos, como os de sintaxe, do que as dificuldades mais graves, relacionadas, por exemplo, com
a resolucdo de problemas a partir da formulacdo de algoritmos, seguida pela sua tradu¢do em
codigo (Lazzari, 2013). Preocupa, portanto, que nenhum dos estudos analisados tenha se dedicado
a um exame mais cuidadoso dos processos envolvidos no comportamento de programar
computadores, o que aumenta a relevancia do exame que apresentaremos neste trabalho.

Tabela 3. Caracterizacdo do objetivo e método dos estudos selecionados para o MSL.

Sintese do método

Categoria de

h Estudo Participante
Objetivo Natureza Fonte sobre dificuldade
Tipo Curso
Caracterizar Mow (2008) Teorico - - -
g?groi’; B de Hashim et al. (2017) Empirico Percepgdo (questionario) Universitdrio ~ Diversos cursos
ificuldades
percebidas no Qian e Lehman (2017) Revisao Literatura - -
aprendizado de Yusoff et al. (2020) Revisdo, Literatura, Percepcdo Professor Computacao
programagao (n Empirico (questionario)
=6) Alasmari et al. (2024) Revisdo, Literatura, Avaliagdo de software --- ---
Empirico
Rubiano et al. (2015) Empirico Percepgao (questionario) Professor Computacdo
Caracterizar Eranki e Moudgalya (2015) Empirico Teste (codificagdo: Java) Universitario Engenharia
padrbes de erros gpith e Rixner (2019) Empirico Teste (codificagdo: Python) Diversos ---

1501

Henklain et al. RBIE v.33 — 2025

observados no Qian e Lehman (2022) Empirico Teste (codificagdo: Python) Aluno Ensino
aprendizado de Fundamental II
programagdo (N Egpinal et al. (2022) Empirico Teste (compreender e explicar Aluno, Aluno Ensino
=5) codigo: MakeCode, Scratch, Fundamental TI,
Python) Ensino Médio
Yong e Tiong (2022) Empirico Teste (codificagdo: Matlab, Aluno / Néo informado
multipla-escolha), Percepcdo Adolescente

(questionario)

Essa avaliacdo critica ndo estd enderegada, individualmente, aos valiosos estudos que
examinamos € que, apesar de suas limitagdes, inerentes a qualquer pesquisa, contribuem com a
investigacdo das dificuldades no aprendizado de programagdo. A critica é no sentido do
conhecimento agregado que foi produzido e tem a funcdo de sugerir aspectos que a comunidade
cientifica ainda precisa investigar melhor, sem prejuizo a relevancia de estudos classicos ou atuais
que se dediquem a ampliar os achados sobre dificuldades percebidas ou padrdes de erros, afinal
também precisamos deles. Nao se trata, portanto, de parar com essas pesquisas, mas de investir
também na caracterizacdo do comportamento de programar computadores, que ¢ um tipo de
estudo fundamental (De Luca et al., 2022), para que, entdo, possamos melhorar estratégias de
medida desse comportamento e, por fim, alcangarmos dados mais robustos sobre dificuldades.

Ainda no que concerne a forma de coleta de dados, destacamos que o tipo de linguagem de
programacao utilizada na pesquisa e o ambiente de desenvolvimento sdo aspectos que podem
impactar no desempenho do participante e, por sua vez, influenciar as conclusdes do estudo. Com
base na Tabela 3, verificamos que a linguagem mais estudada foi Python (3 estudos), seguida por
Java, Matlab e Scratch (todos com 1 estudo). Entendemos que, caso a nossa amostra contivesse
mais estudos antigos, poderiamos ter encontrado uma variedade maior de linguagens e um
destaque para o Java. Contudo, com uma amostra na qual estudos dos ultimos 10 anos
predominaram, ¢ coerente que Python se destaque, visto que ¢ uma das linguagens mais utilizadas
atualmente por desenvolvedores (Alasmari et al., 2024) e mais escolhidas para ensinar introducao
a programacao (Qian & Lehman, 2022).

Por fim, com relagdo aos participantes das pesquisas, notamos na Tabela 3 a estudos com
publicos diversos, como universitarios de variados cursos, tais como computacdo e engenharia,
bem como alunos do ensino basico. De um modo geral, notamos na leitura dos artigos que a
descri¢do dos participantes ¢ genérica. Nem sempre temos acesso a informagdes como tamanho
da amostra ou escolaridade dos participantes. Isso impacta negativamente na qualidade do
conhecimento que esta sendo construido, visto que os padrdes de dificuldades ou erros e os
motivos para que ocorram podem ser distintos em func¢do de caracteristicas sociodemograficas
dos participantes (Hashim et al., 2017).

Vale lembrar que selecionamos neste estudo pesquisas que trabalharam com universitérios,
mas também com criancas/adolescentes. Seguramente, o que deve ser ensinado de programagao
e o repertorio de entrada de cada aluno variam muito em fun¢do da idade. Nesse sentido, sem
prejuizo da critica a existéncia de poucos estudos sobre processos constituintes do comportamento
de programar, podem ser Uteis mais investigagdes de caracterizacdo de dificuldades percebidas e
de padrdes de erros com populagdes diferentes da universitaria ou, pelo menos, com universitarios
de outros cursos. E necesséario que, nesses estudos, as caracteristicas dos participantes sejam
descritas com mais detalhes, especificando, por exemplo, quantos participantes foram avaliados,
qual idade, género, escolaridade e, principalmente, conhecimento prévio sobre programacao. Tais
estudos podem combinar estratégias de coleta de dados, envolvendo avaliagdo de percepgao e
teste de desempenho, conforme feito por Yong e Tiong (2022), para que obtenham conclusdes
mais robustas.

1502

Henklain et al. RBIE v.33 — 2025

Talvez, uma das dificuldades relacionadas com a descri¢do pormenorizada dos participantes
tenha relacdo com o tamanho das amostras (média de 128,17 participantes por estudo empirico;
DP = 108,49) e, principalmente, com o contexto de coleta de dados, tais como salas de aula e
dados obtidos em sistemas online para ensino de programagdo. Nesses cendrios, os dados
disponiveis sobre os alunos podem ser reduzidos ou dificeis de coletar. Ademais, uma
preocupacdo dos pesquisadores pode ser a de que precisam de amostras grandes para obter
conclusdes dos estudos com maior chance de generalizagdo. Nessa perspectiva, a partir de
contribui¢des da Andlise do Comportamento, sugerimos que os pesquisadores considerem a
possibilidade de conduzir também estudos orientados pelo delineamento de sujeito Uinico, no qual
poucos participantes sejam avaliados, tendo como controle ndo um grupo, mas o comportamento
de cada participante (Sampaio et al., 2008). Isso significa dizer que seria examinado, em relacao
a cada participante, o efeito da manipulagdo da variavel independente sobre uma dependente.

Um exemplo de estudo seria testar o efeito do ensino do comportamento de resolver
problemas sobre o desempenho em um teste de codificagdo, no qual mais do que o codigo apenas,
seja avaliado o processo que levou a producao do codigo, em que medida esse codigo resolveu o
problema e que tipos de erros foram mais frequentes. Para cada sujeito, seria possivel avaliar o
desempenho antes e ap6s o ensino. Em sintese, a ideia ¢ que com menos pessoas sendo avaliadas
na pesquisa, seria mais factivel, por exemplo, coletar informac¢des detalhadas sobre seus
repertorios € como se comportam no contexto do aprendizado de programagao em fungdo de uma
ou mais manipulacdes de condigdes de ensino que o pesquisador considere relevante testar.

5.4. Objetivo 01 - PP03. Quais sdo as dificuldades mais comuns no aprendizado de
programacio?

Com base na primeira estratégia de analise que formulamos, verificamos na Tabela 4 que, entre
os 11 artigos analisados, as cinco categorias que mais produzem dificuldades em disciplinas e
cursos de introducdo a programacdo sdo estas: (1) sintaxe da linguagem, (2) conceitos de
programacao, (3) semantica da linguagem, (4) como resolver problemas (e processos cognitivos
correspondentes), e (5) identifica¢do de erros. Esses dados corroboram achados prévios de outras
revisdes da literatura (Qian & Lehman, 2017; Yusoff et al., 2020; Aratjo et al., 2021; Alasmari et
al., 2024). Avaliamos que essas cinco categorias sintetizam parte significativa das dificuldades no
aprendizado de programacao (Castro & Tedesco, 2020).

Tabela 4: Frequéncia de ocorréncia das categorias de dificuldades com programacgao.

Dificuldades no aprendizado de programacio

Qtd. %

Categoria Estudos com ocorréncia da categoria

Mow (2008), Eranki e Moudgalya (2015), Rubiano et al. (2015), Hashim et al. (2017), Qian e 11 100
Lehman (2017), Smith e Rixner (2019), Espinal et al. (2022), Yusoff et al. (2020), Qian e
Lehman (2021), Yong e Tiong (2022), Alasmari et al. (2024)

Mow (2008), Eranki e Moudgalya (2015), Rubiano et al. (2015), Hashim et al. (2017), Qian e 10 91
Lehman (2017), Qian e Lehman (2021), Espinal et al. (2022), Yong e Tiong (2022), Yusoff et
al. (2020), Alasmari et al. (2024)

Mow (2008), Eranki e Moudgalya (2015), Rubiano et al. (2015), Qian e Lehman (2017), Smith 9 82
e Rixner (2019), Yusoff et al. (2020), Qian ¢ Lehman (2021), Espinal et al. (2022), Yong e
Tiong (2022)

Sintaxe da linguagem

Conceitos de programagio

Semantica da linguagem

Cognigdo e Resolugdo de Mow (2008), Eranki e Moudgalya (2015), Rubiano et al. (2015), Hashim et al. (2017), Qian e 8 73

problemas Lehman (2017), Yusoff et al. (2020), Qian e Lehman (2021), Yong e Tiong (2022)

Identificagdo de erros Mow (2008), Eranki e Moudgalya (2015), Hashim et al. (2017), Qian ¢ Lehman (2017), Smith 8 73
e Rixner (2019), Yusoff et al. (2020), Yong e Tiong (2022), Alasmari et al. (2024)

Leitura e Codificacdo Rubiano et al. (2015), Hashim et al. (2017), Qian e Lehman (2017), Yusoff et al. (2020), Yong 7 64
e Tiong (2022), Espinal et al. (2022), Alasmari et al. (2024)

Caracteristicas Mow (2008), Eranki e Moudgalya (2015), Rubiano et al. (2015), Hashim et al. (2017), Qian e 7 64

psicologicas Lehman (2017), Qian e Lehman (2021), Yong e Tiong (2022)

Formulagdo do problema Mow (2008), Rubiano et al. (2015), Qian e Lehman (2017), Yusoff et al. (2020), Espinal et al. 5 45

(2022)

1503

Henklain et al. RBIE v.33 — 2025

Contexto de vida e de Mow (2008), Eranki e Moudgalya (2015), Rubiano et al. (2015), Hashim et al. (2017), Qian ¢ 5 45
ensino Lehman (2017)

Conceitos relativos ao Rubiano et al. (2015), Hashim et al. (2017), Qian e Lehman (2017), Yusoff et al. (2020) 4 36
problema que precisa ser

resolvido

Formulagdo de algoritmos ~ Rubiano et al. (2015), Yusoff et al. (2020), Espinal et al. (2022), Yong e Tiong (2022) 4 36
Conceitos de computagio Mow (2008), Hashim et al. (2017), Yusoff et al. (2020), Espinal et al. (2022) 4 36
Avaliag¢ao de programa Qian e Lehman (2017), Smith e Rixner (2019), Yusoft et al. (2020) 3 27
Dominio de inglés ou outra Rubiano et al. (2015), Qian e Lehman (2017), Espinal et al. (2022) 3 27
lingua

Dominio do Ambiente de Mow (2008), Rubiano et al. (2015), Hashim et al. (2017) 3 27
desenvolvimento

Comportamento de estudo Eranki e Moudgalya (2015), Hashim et al. (2017) 2 18

Embora ndo tenha se destacado entre as cinco categorias mais frequentes, a categoria de
“leitura e codificag@o” € crucial, pois abarca as categorias sobre conceitos de programacao, sintaxe
e semantica. Como se refere a processos comportamentais mais amplos, pode ser mais Util para
pensarmos em fontes de dificuldade do que olhar, por exemplo, apenas para uma categoria como
sintaxe. O motivo dessa afirmacdo ¢ que, embora erros de sintaxe sejam mesmo frequentes, eles
sdo esperados como parte do processo de aprendizado de uma linguagem, sendo mais evidente
como auxiliar alunos com essa dificuldade porque a entendemos melhor. Podemos, por exemplo,
usar linguagens visuais como inicio do aprendizado de programagdo ou adotar um ambiente de
desenvolvimento que sinalize erros de sintaxe conforme o usudrio codifica, antes mesmo de
executar o seu codigo (Alasmari et al., 2024). Podemos, ainda, melhorar as mensagens de erro
exibidas para o usudrio e usar IA para fornecer ajuda adicional (Alasmari et al., 2024). Em sintese,
ndo parece ser a sintaxe o problema que leva a reprovagdes e desisténcias em relagdo ao
aprendizado de programacao. Essa parece ser uma dificuldade adicional.

Por outro lado, parece que dispomos de menos conhecimento sobre por qual motivo alunos,
por exemplo, ndo conseguem “enxergar uma solugdo”, “traduzir em estruturas de programagao
uma ideia de solu¢do do problema”, “equivaler a ideia de que colunas e linhas de uma matriz
precisam ser avaliados com uma estrutura aninhada de lacos de repeti¢ao” ou “transformar
problema textual em férmula matematica que resolva determinado problema”. Esses sdo aspectos
que precisam ser mais investigados e por diferentes perspectivas tedricas, para que tenhamos mais
chance de encontrar respostas que nos ajudem a aperfeigoar o ensino de programacao.
Lembramos, ainda, que a categoria de “identificacdo de erros” também ¢ vital, afinal os erros sao
a norma no desenvolvimento de programas.

Tabela 5: Frequéncia de ocorréncia de termos relativos a dificuldades com programacao.

Termo [Ocorréncias] 01 02 03 04 05 06 07 08 09 10 11
Linguagem: sintaxe [11] v v v vV Vv Vv Vv Vv Vv Vv @V
Habilidade: desenvolver programa para realizar uma tarefa (codificar) [09] v v v v v v v v Vv
Linguagem: semantica [09] v v v v v vV v v v
Habilidade: depurar cédigo [08] v v v v v Vv v v
Habilidade: projetar solugdo / formular algoritmo [06] v 4 4 v v v
Habilidade: resolver problemas [05] v v 4 v v
Habilidade: conhecer fundamentos de computagio (maquina notacional) [05] v v v vV
Habilidade: corrigir erros no codigo [04] v 4 4 4
Conceito: conceitos de programagdo versus concepgdes equivocadas [04] 4 v v 4
Conceito: variavel (declaragdo, uso, inicializagao e tipo) [04] v v v v
Habilidade: aplicar conceitos de programagao [04] v 4 4 4
Habilidade: abstrair [04] v v v v

1504

Henklain et al. RBIE v.33 — 2025

90 termos com menos de 4 ocorréncias [129] 04 07 06 04 11 03 12 0507 09 05
Termos selecionados pelos pesquisadores por sua relevincia embora tenham sido menos recorrentes

Cognigdo: raciocinio logico [03] v v v

Habilidade: conhecer fundamentos de matematica [03] v v 4

Habilidade: avaliar atendimento aos requisitos do programa [03] v v Vv

Habilidade: ler codigo fonte com compreensio [03] v v 4

Conceito: loop / lago de repetigao [03] v v | v

Psicologico: motivagdo / interesse insuficiente [03] v v v

Nota. 01 = Mow (2008), 02 = Eranki & Moudgalya (2015), 03 = Rubiano et al. (2015), 04 = Hashim et al. (2017), 05 = Qian e Lehman (2017),
06 = Smith e Rixner (2019), 07 = Yusoff et al. (2020), 08 = Qian e Lehman (2021), 09 = Espinal et al. (2022), 10 = Yong e Tiong (2022), 11 =
Alasmari et al. (2024).

Por fim, as categorias com menos estudos, longe de indicarem que sdo aspectos menos
importantes, ressaltam lacunas no conhecimento cientifico que precisam ser exploradas em
estudos futuros. Qian e Lehman (2021), por exemplo, mostraram que adolescentes chineses, tanto
de escolas tipicas e de alto desempenho, cometeram mais erros de sintaxe em seus programas em
razdo de usarem caracteres chineses na digitacdo. Além disso, os alunos de escolas tipicas, que
tinham menos contato com computadores, apresentaram dificuldades no comportamento de
digitar, uma capacidade mais basica, mas que tem potencial para gerar dificuldades no
aprendizado de programagdo, favorecendo erros de digitagdo e um tempo maior para a
codificacdo. Outro exemplo sdo habitos comunicacionais do cotidiano que podem ser
reproduzidos ao codificar e isso pode levar a erros, sendo dificil para o aluno evitar a emissdo
desses comportamentos. Nesse sentido, Qian e Lehman (2021) identificaram que hébitos relativos
a resolucdo de problemas de algebra também podem impactar negativamente o aprendizado de
programacao. Ou seja, ha muito para ser investigado até que se possa criar um quadro mais
consistente sobre quais aprendizagens, se desenvolvidas, podem levar a ocorréncia do
comportamento de programar computadores.

Na Tabela 5, apresentamos os achados em relacdo aos 102 termos que extraimos dos 11
estudos examinados neste MSL, destacando apenas aqueles que tiveram, no minimo, 4
ocorréncias, por economia de espaco. Trata-se de uma visdo mais detalhista sobre os dados da
Tabela 4. Com essa perspectiva dos nossos achados, destacam-se como as 5 principais
dificuldades sintaxe da linguagem, habilidade de desenvolver programa para realizar uma tarefa,
semantica, a habilidade de depurar codigo e a habilidade de projetar solucdo / formular algoritmo.
Esses dados confirmam os achados apresentados na Tabela 4 e aqueles ja descritos na literatura
(Qian & Lehman, 2017; Yusoff et al., 2020; Araujo et al., 2021; Alasmari et al., 2024). E
importante lembrar que tanto as categorias da Tabela 4, quanto os termos da Tabela 5 possuem
sobreposicdes entre si. A habilidade de resolver problemas, por exemplo, requer raciocinio logico
e para desenvolver programa ¢ preciso saber a sintaxe de uma linguagem de programacao. Embora
limitadas, Tabelas 4 e 5 sintetizam achados para explicitar o que ja ¢ bem conhecido e o que
precisamos estudar mais em pesquisas futuras. Por fim, destacamos alguns termos com menor
frequéncia, mas que se mostraram importantes na literatura.

5.5. Objetivo 02 - Proposta de variaveis antecedentes associadas a dificuldades no
aprendizado de programacio

A Figura 3 exibe variaveis relativas ao ambiente antecedente que, a partir da resposta a PP03 e da
nossa experiéncia, avaliamos que se relacionam com dificuldades no aprendizado de
programacao. Para cada variavel, relacionada a caracteristicas ou propriedades de estimulo ou
repertdrio, apresentamos uma definicdo e exemplos para ilustra-la. Essas variaveis sdo uteis para
que professores e pesquisadores avaliem o impacto que produzem sobre o aprendizado de
programacdo. Vamos comentar algumas delas para demonstrar sua aplicagdo. Por exemplo, a
variavel “estimulos concorrentes” lembra que, tanto no contexto da educacao basica, quanto do

1505

Henklain et al. RBIE v.33 — 2025

ensino superior, sdo comuns estimulos que concorrem com a tarefa de programacao. Podem ser
trabalhos de outras disciplinas que estdo pendentes e precisam ser finalizados logo ou, inclusive,
uma longa lista de problemas de programacao que precisa ser solucionada em curto tempo. Tal
condi¢do pode tornar o aluno menos atento a cada tarefa que precisa realizar, sendo que seus erros
de digitagdo sdo menos em fun¢do de “falta de aten¢ao” (como se fosse algo do estudante) e mais
em razdo do excesso de tarefas que precisam ser encaminhadas simultaneamente. Problemas
complexos, mesmo que decompostos, podem gerar dificuldade andloga, pois sdo varios os
aspectos a serem resolvidos. A dificuldade central aqui é a competicdo de estimulos
discriminativos, os quais tornam provavel mais de um comportamento ao mesmo tempo, sendo
que a pessoa sO pode lidar com uma situacao por vez.

A varidvel de estimulos semelhantes, por sua vez, destaca que o aprendizado da discriminagao
de como agir corretamente em diferentes contextos se torna mais dificil quando o estudante se
depara com simbolos iguais, mas com significados ou usos distintos a depender da situag@o, ou
com simbolos ligeiramente diferentes, mas com significados / usos diferentes. O professor deve
estar atento a isso e pode planejar parte do seu ensino, especificamente, para desenvolver essas
discriminagdes, criando atividades em que, por exemplo, o simbolo “=" seja usado para atribuicao
e comparagdo. Tais atividades precisam ser sistematicas e sao necessarios testes para que se possa
inferir que o estudante atingiu o desempenho esperado. Nao se trata, portanto, de o professor
apenas falar em sala de aula “cuidado com o uso do igual nas situacdes de atribui¢do e
compara¢do”. Também ¢ importante que o professor ensine diferenciacdes entre o que se aplica
ao contexto da programagdo e da algebra, pois alguns simbolos podem ser compartilhados, mas
tendo fungdes distintas em cada contexto.

VARIAVEIS RELATIVAS AO AMBIENTE ANTECEDENTE

Propriedades do contexto no qual o problema é apresentado e do problema em si, que dificultam a discriminagdo do que
precisa ser feito e reduzem as chances de sucesso do comportamento de programar computadores.

1) Concorréncia entre estimulos
Quantidade de estimulos interferindo em relagdo ao comportamento de programar computadores. Ex.: ruido,
iluminagdo inadequada, duas ou mais tarefas pendentes e com o mesmo prazo de entrega.

2) Semelhanca entre estimulos

Quantidade de estimulos fisicamente iguais ou semelhantes com mais de um significado no contexto da linguagem
de programacgao. Ex.: simbolo ‘=" compondo comando de atribui¢do e de comparagdo de valores. Alguns estimulos
antecedentes estdo correlacionados, na historia de uma pessoa, com disponibilidade de reforcadores, embora no
contexto de programagdo, novo para essa pessoa, tal associagdo possa nao ser valida, ou seja, o significado de um
estimulo j& conhecido, pode ser distinto, no contexto da programacao, do seu uso corrente. Ex.. simbolo ‘=" como
sinal de atribui¢do e como sinal de igualdade na matemdtica; uso de comunicagdo com metonimia na situag¢do de
programacdo orientada a objetos (cf. Miller & Settle, 2009).

3) Implicitude dos estimulos
Grau em que o estimulo ¢ imperceptivel. Ex.: resolugdo do monitor ou qualidade de uma imagem podem afetar a
leitura de informagdo necessaria para resolver o problema; uso de termos incomuns com a finalidade de dificultar
a interpretagdo do problema, mensagens de erro genéricas, sem exemplos ou indicag¢do de onde o erro ocorreu.

4) Inacessibilidade dos estimulos
Quantidade de estimulos ausentes ou inacessiveis, pouco frequentes ou incompletos, mas que sdo necessarios para a
resolucdo do problema. Ex.: auséncia de exemplos do que é esperado como resultado do programa; auséncia de
recursos necessarios para a solugcdo do problema, como informagoes, ambiente adequado para desenvolvimento,
dados disponiveis para a solugdo do problema,; documentagdo existente sobre o sistema.

5) Novidade dos estimulos
Quantidade de estimulos aos quais a pessoa ndo foi exposta previamente ou foi pouca exposta, ndo tendo um
significado estabelecido para a pessoa. Ex.: quantidade de conceitos novos ou complexos de computagdo e/ou
programagdo que sdo requeridos para a solugdo do problema. Yong e Tiong (2022) sugerem que conceitos de
programacdo sdo dificeis de entender por que ndo possuem um estimulo correspondente na vida real. Isso pode ter
relacdo com a necessidade de aprendizado de novas classes de estimulos equivalentes, pois aquelas ja aprendidas
ndo sdo pertinentes no contexto da programacao.

6) Complexidade dos estimulos

1506

Henklain et al. RBIE v.33 — 2025

Quantidade de estimulos que devem ser considerados em conjunto para que uma resposta adequada possa ser emitida
com alta probabilidade de sucesso. Ex.. requisitos para a solugdo do problema; aspectos da sintaxe e semadntica da
linguagem de programagdo; paralelizagdo do algoritmo, informagoes sobre funcionamento do computador.

7) Extensao dos estimulos
Medidas de tamanho do(s) estimulo(s) que precisam ser considerados na tarefa de programagdo, podendo ser um
estimulo enorme ou varios. Ex.: total de linhas do codigo-fonte; numero de objetos; fungoes, procedimentos ou
instrugoes que precisam ser examinados.

8) Operacdes motivacionais para resolver o problema
Grau em que a tarefa de resolucao do problema de programacao foi estabelecida como reforgadora ou aversiva. Ex..
quanto é importante para a pessoa resolver o problema,; quanto ela precisa resolvé-lo; varidaveis como pressdo
familiar, problemas de saude ou familiares, expectativas pessimistas em rela¢do ao futuro profissional; valor
aversivo ou refor¢ador da tarefa de resolugdo de problemas.

9) Tempo para a realizaciio da tarefa
Periodo disponivel para a solugdo do problema de programagdo. Ex.: quanto tempo o professor forneceu em sala de
aula para a solugdo da lista de exercicios, antes de comecar a corregdo; quanto tempo a pessoa possui,
independentemente de pedido de professor, chefe ou cliente, para a solugdo da tarefa.

Figura 3: Caracteristicas do ambiente antecedente que podem gerar dificuldades no aprendizado de programagao.

As variaveis de explicitude e de auséncia/suficiéncia, por sua vez, lembram o professor sobre
a importancia de que os problemas apresentados tenham todas as informagdes necessarias, usando
termos conhecidos pelos alunos, quando o objetivo for iniciar o ensino de solug¢do de problemas.
S6 quando esse comportamento tiver sido instalado ¢ que serd possivel ensinar comportamentos
mais complexos, como solu¢do de problemas mal definidos ou com requisitos ambiguos. No
inicio do ensino, porém, ¢ importante garantir que a baixa clareza das informagdes sobre o
problema ou a auséncia delas ndo seja mais um aspecto com o qual o aluno deve lidar, pois isso
pode tornar a tarefa mais dificil (Harangus, 2019).

No geral, essas variaveis relativas ao ambiente antecedente podem levar, por exemplo, a (a)
erros semanticos, como ignorar um requisito para a solu¢do do trabalho, e, ainda, (b) erros
sintaticos, tais como esquecimento de como declarar uma variavel, esquecimento de colocar o
ponto e virgula, inicio ilegal de expressdes, confusdo entre operadores de atribui¢do e de
comparagdo (ex.: = versus ==) e realizacdo de operacao impossivel com o tipo de dado. Aspectos
como concorréncia entre estimulos, complexidade da estimulagdo discriminativa e extensao dos
estimulos podem estar associados ao que ¢ denominado de “elevada carga cognitiva” envolvida
na tarefa de programacao (Eranki & Moudgalya, 2015; Qian & Lehman, 2017; Espinal et al.,
2022). Esses sao aspectos que merecem ser melhor investigados em estudos futuros.

5.6. Objetivo 02 - Proposta de varidveis concernentes ao repertorio comportamental
associadas a dificuldades no aprendizado de programacio

A Figura 4 exibe caracteristicas do repertdrio comportamental do aprendiz que, se ndo
tiverem sido desenvolvidas suficientemente, podem aumentar a dificuldade que ele experimenta
ao aprender programacdo. Representamos os repertdrios como “conhecimento” por questdo de
economia verbal, sendo importante considerar que, na realidade, cada varidvel remete a conjuntos
complexos de comportamentos que interagem com contetdos e informag¢des como “conceitos de
computagdo” e “conceitos de programac¢do”. Isso fica explicito na analise que conduzimos sobre
o comportamento de programar computadores (ver Anexo 1). Para demonstrar o uso dessas
variaveis por professores e pesquisadores, destacaremos alguns desses repertorios. Um deles diz
respeito a relevancia do dominio da lingua na qual o problema ¢ apresentado e, ainda, do inglés,
tipico em linguagens de programagao (ex.: comandos e mensagens de erro). O professor ndo pode
assumir, por exemplo, que todos tenham dominio da lingua portuguesa, para interpretar
corretamente problemas. E prudente, portanto, trabalhar com termos e estruturas mais faceis de
interpretar, para que esta varidvel ndo seja um fator adicional de dificuldade (Harangus, 2019).
Com relagdo ao inglés, uma alternativa seria dispor de um curso de extensdo ou de recursos

1507

Henklain et al. RBIE v.33 — 2025

pedagbgicos autoinstrucionais que os alunos pudessem utilizar em caso de necessidade,
relacionadas ao vocabulario tipicamente requerido ao lidar com linguagens de programacao.

Consideramos também a importancia de conhecimento externo a computacao requerido pelo
problema. Na introdugdo a programagao, ¢ usual que seja requisitado conhecimento matematico
para resolucdo de problemas. Com relagdo a esse ponto, importa lembrar que o aprendizado de
matematica também tem sido desafiador para alunos, que, muitas vezes, ficam retidos e/ou
evadem em disciplinas de matematica na educagdo basica e no ensino superior (Gris et al., 2019).
Portanto, o professor de programagao deve avaliar até que ponto, em que momento e de que modo
ele ird envolver esse aspecto nos problemas apresentados aos seus alunos, pois, provavelmente,
sera um elemento adicional de dificuldade (Medeiros et al., 2020). E util considerar também que
os Conhecimentos de 03 a 08 podem levar, caso ndo sejam adequadamente desenvolvidos, ao
surgimento de concepgdes equivocadas que o professor precisard trabalhar em sala.

Essas concepcdes se ajustam a experiéncia pessoal do aprendiz, sendo dificeis de serem
suprimidas (Qian & Lehman, 2017; Araujo et al., 2021). Uma estratégia para supera-las ¢ o uso
de maquinas notacionais como representacdes do conceito de computacdo que precisa ser
ensinado. Essa noc¢do de representacdo pode ser interpretada como uma rede de estimulos
equivalentes, isto €, sdo estimulos que, embora distintos fisicamente, compartilham uma funcao
comportamental comum, sendo, portanto, substituiveis entre si (Sidman, 1994). Assim, a maquina
notacional pode ser ensinada como equivalente, por exemplo, ao computador ou ao
funcionamento do compilador de uma linguagem de programagdo, o que se relaciona com o tipo
de pesquisa sugerida anteriormente. Tal maquina pode ter propriedades simples, mas cruciais em
relacdo ao comportamento conceitual que o professor pretende desenvolver.

VARIAVEIS RELATIVAS AO REPERTORIO COMPORTAMENTAL DO APRENDIZ

O repertorio do aprendiz é influenciado pelas oportunidades de capacitagdo as quais foi exposto. Quando essa capacitagdo é
ausente ou insuficiente e o repertorio ndo foi desenvolvido, o aprendiz perceberd o problema como mais dificil.

1) Conhecimento da lingua na qual o problema é apresentado
Grau de dominio da lingua na qual o problema e demais dados pertinentes sdo apresentados. Ex.: instrug¢do do
enunciado do problema.

2) Conhecimento de inglés para programacio
Grau de dominio do inglés para leitura de nomes de comandos e de mensagens da linguagem de programagdo e do
ambiente integrado de desenvolvimento. Ex.: mensagem de erro geradas pelo interpretador da linguagem de
programacdo, termos da linguagem, documentagdo, exemplos de codigo.

3) Conhecimento externo para a solucio do problema
Grau de dominio de outros conhecimentos, como matematicos ou sobre uma realidade especifica, ¢ que sdo
requeridos para a solugdo completa e correta do problema. Ex.: matematica e informagées sobre o mundo.

4) Conhecimento sobre resolu¢io de problemas
Grau de dominio sobre etapas constituintes e estratégias promissoras de resolugdo de problemas, especialmente, no
ambito da programacdo. Ex.: decompor o problema em problemas menores, identificar problemas semelhantes,
depurar erros.

5) Conhecimento sobre computacio
Grau de dominio sobre como um computador funciona, como programas sdo executados e sobre como manejar um
computador (ex.: uso do mouse e teclado). Ex.: conceitos sobre funcionamento de um computador (maquina
notacional), Sistema Operacional.

6) Conhecimento sobre programacio
Grau de dominio em relagdo a conceitos e estratégias para programar, bem como sobre boas praticas de codificagao.
Ex.: conceitos basicos como variavel, estrutura de controle de fluxo, laco de repeti¢do, fungdo etc., bem como
conhecimento sobre a correspondéncia entre certas estruturas de programagdo, como lagos e condicionais, e
problemas nos quais sdo aplicaveis (que sdo estratégias para viabilizar a solu¢do de um problema por meio de
programagdo).

7) Conhecimento sobre linguagem de programacio
Grau de dominio em relagdo ao funcionamento e uso de uma linguagem de programagdo especifica. Ex.: sintaxe,
semdntica, paradigma, mensagens de erro, tipos de exce¢do, comandos, documentagdo.

8) Conhecimento sobre Ambiente Integrado de Desenvolvimento (IDE)

1508

Henklain et al. RBIE v.33 — 2025

Grau de dominio em relagdo ao funcionamento e uso de um IDE especifico. Ex.: como interpretar mensagens de
alerta sobre atualizagédes de bibliotecas e possiveis erros no codigo-fonte.

9) Competéncia em relacio aos conhecimentos necessarios para programar
Grau de qualidade e experiéncia em relagdo ao uso dos conhecimentos supracitados. Ex.: disciplinas e cursos
realizados, experiéncias profissionais, projetos desenvolvidos.

Figura 4: Caracteristicas do repertério comportamental que podem gerar dificuldades no aprendizado de programagao.

5.7. Objetivo 02 - Proposta de variaveis consequentes associadas a dificuldades no
aprendizado de programacio

A Figura 5 exibe caracteristicas do ambiente consequente que podem gerar dificuldades no
aprendizado de programacdo. Destacamos que, do ponto de vista analitico-comportamental, a
evidéncia empirica mostra que o aprendizado de novos comportamentos requer a ocorréncia de
reforcamento, sendo mais efetivo quando ocorre imediatamente apos a apresentacdo da agdo
(Kienen et al., 2021). Reforcamento se refere a uma relacdo na qual uma consequéncia, cuja
propriedade de reforcar pode estar vinculada a uma caracteristica da espécie ou ter sido aprendida,
produzida por uma agdo e que retroage sobre essa agdo que a produziu tornando-a mais forte e
provavel de recorrer no futuro (Moreira & Medeiros, 2018). Na educacao, o reforgamento precisa
ser planejado para ocorrer mediante desempenho discente que seja compativel com os
comportamentos-objetivo propostos (Cortegoso & Coser, 2023). Por exemplo, em uma aula
expositiva, o comportamento que o professor tem oportunidade de reforgar, provavelmente, ¢ o
de “ouvir a aula atentamente”. Se essa aula tiver participagdo, nasce para o docente, por exemplo,
a oportunidade de refor¢ar componentes do comportamento de resolver problemas, mas so para
os alunos que participarem. Se uma resposta for requerida de toda a turma, por exemplo, por meio
de uma resposta por celular a um quiz, ganha-se uma chance de que uma consequéncia do
professor possa impactar a todos. Na pratica, ndo sabemos a priori se um estimulo seré refor¢ador
para um aluno. SO saberemos que o estimulo teve essa func¢ao, observando seus efeitos sobre o
comportamento do aprendiz (Moreira & Medeiros, 2018).

VARIAVEIS RELATIVAS AO AMBIENTE CONSEQUENTE

O desempenho do aprendiz é influenciado pelo que ocorre apos a emissdo do comportamento, o que pode tornd-lo mais ou
menos forte e provavel de recorrer no futuro. Uma vez que o comportamento de resolver um problema ndo consiste apenas na
apresentagdo da solugdo, é importante considerar as consequéncias obtidas pelo aprendiz ao longo desse processo. Quando
houver pouco reforgamento, o problema pode ser percebido como menos interessante e, nesse sentido estrito, mais dificil de
modo que a desisténcia, portanto, serd mais provavel.

1) Reforcamento comportamental

Grau em que o aluno ¢ suficientemente refor¢ado em relagdo as suas a¢des consideradas corretas, em face
dos comportamentos-objetivo propostos, pela apresentacao de estimulos que tornem mais forte e provavel
a recorréncia dessas agdes (reforgo positivo). Destaca-se aqui a importancia do refor¢amento positivo de
comportamentos precorrentes e das tentativas de resolu¢do de problemas e de que a distancia temporal
entre a apresentagdo da ag¢do e o contato com o estimulo refor¢cador seja a menor possivel (cf. Kienen et
al., 2021; Cortegoso & Coser, 2023).

Ex.: Baixa apresentagdo de mensagens de estimulo a continuidade da tarefa, mesmo que um erro tenha ocorrido;
Pouca apresentagdo de mensagens destacando as partes do problema que ja foram superadas; Pouco
reconhecimento docente pelo trabalho realizado,; Baixo volume de refor¢adores positivos, relacionados a solug¢do
de problemas, gerando menor engajamento e autoconfianga, Falta ou quantidade insuficiente de atividades praticas,
principalmente, em contexto de laboratorio, nas quais é possivel agir e ser consequenciado de modo automatico e
imediato; Feedback ausente, insuficiente ou inconsistente em relagdo ao desempenho do estudante; Praticas de
avaliagdo adotadas pelo professor, que podem, por exemplo, exigir mais do estudante do que a capacita¢do
fornecida; Uso da avaliagcdo apenas com fung¢do somativa, sem considerar a sua dimensdo formativa.

2) Controle aversivo
Grau em que o aluno ¢ colocado em contato, de forma consequente ou ndo, as suas a¢des no contexto
académico, com estimulos aversivos, seja por puni¢ao positiva, negativa ou refor¢amento negativo.
Quando ocorrem de forma excessiva e ndo planejada, podem favorecer comportamentos de fuga e esquiva
de quaisquer situagdes relacionadas ao estudo, o que leva a dificuldades no aprendizado.

1509

Henklain et al. RBIE v.33 — 2025

Ex.: Apresenta¢do de mensagens de erro recorrentes e que o aluno ndo consegue compreender; Brincadeiras em
sala de aula sobre o insucesso do aprendiz em relagdo a resolu¢do do problema; Uso das avaliagoes e da
possibilidade de reprovagdo como unica estratégia para favorecer comportamentos de estudo.

Figura 5: Caracteristicas do ambiente consequente podem gerar dificuldades no aprendizado de programagao.

Apesar das dificuldades praticas para consequenciar a todos os alunos de modo suficiente e
imediato, ¢ certo que, na auséncia de reforco, o aprendizado nao ocorre. Nesse contexto, recursos
tecnologicos podem ser muito uteis, desde jogos educativos até tarefas praticas de programagao
no computador ou tarefas desplugadas, mas que possam ser consistentemente acompanhadas pelo
professor e/ou seus monitores e/ou por recursos informatizados, capazes de fornecer feedback
adequado, automatico e imediato (Moreira & Medeiros, 2018). Com relacdo ao uso de controle
aversivo, embora comum nas salas de aula, ¢ preciso avalia-lo com atencdo e cuidar para que nao
gere efeitos deletérios sobre satide, aprendizado e permanéncia dos estudantes na instituicdo de
ensino (ver Sidman, 2009). E usual, por exemplo, que provas sejam adotadas como recursos para
garantir que o aluno estude. Essa ¢ uma pratica coercitiva socialmente aceita. Sao casos como esse
que sugerimos que devem ser examinados com cautela em relacdo aos seus efeitos. No que tange
a praticas preconceituosas, de desrespeito ou agressao aos alunos e, inclusive, de qualificagdo da
programacao como “intrinsecamente dificil ou para poucos”, ¢ preciso destacar que produzem
repercussdes negativas sobre as pessoas € ndo devem ser aceitas (ver Silva et al., 2023).

Complementando as Figuras 4 e 5, ¢ importante lembrar que duas variaveis adicionais,
complexas e com aspectos antecedentes e consequentes, podem impactar negativamente sobre o
desempenho de alunos e professores: (1) Infraestrutura da institui¢do de ensino: refere-se aos
recursos fisicos necessarios para a realizacao do processo de ensino-aprendizagem. Por exemplo:
computadores defasados para estudar; problemas com a disponibilizacdo de informacdes
importantes para os aprendizes; falta de sala de aula apropriada, com conforto, seguranga e
condi¢des para a devida concentracdo; falta de recursos para que os professores desenvolvam o
seu trabalho, como tempo adequado para que possam planejar aulas, atender alunos e corrigir
avaliagdes; (2) Organizacao didatico-pedagodgica de curso ou escola: diz respeito ao entendimento
compartilhado pela equipe pedagogica sobre quais sdo as aprendizagens que devem ser garantidas
e quais sdo as boas praticas para desenvolvé-las. Na auséncia de organizagdo, pode ocorrer
competicao de tempo de estudo ou atengdo do aluno entre disciplinas muito exigentes, mas que
compdem um mesmo periodo letivo. Pode ocorrer também variagdo excessiva em relagdo a como
o ensino ¢ realizado em cada disciplina, o que também favorece a competi¢do entre componentes
curriculares; auséncia de consensos minimos entre os docentes em relagdo aos comportamentos-
objetivo das disciplinas pode fazer com que aprendizagens de uma disciplina, que sdo pré-
requisitos para outra, ndo sejam desenvolvidas. Ainda entram nesse contexto a auséncia de boas
praticas de ensino, como inexisténcia de padroes de qualidade de planejamento, o que pode
facilitar que alguns professores, por exemplo, fornecam tempo insuficiente para que os alunos
aprendam um comportamento. Em sintese, as condi¢des de ensino também podem ser fonte
geradora de dificuldades para o aprendizado de programagao (Silva et al., 2019).

Consideramos necessario ressaltar que, dificilmente, um professor isoladamente conseguira
produzir impacto significativo sobre grandes contingentes de alunos, pois a complexidade do
processo de desenvolvimento de repertdrios, tipicamente, requer multiplas e sistemadticas
experiéncias ao longo de varias disciplinas, para que resultados mais robustos sejam produzidos.
Por isso ¢ importante que os professores atuem em conjunto (Hattie, 2015). De todo modo, a
gestdo da instituicdo de ensino, sociedade e governo possuem responsabilidades no processo
educativo, que precisam ser cumpridas para que ele atinja todo o seu potencial. Nao podemos,
portanto, supor como adequado que todas as responsabilidades recaiam sobre um professor ou um
grupo de professores, afinal o desempenho desses profissionais depende do contexto de trabalho
que ¢ oferecido para eles (Kienen et al., 2021; Cortegoso & Coser, 2023).

1510

Henklain et al. RBIE v.33 — 2025

6 Conclusao

O objetivo deste estudo foi (1) identificar dificuldades de alunos no aprendizado inicial de
programacao a partir de um mapeamento sistematico da literatura (MSL) e (2) propor variaveis,
baseadas na teoria psicoldgica analitico-comportamental e passiveis de investigagao por pesquisas
futuras, associadas a essas dificuldades. Com relag@o ao “Objetivo 1 - PPO1. Quando, por quem e
onde os estudos sdo tipicamente publicados?”, verificamos que a maior parte dos estudos se
concentram na ultima década, que apenas 2 pesquisadores se destacaram tendo mais de uma
publicagdo e que os estudos sdo, tipicamente, publicados em periddicos ou conferéncias. Com
relagdo ao “Objetivo 1 - PP02. O que geralmente tem sido investigado e como?”’, notamos que 0s
estudos, geralmente, sdo empiricos e caracterizam padrdes de dificuldades a partir da percepgao
de estudantes ou professores. Por fim, sobre o “Objetivo 1 - PP03. Quais sdo as dificuldades mais
comuns no aprendizado de programacdo?”’, encontramos dados que corroboram achados na
literatura em relagdo a dificuldades com a linguagem e os conceitos de programac¢do, bem como
em relacdo a resolucdo de problemas, leitura e interpretacao de codigo e identificagdo da fonte de
erros.

No geral, os achados do MSL indicam que ainda existe muito a ser investigado sobre o
aprendizado de programacao e as dificuldades envolvidas nesse processo. Precisamos buscar por
dados mais robustos, ndo s6 aqueles baseados em percepgdes. Também precisamos de dados mais
especificos, ndo apenas sobre erros mais comuns de sintaxe, mas de dificuldades com a resolucao
de problemas de fato, dispondo de informagdes sobre repertorio de entrada do estudante e suas
caracteristicas sociodemograficas. Em resposta ao Objetivo 2, com relagdo a variaveis especificas
que, de um ponto de vista analitico-comportamental, podem ser investigadas, organizamos os
achados da MSL em varaveis associadas aos ambientes antecedente e consequente, bem como
repertdrios especificos. Ressaltamos que neste estudo buscamos expor ideias coerentes com a
Anadlise do Comportamento, mas cuja responsabilidade € nossa.

6.1 Implicacdes educacionais

Apresentamos, ao examinar as varidveis associadas as dificuldades com a programacao, exemplos
de como professores podem melhorar o seu planejamento de ensino. Com a andlise do
comportamento de “programar computadores com conforto e sentido”, ilustramos a complexidade
dele e explicitamos quais aprendizagens parecem ser requeridas para o seu completo
desenvolvimento. Em conjunto, essas 2 fontes de contribui¢des podem indicar para docentes o
que devem ensinar e que aspectos podem considerar sobre estimulos antecedentes e consequentes
e sobre repertorios dos alunos, para atenuar dificuldades no aprendizado de programagao.

Um aspecto pratico que se pode levar deste estudo ¢ que ensinar requer precisdo sobre o tipo
de impacto que esperamos produzir nos alunos. Quando queremos, a um s6 tempo, ensinar o aluno
a pensar criticamente, resolver problemas, raciocinar matematicamente e computacionalmente,
programar e trabalhar em equipe, aumentamos o risco de insucesso, se ndo conhecermos bem
aspectos como o que estd envolvido no ensino de cada um desses comportamentos, que
dificuldades podem estar associadas a eles e para as quais devemos nos preparar, quem sao nossos
alunos em termos de repertorio comportamental, interesses e condi¢des para estudar e como
podemos mensurar adequadamente o desempenho deles, de modo que possamos identificar o que
sabiam quando o ensino comegou e em que a experiéncia da disciplina os modificou. E,
especialmente, importante examinar quais sdo os contextos e desafios com os nossos alunos
precisam aprender a lidar para obtermos a partir disso respostas mais promissoras sobre quais
comportamentos precisam aprender relativos a complexa classe geral de programar computadores
com conforto e sentido.

1511

Henklain et al. RBIE v.33 — 2025

6.2 Limitac¢oes do estudo e trabalhos futuros

Este estudo teve limitacdes que devem ser superadas em pesquisas futuras. Com relagdo ao
Objetivo 1, a primeira diz respeito a selecdo das bases de dados. Verificamos ser necessario incluir
bases brasileiras, pois nem sempre revistas e eventos nacionais sdo indexados pelas bases
internacionais. Outra limitagdo foi a string de busca. Notamos que ela retornou muitos estudos
sobre técnicas para mensuracao automatizada de dificuldade de uma questdo ou para deteccao de
erros, que ndo eram o nosso foco. Observamos também, apds a coleta, que alguns estudos
identificados por revisdes de literatura da nossa amostra ndo haviam sido recuperados por meio
da nossa string. Assim, seria util que estudos futuros aperfeigoassem a nossa string. Considerando
que nossa amostra foi pequena, ¢ importante também que estudos futuros avaliem a possibilidade
de consultar pesquisas que podem ndo estar disponiveis para o acesso institucional brasileiro ou
como open access, mas que se encontram disponiveis em outras fontes como o ResearchGate.
Além disso, para complementar os resultados obtidos nas bases de dados, seria importante ter
olhado os artigos citados por cada estudo selecionado, pois ali podemos encontrar mais pesquisas.
Apesar dessas limitagdes, avaliamos que nossos achados corroboram pesquisas anteriores,
mostrando consisténcia nos dados, e contribuiram com a literatura em fun¢do da pesquisa na
WOS, da inclusdo de estudos com diferentes populagdes e do exame analitico-comportamental
que foi conduzido, conferindo maior densidade a caracterizacao das dificuldades no aprendizado
da programacao.

Com relagdo ao Objetivo 2, a principal limitag@o foi a impossibilidade de replicacdo, dada a
natureza tedrica e propositiva de nossa andlise. Contudo, ela indicou que, a despeito dos dados
consistentes entre as diversas revisoes da literatura conduzidas, ainda ha muito conhecimento a
ser produzido e organizado. Primeiro sobre o que precisa ser ensinado sobre programagao e as
dificuldades que podem surgir nesse processo, pois ambas variam entre populagdes. O que se
ensina para criangas da educagdo basica ndo ¢ o mesmo feito com adultos do ensino superior, € o
que se ensina para alunos de engenharia civil ndo é o mesmo que para cientistas da computagao.
Embora existam dificuldades comuns, como os erros de sintaxe, podem aparecer outros tipos em
cada populagdo, relacionadas com o grau de complexidade dos comportamentos que precisam
aprender.

Segundo que a efetividade de um ensino que foi planejado ¢ muito dependente do repertorio
que o estudante possui no inicio do processo. Por melhor que seja a aula de programagao, se o
estudante ndo sabe manusear o mouse e o teclado, podera experimentar dificuldades que, talvez,
sequer tenham sido consideradas pelo professor ao preparar uma aula. Da mesma forma, alunos
que j& tiveram experiéncias anteriores com programacdo podem apresentar facilidade para
aprender conceitos de programacao e, ainda assim, dificuldades diante de novas sintaxes. Terceiro
que a propria escolha de uma linguagem de programagdo, de paradigma e de um ambiente de
desenvolvimento pode impactar em termos de dificuldade. Em resumo, essa lista de variaveis
poderia seguir sendo anunciada, pois s3o muitos os pardmetros que precisam ser investigados.
Sugerimos a realizagdo de trés estudos de base analitico-comportamental: (1) Estudo sobre obre
variaveis antecedentes: Avaliar efeito de formagdo de classe de equivaléncia entre diferentes
formas de representacdo (textual, codigo e fluxograma / diagrama) de estrutura logica
(condicional ou de lago de repeti¢do) sobre o desempenho na solu¢do de problemas de
programacao (consultar estudo analogo: Ribeiro et al., 2021). O pressuposto aqui € que poderemos
ensinar o aluno a identificar o significa de um cédigo a partir de estimulos correspondentes na
forma de texto e diagrama, o que pode ajudar na interpretacdo de problemas futuros; (2) Estudo
sobre varidveis consequentes: Comparar efetividade sobre o aprendizado de programacgao entre
sistema de juiz online construido de modo a reforcar comportamentos precorrentes em relagao a
um sistema que reforce apenas o comportamento que produz a solu¢do do problema. A ideia nesse
caso ¢ que precisamos refor¢ar toda a cadeia de comportamentos associados a solucdo do

1512

Henklain et al. RBIE v.33 — 2025

problema e ndo apenas a resposta-solugdo, ou seja, precisamos promover comportamentos de
manipulacdo do ambiente e estratégias mais promissoras de lidar com problemas no lugar de
olhar, por exemplo, apenas para se o codigo compila ou se gerou o output adequado. Uma
investigagdo sistematica nesse sentido, pode nos ajudar a identificar o que ¢ critico reforgar
quando se ensina programacao; (3) Estudo sobre variaveis relacionadas ao repertério: A partir de
Lazzari (2013) e do trabalho que conduzimos no Apéndice 1, descobrir e caracterizar os
comportamentos constituintes do comportamento de “programar computadores com conforto e
sentido”, evoluindo, em seguida, para o teste empirico desse exame a partir da organizagdo e
avaliagdo de eficiéncia de um curso orientado por esse rol de comportamentos-objetivo. Importa
também conduzir essa avaliagdo considerando diferentes realidades sociais e perfis de estudantes.

Adicionalmente, consideramos util examinar em estudos analitico-comportamentais sobre o
aprendizado de programagao, considerando diferentes perfis de estudantes e realidades sociais,
quais variaveis antecedentes tendem a produzir maior dificuldade de aprendizado, quais
reforcadores tendem a ser mais efetivos e quais comportamentos, quando aprendidos, produzem
maior impacto positivo sobre a capacidade de uma pessoa programar computadores com conforto
e sentido. Nessa perspectiva de avaliagdo, por exemplo, do que produz mais dificuldade em termos
de variaveis antecedentes, estamos pensando em estudos que de fato manipulem propriedades do
problema, como mais ou menos palavras, termos mais ou menos complexos, demanda maior ou
menor de conhecimento de conceitos matematicos etc., para avaliar se existem padrdes de
dificuldade, mensurados pelos tipos de comportamentos apresentados diante do problema e,
ainda, pelo percentual de erros na sua solugdo. O mesmo raciocinio se aplica ao comparar
reforcadores, como pontos, reconhecimento, aprovagao etc. Precisamos de um teste para examinar
se existem estimulos que tendem a ser mais efetivos, mas olhando para o seu impacto sobre a
frequéncia de comportamentos como testar alternativa de solu¢cdo do problema. Nao basta,
portanto, perguntar sobre a percepcao ou grau de satisfacdo do aluno.

Esperamos que as nog¢des de Analise do Comportamento apresentadas, junto com as variaveis
propostas associadas a dificuldades e os trés estudos sugeridos, possam incentivar a realizacdo de
novas investigagdes sobre o aprendizado de programacgdo. Enfatizamos que temos uma
preocupacdo aplicada, isto €, atenuar as dificuldades existentes no aprendizado de programacao,
mas consideramos promissor, antes de ir para a sala de aula, estudar mais sobre quais sdo os
eventos antecedentes e consequentes associados a essas dificuldades e o que deve ser ensinado
quando falamos em aprender a “programar computadores”. Em ultima analise, avangos nessa
pesquisa de base poderdo evidenciar quais condi¢des de ensino t€ém maior potencial de sucesso
em cada contexto e para cada populagao.

Declaracao de conflito de interesses

Os autores declaram que ndo hd qualquer conflito de interesses relacionado a elaboragdo e
publicacdo deste estudo.

Referéncias

Alasmari, O. A., Singer, J., & Ada, M. B. (2024). Do current online coding tutorial systems
address novice programmer difficulties? In: Proceedings of the 15th International
Conference on Education Technology and Computers (ICETC '23) (pp. 242-248).
Association for Computing Machinery, New York, USA.
https://doi.org/10.1145/3629296.3629333 [GS Search]

1513

https://doi.org/10.1145/3629296.3629333
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Do+current+online+coding+tutorial+systems+address+novice+programmer+difficulties%3F&btnG=

Henklain et al. RBIE v.33 — 2025

Araujo, A., Zordan-Filho, D., Oliveira, E., Carvalho, L., Pereira, F., & Oliveira, D. (2021).
Mapeamento e analise empirica de misconceptions comuns em avalia¢des de introdugao a
programacao. In: Anais do Simposio Brasileiro de Educa¢do em Computagdo (pp. 123-
131). Porto Alegre: SBC. https://10.5753/educomp.2021.14478 [GS Search]

Bandini, C. S. M. B., & Delage, P. E. G. A. (2012). Pensamento e criatividade. In: M. M. C.
Hiibner, & M. B. Moreira, Temas classicos da psicologia sob a otica da Andlise do
Comportamento (pp. 116-128). Rio de Janeiro: Guanabara Koogan.

BNCC. (2018). Base Nacional Comum Curricular: Educagdo ¢ a Base. Recuperado de
www.basenacionalcomum.mec.gov.br

Botomé, S. (2015). O conceito de comportamento operante como problema. Revista Brasileira de
Andlise do Comportamento, 9(1), 9-46. http://dx.doi.org/10.18542/rebac.v9i1.2130 [GS
Search]

Brasscom. (2021). Demanda de talentos em TIC e estratégia XTCEM: Relatorio de Inteligéncia e
Informacdo BR12-2021-007 — v112. Recuperado de https://bit.ly/4efZUOb

Carrara, K., & Strapasson, B. A. (2014). Em que sentido(s) ¢ radical o Behaviorismo Radical?.
Acta Comportamentalia: Revista Latina de Analisis del Comportamiento, 22(1), 101-115.
Recuperado a partir de
https://www.revistas.unam.mx/index.php/acom/article/view/48854 [GS Search]

Carvalho-Neto, M. (2002). Analise do comportamento: Behaviorismo radical, andlise
experimental do comportamento e andlise aplicada do comportamento. Interagdo em
Psicologia, 6(1), 13-18. http://dx.doi.org/10.5380/psi.v6i1.3188 [GS Search]

Castro, F., & Tedesco, P. (2020). Promovendo a reflexdo sobre o erro em disciplinas introdutérias
de programag¢do no ensino superior. Revista Brasileira de Informatica na Educagdo, 28,
150-165. https://doi.org/10.5753/rbie.2020.28.0.150 [GS Search]

Cianca, B. C., Panosso, M. G., & Kienen, N. (2020). Programa¢do de Condi¢des para
Desenvolvimento de Comportamentos: Caracterizagdo da produgao cientifica brasileira de
1998-2017. Perspectivas em Andlise do Comportamento, 11(2), 114-136.
https://doi.org/10.18761/PAC.2020.v11.n2.01 [GS Search]

Cortegoso, A. L., & Coser, D. S. (2023). Elaborag¢do de programas de ensino: Material
autoinstrutivo. Sao Carlos: EQUFSCar. [GS Search]

De Luca, G. G., Magalhaes, C. N, Rauch, S. L. B., Gusso, H. L., & Kienen, N. (2022). Problemas
de pesquisa em estudos de Programacdo de Condigdes para Desenvolvimento de
Comportamentos. Acta Comportamentalia: Revista Latina de Andlisis del
Comportamiento, 30(3), 423-442. Recuperado de https://bit.ly/3Zi6PIP [GS Search]

Eranki, K. L. N., & Moudgalya, K. M. (2015). Evaluation of Programming Competency Using
Student Error Patterns. In: 2015 International Conference on Learning and Teaching in
Computing and Engineering (pp. 34-41). Taipei, Taiwan.
https://doi.org/10.1109/LaTiCE.2015.16 [GS Search]

Espinal, A., Vieira, C., & Guerrero-Bequis, V. (2022). Student ability and difficulties with transfer
from a block-based programming language into other programming languages: a case
study in Colombia. Computer Science Education, 33(4), 567-599.
https://doi.org/10.1080/08993408.2022.2079867 [GS Search]

Gouveia, V. V., Guerra, V. M., Sousa, D. M. F., Santos, W. S., & Costa, J. M. (2009). Escala de
Desejabilidade Social de Marlowe-Crowne: Evidéncias de sua validade fatorial e
consisténcia interna. Avaliagcdo Psicologica, 8(1), 87-98. Recuperado de
http://bit.ly/39mRvgK [GS Search]

Gris, G., Palombarini, L. S., & Carmo, J. S. (2019). Uma revisdo sistematica de variaveis
relevantes na producdo de erros em matematica. Bolema: Boletim de Educagdo
Matematica, 33(64), 649-671. https://doi.org/10.1590/1980-4415v33n64al0 [GS Search]

1514

https://10.5753/educomp.2021.14478
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Mapeamento+e+an%C3%A1lise+emp%C3%ADrica+de+misconceptions+comuns+em+avalia%C3%A7%C3%B5es+de+introdu%C3%A7%C3%A3o+%C3%A0+programa%C3%A7%C3%A3o&btnG=
http://www.basenacionalcomum.mec.gov.br/
http://dx.doi.org/10.18542/rebac.v9i1.2130
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=O+conceito+de+comportamento+operante+como+problema&btnG=
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=O+conceito+de+comportamento+operante+como+problema&btnG=
https://bit.ly/4efZUOb
https://www.revistas.unam.mx/index.php/acom/article/view/48854
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Em+que+sentido%28s%29+%C3%A9+radical+o+Behaviorismo+Radical%3F&btnG=
http://dx.doi.org/10.5380/psi.v6i1.3188
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=An%C3%A1lise+do+comportamento%3A+Behaviorismo+radical%2C+an%C3%A1lise+experimental+do+comportamento+e+an%C3%A1lise+aplicada+do+comportamento&btnG=
https://doi.org/10.5753/rbie.2020.28.0.150
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Promovendo+a+reflex%C3%A3o+sobre+o+erro+em+disciplinas+introdut%C3%B3rias+de+programa%C3%A7%C3%A3o+no+ensino+superior&btnG=
https://doi.org/10.18761/PAC.2020.v11.n2.01
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Programa%C3%A7%C3%A3o+de+Condi%C3%A7%C3%B5es+para+Desenvolvimento+de+Comportamentos%3A+Caracteriza%C3%A7%C3%A3o+da+produ%C3%A7%C3%A3o+cient%C3%ADfica+brasileira+de+1998-2017&btnG=
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Elabora%C3%A7%C3%A3o+de+programas+de+ensino%3A+Material+autoinstrutivo&btnG=
https://bit.ly/3Zi6PlP
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Problemas+de+pesquisa+em+estudos+de+Programa%C3%A7%C3%A3o+de+Condi%C3%A7%C3%B5es+para+Desenvolvimento+de+Comportamentos&btnG=
https://doi.org/10.1109/LaTiCE.2015.16
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Evaluation+of+Programming+Competency+Using+Student+Error+Patterns&btnG=
https://doi.org/10.1080/08993408.2022.2079867
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Student+ability+and+difficulties+with+transfer+from+a+block-based+programming+language+into+other+programming+languages%3A+a+case+study+in+Colombia&btnG=
http://bit.ly/39mRvqK
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Escala+de+Desejabilidade+Social+de+Marlowe-Crowne%3A+Evid%C3%AAncias+de+sua+validade+fatorial+e+consist%C3%AAncia+interna&btnG=
https://doi.org/10.1590/1980-4415v33n64a10
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Uma+revis%C3%A3o+sistem%C3%A1tica+de+vari%C3%A1veis+relevantes+na+produ%C3%A7%C3%A3o+de+erros+em+matem%C3%A1tica&btnG=

Henklain et al. RBIE v.33 — 2025

Harangus, K. (2019). Examining the relationships between problem-solving and reading
comprehension skills. New Trends and Issues Proceedings on Humanities and Social
Sciences, 6(5), 66-74. https://doi.org/10.18844/prosoc.v6i5.4375 [GS Search]

Hashim, A. S., Ahmad, R., & Shahrul Amar, M. S. (2017). Difficulties in Learning Structured
Programming: A Case Study in UTP. In: 2017 7th World Engineering Education Forum
(WEEF) (pp. 210-215). Kuala Lumpur, Malaysia.
https://doi.org/10.1109/WEEF.2017.8467151 [GS Search]

Hattie, J. (2015). What works best in education: The politics of collaborative expertise. London:
Pearson. Recuperado de https://bit.ly/3zd0ZHI

Fontoura-Junior, J. M., Ribeiro, P. V. S., Pereira, L. B. F., Barros, K. W. C., Souza, O. S., Lima,
R.N., Almada, N. R., Moraes, M. S., & Henklain, M. H. O. (2023). Avaliagao de eficiéncia
do curso introducdo pratica a programagdo de computadores. Revista de Ciéncia e
Tecnologia, 9(1). https://doi.org/10.18227/2447-7028rct.v97586 [GS Search]

Heward, W. L., Critchfield, T. S., Reed, D. D., Detrich, R., & Kimball, J. W. (2022). ABA from
A to Z: Behavior Science Applied to 350 Domains of Socially Significant Behavior.
Perspectives on Behavior Science, 45, 327-359. https://doi.org/10.1007/s40614-022-
00336-z [GS Search]

Kienen, N., Panosso, M. G., Nery, A. G. S., Waku, I., and Carmo, J. S. (2021). Contextualizagdo
sobre a Programag¢do de Condic¢des para Desenvolvimento de Comportamentos (PCDC):
Uma experiéncia brasileira. Perspectivas em Andlise do Comportamento, 12(2), 360-390.
Recuperado de https://www.revistaperspectivas.org/perspectivas/article/view/818 [GS
Search]

Lazzari, C. L. (2013). Caracteristicas da classe de comportamentos ‘programar computadores’
como parte da capacitagdo de profissional da computacdo. [Dissertacdo de mestrado].
Universidade Federal de Santa Catarina. Recuperado de https:/bit.ly/47IWSF5 [GS
Search]

Ledo, M., & Laurenti, C. (2009). Uma analise do modelo de explicacdo no behaviorismo radical:
o estatuto do comportamento ¢ a relagdo de dependéncia entre eventos. Interagdo em
Psicologia, 13(1), 165-174. http://dx.doi.org/10.5380/psi.v13i1.12462 [GS Search]

Medeiros, R. P., Falcdo, T. P., & Ramalho, G. L. (2020). Ensino e aprendizagem de introdug¢ao a
programacao no ensino superior brasileiro: Revisdo Sistematica da Literatura. In: Anais
do Workshop sobre Educa¢do em Computacdo (WEI) (pp. 186-190). Porto Alegre:
Sociedade Brasileira de Computacdo. https://doi.org/10.5753/wei.2020.11155 [GS
Search]

Merchan-Rubiano, S. M., Lopez-Cruz, O., & Gomez Soto, E. (2015). Teaching computer
programming: Practices, difficulties and opportunities. In: 2015 [EEE Frontiers in
Education Conference (FIE) (pp. 1-9). El Paso, TX, USA.
https://doi.org/10.1109/FIE.2015.7344184 [GS Search]

Moreira, M. B., & Medeiros, C. A. (2018). Principios bdsicos de analise do comportamento. Porto
Alegre: Artmed, 320p. [GS Search]

Mow, I. C. (2008). Issues and Difficulties in Teaching Novice Computer Programming. In:
Iskander, M. (eds), Innovative Techniques in Instruction Technology, E-learning, E-
assessment, and Education (pp. 199-204). Springer, Dordrecht.
https://doi.org/10.1007/978-1-4020-8739-4 36 [GS Search]

Pereira, A., Carvalho, L., & Souto, E. (2019). Predi¢dao de evasdo de estudantes non-majors em
disciplina de introdugdo a programacao. In: Anais dos Workshops do Congresso Brasileiro
de Informatica na Educacgdo, 8(1), 178-187. https://doi.org/10.5753/cbie.wcbie.2019.178
[GS Search]

1515

https://doi.org/10.18844/prosoc.v6i5.4375
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Examining+the+relationships+between+problem-solving+and+reading+comprehension+skills&btnG=
https://doi.org/10.1109/WEEF.2017.8467151
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Difficulties+in+Learning+Structured+Programming%3A+A+Case+Study+in+UTP&btnG=
https://bit.ly/3zd0ZHI
https://doi.org/10.18227/2447-7028rct.v97586
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Avalia%C3%A7%C3%A3o+de+efici%C3%AAncia+do+curso+introdu%C3%A7%C3%A3o+pr%C3%A1tica+%C3%A0+programa%C3%A7%C3%A3o+de+computadores&btnG=
https://doi.org/10.1007/s40614-022-00336-z
https://doi.org/10.1007/s40614-022-00336-z
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=ABA+from+A+to+Z%3A+Behavior+Science+Applied+to+350+Domains+of+Socially+Significant+Behavior&btnG=
https://www.revistaperspectivas.org/perspectivas/article/view/818
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Contextualiza%C3%A7%C3%A3o+sobre+a+Programa%C3%A7%C3%A3o+de+Condi%C3%A7%C3%B5es+para+Desenvolvimento+de+Comportamentos+%28PCDC%29%3A+Uma+experi%C3%AAncia+brasileira&btnG=
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Contextualiza%C3%A7%C3%A3o+sobre+a+Programa%C3%A7%C3%A3o+de+Condi%C3%A7%C3%B5es+para+Desenvolvimento+de+Comportamentos+%28PCDC%29%3A+Uma+experi%C3%AAncia+brasileira&btnG=
https://bit.ly/47lW5F5
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Caracter%C3%ADsticas+da+classe+de+comportamentos+%E2%80%98programar+computadores%E2%80%99+como+parte+da+capacita%C3%A7%C3%A3o+de+profissional+da+computa%C3%A7%C3%A3o&btnG=
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Caracter%C3%ADsticas+da+classe+de+comportamentos+%E2%80%98programar+computadores%E2%80%99+como+parte+da+capacita%C3%A7%C3%A3o+de+profissional+da+computa%C3%A7%C3%A3o&btnG=
http://dx.doi.org/10.5380/psi.v13i1.12462
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Uma+an%C3%A1lise+do+modelo+de+explica%C3%A7%C3%A3o+no+behaviorismo+radical%3A+o+estatuto+do+comportamento+e+a+rela%C3%A7%C3%A3o+de+depend%C3%AAncia+entre+eventos&btnG=
https://doi.org/10.5753/wei.2020.11155
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Ensino+e+aprendizagem+de+introduc%CC%A7a%CC%83o+a%CC%80+programa%C3%A7%C3%A3o+no+ensino+superior+brasileiro%3A+Revisa%CC%83o+Sistema%CC%81tica+da+Literatura&btnG=
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Ensino+e+aprendizagem+de+introduc%CC%A7a%CC%83o+a%CC%80+programa%C3%A7%C3%A3o+no+ensino+superior+brasileiro%3A+Revisa%CC%83o+Sistema%CC%81tica+da+Literatura&btnG=
https://doi.org/10.1109/FIE.2015.7344184
https://scholar.google.com.br/scholar?q=Teaching+computer+programming:+Practices,+difficulties+and+opportunities&hl=pt-BR&as_sdt=0,5
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Princ%C3%ADpios+b%C3%A1sicos+de+an%C3%A1lise+do+comportamento&btnG=
https://doi.org/10.1007/978-1-4020-8739-4_36
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Issues+and+Difficulties+in+Teaching+Novice+Computer+Programming&btnG=
https://doi.org/10.5753/cbie.wcbie.2019.178
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Predi%C3%A7%C3%A3o+de+evas%C3%A3o+de+estudantes+non-majors+em+disciplina+de+introdu%C3%A7%C3%A3o+%C3%A0+programa%C3%A7%C3%A3o&btnG=

Henklain et al. RBIE v.33 — 2025

Petersen, K., Vakkalanka, S., Kuzniarz, L. (2015). Guidelines for conducting systematic mapping
studies in software engineering: An update. Information and Software Technology, 64, 1-
18. [GS Search]

Pranckuté, R. (2021). Web of Science (WoS) and Scopus: The Titans of bibliographic information
in today’s academic world. Publications, 9(12), 1-59.
https://doi.org/10.3390/publications9010012 [GS Search]

Qian, Y., & Lehman, J. (2017). Students’ Misconceptions and Other Difficulties in Introductory
Programming: A Literature Review. ACM Transactions on Computing Education, 18(1).
https://doi.org/10.1145/3077618 [GS Search]

Qian, Y., & Lehman, J. (2021). Using an automated assessment tool to explore difficulties of
middle school students in introductory programming. Journal of Research on Technology
in Education, 54(3), 375-391. https://doi.org/10.1080/15391523.2020.1865220 [GS
Search]

Ribeiro, K. L., Oliveira, Y. N., & Henklain, M. H. O. (2021). Treinar a correspondéncia entre
diferentes formas de apresentar problemas melhora o desempenho matematico. Avances
en Psicologia Latinoamericana, 39(1), 1-18.
https://doi.org/10.12804/revistas.urosario.edu.co/apl/a.8931 [GS Search]

Sampaio, A., de Azevedo, F., Cardoso, L., de Lima, C., Pereira, M., & Andery, M. (2008). Uma
introducdo aos delineamentos experimentais de sujeito Unico. Interacdo em Psicologia,
12(1), 151-164. http://dx.doi.org/10.5380/psi.v12i1.9537 [GS Search]

Santana, B. L., Chavez, C. V. F. G., & Bittencourt, R. A. (2021). Uma defini¢do operacional para
pensamento computacional. In: Anais do Simpodsio Brasileiro de Educagdo em
Computagdo (EDUCOMP) (pp. 93-103). Porto Alegre: SBC.
https://doi.org/10.5753/educomp.2021.14475 [GS Search]

Sério, T. M. de A. P. (2005). O behaviorismo radical e a psicologia como ciéncia. Revista
Brasileira de Terapia Comportamental e Cognitiva, 7(2), 247-261.
https://doi.org/10.31505/rbtcc.v7i2.554 [GS Search]

Sidman, M. (1994). Equivalence relations and behavior: A research story. Boston: Authors
Cooperative. [GS Search]

Sidman, M. (2009). Coer¢do e suas implicagoes (M. A. Andery & T. M. Sério, trads). Campinas,
SP: Livro Pleno. (Trabalho original publicado em 1989).

Silva, D. N., Brito, J. R., & Vaz, N. A. P. (2019). Logica de Programacao: Dificuldades de ensino-
aprendizagem, métodos e ferramentas computacionais. In: Anais do X Simposio de
Tecnologia da Informagdo, XI Semana de Inicia¢do Cientifica do curso de Sistemas de
Informacado e 1V Coloquio de Estagio (sem pagina). Goias: Universidade Estadual de
Goias. Recuperado de https://www.anais.ueg.br/index.php/sti_sic/article/view/13982 [GS
Search]

Silva, E., Caceffo, R., & Azevedo, R. (2022). Analise dos topicos mais abordados em disciplinas
de introdug¢do a programagdo em universidades federais brasileiras. In: Anais do II
Simposio Brasileiro de Educa¢do em Computag¢do (pp. 29-39). Porto Alegre: SBC.
https://doi.org/10.5753/educomp.2022.19196 [GS Search]

Silva, G. H. G. da, Lautert, S. L., Carmo, J. S., Santos, E. M., & Santos, D. E. L. (2023).
Microagressdoes no contexto de ensino e aprendizagem da matematica: Uma analise
teorico-conceitual. Educag¢do Matematica Pesquisa Revista do Programa de Estudos Pos-
Graduados em Educag¢do Matematica, 25(1), 283-304. https://doi.org/10.23925/1983-
3156.2023v25ip283-304 [GS Search]

Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of Web
of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126(6),
5113-5142. https://doi.org/10.1007/s11192-021-03948-5 [GS Search]

1516

https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Guidelines+for+conducting+systematic+mapping+studies+in+software+engineering%3A+An+update&btnG=
https://doi.org/10.3390/publications9010012
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Web+of+Science+%28WoS%29+and+Scopus%3A+The+Titans+of+bibliographic+information+in+today%E2%80%99s+academic+world&btnG=
https://doi.org/10.1145/3077618
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Students%E2%80%99+Misconceptions+and+Other+Difficulties+in+Introductory+Programming%3A+A+Literature+Review&btnG=
https://doi.org/10.1080/15391523.2020.1865220
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Using+an+automated+assessment+tool+to+explore+difficulties+of+middle+school+students+in+introductory+programming&btnG=
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Using+an+automated+assessment+tool+to+explore+difficulties+of+middle+school+students+in+introductory+programming&btnG=
https://doi.org/10.12804/revistas.urosario.edu.co/apl/a.8931
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Treinar+a+correspond%C3%AAncia+entre+diferentes+formas+de+apresentar+problemas+melhora+o+desempenho+matem%C3%A1tico&btnG=
http://dx.doi.org/10.5380/psi.v12i1.9537
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Uma+introdu%C3%A7%C3%A3o+aos+delineamentos+experimentais+de+sujeito+%C3%BAnico&btnG=
https://doi.org/10.5753/educomp.2021.14475
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Uma+defini%C3%A7%C3%A3o+operacional+para+pensamento+computacional&btnG=
https://doi.org/10.31505/rbtcc.v7i2.554
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=O+behaviorismo+radical+e+a+psicologia+como+ci%C3%AAncia&btnG=
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Equivalence+relations+and+behavior%3A+A+research+story&btnG=
https://www.anais.ueg.br/index.php/sti_sic/article/view/13982
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=L%C3%B3gica+de+Programa%C3%A7%C3%A3o%3A+Dificuldades+de+ensino-aprendizagem%2C+m%C3%A9todos+e+ferramentas+computacionais&btnG=
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=L%C3%B3gica+de+Programa%C3%A7%C3%A3o%3A+Dificuldades+de+ensino-aprendizagem%2C+m%C3%A9todos+e+ferramentas+computacionais&btnG=
https://doi.org/10.5753/educomp.2022.19196
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=An%C3%A1lise+dos+t%C3%B3picos+mais+abordados+em+disciplinas+de+introdu%C3%A7%C3%A3o+%C3%A0+programa%C3%A7%C3%A3o+em+universidades+federais+brasileiras&btnG=
https://doi.org/10.23925/1983-3156.2023v25ip283-304
https://doi.org/10.23925/1983-3156.2023v25ip283-304
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Microagress%C3%B5es+no+contexto+de+ensino+e+aprendizagem+da+matem%C3%A1tica%3A+Uma+an%C3%A1lise+te%C3%B3rico-conceitual&btnG=
https://doi.org/10.1007/s11192-021-03948-5
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=The+journal+coverage+of+Web+of+Science%2C+Scopus+and+Dimensions%3A+A+comparative+analysis&btnG=

Henklain et al. RBIE v.33 — 2025

Smith, R., & Rixner, S. (2019). The error landscape: Characterizing the mistakes of novice
programmers. In: Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE '19) (pp. 538-544). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3287324.3287394 [GS Search]

Todorov, J. C. (2007). A Psicologia como o estudo de interagdes. Psicologia: Teoria e Pesquisa,
23(spe), 57-61. https://doi.org/10.1590/S0102-37722007000500011 [GS Search]

UNESCO (2014, 10 de julho). Learn by coding. Recuperado de
https://www.unesco.org/en/articles/learn-coding

Wazlawick, R. S. (2021). Metodologia de pesquisa para ciéncia da computagdo (3 ed.). Rio de
Janeiro: LTC. [GS Search]

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215 [GS Search]

Yong, S. T., & Tiong, K. M. (2022). A Blended Learning Approach: Motivation and Difficulties
in Learning Programming. International Journal of Information and Communication
Technology Education (IJICTE), 18(1), 1-16. http://doi.org/10.4018/IJICTE.301276 [GS
Search]

Yusoff, K. M., Ashaari, N. S., Wook, T. S. M. T., & Ali, N. M. (2020). Analysis on the
requirements of computational thinking skills to overcome the difficulties in learning
programming. International Journal of Advanced Computer Science and Applications
(IJACSA), 11(3), 244-253. http://dx.doi.org/10.14569/IJACSA.2020.0110329 [GS
Search]

Zilio, D., & Neves Filho, H. (2018). O que (n3o) hd de “complexo” no comportamento?
Behaviorismo radical, self, insight e linguagem. Psicologia USP, 29(3), 374-384.
https://doi.org/10.1590/0103-656420170027 [GS Search]

1517

https://doi.org/10.1145/3287324.3287394
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=+The+error+landscape%3A+Characterizing+the+mistakes+of+novice+programmers&btnG=
https://doi.org/10.1590/S0102-37722007000500011
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=A+Psicologia+como+o+estudo+de+intera%C3%A7%C3%B5es&btnG=
https://www.unesco.org/en/articles/learn-coding
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Metodologia+de+pesquisa+para+ci%C3%AAncia+da+computa%C3%A7%C3%A3o&btnG=
https://doi.org/10.1145/1118178.1118215
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Wing+Computational+thinking+2006&btnG=
http://doi.org/10.4018/IJICTE.301276
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=A+Blended+Learning+Approach%3A+Motivation+and+Difficulties+in+Learning+Programming&btnG=
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=A+Blended+Learning+Approach%3A+Motivation+and+Difficulties+in+Learning+Programming&btnG=
http://dx.doi.org/10.14569/IJACSA.2020.0110329
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Analysis+on+the+requirements+of+computational+thinking+skills+to+overcome+the+difficulties+in+learning+programming&btnG=
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Analysis+on+the+requirements+of+computational+thinking+skills+to+overcome+the+difficulties+in+learning+programming&btnG=
https://doi.org/10.1590/0103-656420170027
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=O+que+%28n%C3%A3o%29+h%C3%A1+de+%E2%80%9Ccomplexo%E2%80%9D+no+comportamento%3F+Behaviorismo+radical%2C+self%2C+insight+e+linguagem&btnG=

Henklain et al. RBIE v.33 — 2025

Apéndice 01. Proposta preliminar de analise das classes mais especificas de comportamento
constituintes da classe geral “programar computadores com conforto e sentido”, composta por
comportamentos identificados por Lazzari (2013) e comportamentos descobertos no MSL
(indicados por um asterisco).

CLASSE GERAL DE COMPORTAMENTO

1. Programar computadores com conforto e sentido.

CLASSES DE COMPORTAMENTO CONSTITUINTES DA CLASSE GERAL

1.1. Avaliar argumentos de acordo com regras légicas.
1.1.1. Identificar principios basicos da logica (ex.: principios da identidade, ndo-contradi¢do, terceiro excluido).

1.1.2. Elaborar argumentos de acordo com regras logicas.

1.2. Caracterizar funcionamento de computadores.
1.2.1. Identificar conceitos basicos do computador para que fique explicitada a relagdo de dependéncia entre hardware e software.

1.2.2. Caracterizar estrutura e funcionamento dos computadores com base em seus principais componentes: processador, memoria principal,
memoria secundéria e barramento.

1.2.2.1. *Descrever o funcionamento do Sistema Operacional no sentido de como ele gerencia os recursos de sardware do computador e como
isso impacta a execugdo do software.

1.2.2.1.1. *Descrever como um programa ¢ executado pelo computador (maquina notacional), considerando que a maquina ndo pode inferir
intengdes do programador, devendo a comunicagdo com ela ser logica, precisa e consistente a todo momento.

1.2.2.1.2. *Caracterizar como funciona a traducdo do codigo de linguagem de programagdo para linguagem de maquina a partir de um
compilador e de um interpretador.

1.3. Resolver problemas.

1.3.1. *Caracterizar no que consiste 0 processo comportamental de resolver problemas e como isso se aplica a programagao de computadores.
1.3.1.1. *Descrever etapas e estratégias promissoras de resolu¢do de problemas com base no conhecimento existente sobre o que deve ser
considerado e testado em processos de solugdo de problemas de programagao.

1.3.1.1.1. *Identificar que as informagdes sobre o problema podem ser divididas entre importantes e aquelas que podem ser, convenientemente,
ignoradas para reduzir a complexidade do problema.

1.3.1.2. *Reconhecer a etapa em que uma pessoa se encontra no processo de solugdo de problemas como forma de, sempre que necessario,
facilitar a verificagdo do proprio progresso na solugido de um problema especifico.

1.3.1.3. *Identificar dificuldades inerentes a resolu¢do de problemas no ambito da computagdo de modo a atenuar o efeito de erros e falhas no
processo de programagéo.

1.3.1.4. *Identificar que a solugéo de problemas de programacao requer adesdo a regras logicas estritas e comunicacdo inequivoca de modo a
atenuar a probabilidade de erros por desconsideragdo desses requisitos.

1.3.2. Caracterizar problemas para facilitar a sua resolugao.

1.3.2.1. Diferenciar demandas recebidas de problemas a resolver, para aumentar as chances de que problemas sejam derivados da demanda e,
assim, 0 que importa e precisa ser feito seja priorizado.

1.3.2.2. *Interpretar o problema a partir das informagdes disponiveis.

1.3.2.2.1. *Avaliar grau de explicitude do problema e o que ainda precisa ser conhecido para compreendé-lo.

1.3.2.2.2. Identificar objetivo do problema.

1.3.2.2.3. *Avaliar em que medida o objetivo do problema que foi identificado pode estar errado, para aumentar as chances de corregdo de
equivocos de interpretagéo.

1.3.3. Delimitar escopo do problema, considerando os seus requisitos.

1.3.3.1. *Identificar informagdes que precisam ser conhecidas para a solu¢@o do problema (dominio externo ao problema).

1.3.3.2. *Identificar requisitos do problema e diferengas que ele possui em relagdo a outros problemas ja solucionados, de modo a evitar
confusdes entre como este problema pode ser resolvido e solugdes implementadas no passado.

1.3.4. Representar problemas de diferentes formas, para facilitar a sua analise ¢ solu¢do (ex.: por meio de fluxograma, linguagem natural,
linguagem matematica, representagio grafica).

1.3.4.1. Caracterizar dados de um problema.

1.3.4.2. Nomear dados de um problema.

1.3.4.3. Selecionar dados necessarios para resolver um problema.

1.3.4.4. *Identificar padrdes em um problema que facilitem a descoberta da sua solugao.

1.3.5. *Avaliar o que ha em comum entre problemas conhecidos e suas solugdes em relagdo ao problema que precisa ser solucionado, para
viabilizar identifica¢do e uso de recursos, boas praticas e solugdes que sejam pertinentes.

1.3.5.1. *Pesquisar problemas analogos e suas respectivas solugdes.

1.3.5.2. *Pesquisar algoritmos pertinentes para o problema que precisa ser resolvido.

1.3.6. *Abstrair aspectos irrelevantes do problema de modo a reduzir o efeito confundidor que variaveis irrelevantes poderiam exercer, caso
nao tivessem sido desconsideradas.

1.3.7. Decompor problema em problemas de menor complexidade, com partes pequenas, unicas e ndo ambiguas, que sio resolvidas de forma
independente.
1.3.7.1. Definir critérios para decompor um problema.

1.3.7.2. Identificar partes de um problema que sdo, elas proprias, problemas mais especificos a serem solucionados.

1.3.8. *Formular hipoteses sobre solucdo potencial para um problema.

1518

Henklain et al. RBIE v.33 — 2025

1.3.8.1. *Identificar estratégias para a produgdo de solugdes criativas.

1.3.8.2. *Derivar solugdes de problemas conhecidos para o problema que precisa ser resolvido, considerando as diferengas entre ambos, os
requisitos de solucdo do problema, as estratégias de solugdo validas e a necessidade de cuidado para reduzir as chances de aplicagdo mecanica
de solugdo criada para outro problema em relagdo ao problema atual.

1.3.8.2.1. *Avaliar se a combinagdo de duas ou mais solugdes para problemas conhecidos podem ajudar a superar o problema que precisa ser
resolvido.

1.3.8.2.2. *Inferir a partir de caso particular (ex.: casos de teste) a solu¢do do problema.

1.3.9. *Testar hipoteses de solu¢do que foram formuladas (“simulagdo mental”).

1.3.9.1. *Identificar resultados dos testes de hipoteses de solugdo.

1.3.9.2. *Avaliar criticamente os resultados das hipoteses de solugdo testadas.

1.3.9.2.1. *Explicar para si mesmo a hipdtese de solugdo como estratégia metacognitiva de exame de sua pertinéncia.
1.3.9.3. *Aperfeicoar hipoteses com base nos resultados do teste de modo a viabilizar a melhor solugéo.

1.3.10. Escrever solugdo de problemas de diferentes graus de complexidade.
1.3.10.1. Diferenciar o que sabe do que ¢ preciso saber fazer para resolver problemas.
1.3.10.2. Identificar possibilidades de solu¢do mais promissoras para um problema, dentre as hipoteses testadas.

1.4. Construir algoritmos.

1.4.1. Diferenciar algoritmo de programa de computador.

1.4.1.1. Caracterizar algoritmo.

1.4.1.2. Caracterizar programa de computador (ex.: paradigma de programagéo adotado, finalidade).

1.4.2. Caracterizar estruturas de controle de fluxo (ex.: selegdo, repeti¢do), para aumentar as chances de que a estrutura adequada para uma
situagdo seja identificada e que algoritmos concisos e eficientes sejam desenvolvidos.

1.4.3. *Caracterizar conhecimentos matematicos (ex.: aritmética, algebra) que sdo tipicamente relevantes e requeridos para o desenvolvimento
de algoritmos.

1.4.4. Ler instrugdes de um algoritmo, para aumentar as chances de escrevé-los e interpreta-los corretamente.

1.4.5. Escrever algoritmos, considerando que devem ser compreensiveis para outros programadores.

1.4.5.1. Caracterizar instrugdes de algoritmos (ex.: declaragdo referencial, declaragdo conotativa).

1.4.5.2. Identificar o que cada instrugdo faz.

1.4.5.3. Identificar o que as instru¢des fazem juntas.

1.4.5.4. Definir sequéncia de instrugdes pequenas, Unicas, ndo ambiguas e finitas que solucionem um problema.

1.4.5.5. *Criar estrutura de repeti¢cdo quando a execugdo reiterada de uma sequéncia de instru¢des for necessaria para a solugdo do problema.
1.4.5.6. *Criar estrutura condicional quando a mudanga no fluxo de execugdo, baseada em regras, for necessaria para a solu¢do do problema.

1.5. Formalizar algoritmos.

1.5.1. Identificar equivaléncia de instru¢des em linguagem natural e de programagao.

1.5.1.1. Caracterizar linguagens de programagcio (ex.: grau de abstrac¢do, paradigma de programacao, geragao).

1.5.1.1.1. *Identificar finalidade dos paradigmas de programagao no sentido de estratégias para interpretagdo de problemas e suas solu¢des de
modo a permitir a construgdo de programas de computador.

1.5.1.1.2. *Descrever os principais tipos de paradigmas de programagao (ex.: estruturado, orientado a objetos).

1.5.1.1.2.1. *Caracterizar o paradigma orientado a objetos em termos de significado, interagdo e implementagéo de seus principais conceitos
(ex.: objeto, classe, instancia de classe, método, heranga, polimorfismo, variavel estatica e interface.

1.5.1.1.2.1.1. *Implementar componentes do paradigma orientado a objetos (objeto, classe, instancia de classe, método, heranga, polimorfismo,
variavel estatica, interface).

1.5.1.1.2.1.2. *Identificar origem e destino dos valores de parametros processados pelo método de um objeto.

1.5.1.1.2.2. *Caracterizar o paradigma estruturado.

1.5.1.1.2.2.1. *Implementar componentes do paradigma estruturado.

1.5.1.2. Caracterizar a sintaxe de uma linguagem de programacao, considerando que se trata das regras gramaticais da linguagem.

1.5.1.2.1. *Identificar na sintaxe de uma linguagem a funcao especifica para estimulos como indentagao, uso de parénteses, colchetes, chaves,
aspas duplas e simples, ponto e virgula, virgula e operadores de atribui¢do, comparagéo, aritméticos e logicos.

1.5.1.3. Caracterizar a semantica de uma linguagem de programacao, considerando que se trata do vocabulario da linguagem e seu significado.
1.5.1.4. Identificar diferentes usos de um simbolo em uma linguagem de programagao (ex.: +, ++, =, ==).

1.5.1.5. Diferenciar uso de um simbolo em diferentes linguagens de programagao.

1.5.1.6. *Traduzir termos técnicos da programagéo, no contexto de uma linguagem de programagao, para a lingua nativa do desenvolvedor de
modo a garantir que foram adequadamente compreendidos.

1.5.2. Caracterizar descri¢des formais e precisas de problemas.

1.5.2.1. Identificar estruturas que favorecem a formaliza¢do de um algoritmo.

1.5.2.2. Identificar niveis de formalizagdo, para aumentar as chances de escrita de codigos legiveis, organizados e corretos.
1.5.2.3. Identificar regras de formalizag@o.

1.5.3. Especificar os detalhes formais de um algoritmo.
1.5.3.1. Identificar o objetivo de formalizar um algoritmo.
1.5.3.2. Definir o nivel de formalizacao, considerando a linguagem de programacao escolhida.

1.6. Escrever programas de computador.

1.6.1. Nomear variaveis respeitando as regras de uniformidade.

1.6.1.1. *Conceituar variavel com base em seu sentido tipico e especifico, no contexto de uma linguagem de programagéo.
1.6.1.1.1. *Identificar que uma variavel s6 pode ter um valor por vez, em um momento especifico.

1.6.1.1.2. *Identificar que a ordem de atribui¢do de valores a uma variavel importa (ex.: 5=A ndo ¢é equivalente a A=5).

1519

Henklain et al. RBIE v.33 — 2025

1.6.1.1.3. *Identificar que fun¢des de impressdo de valores na tela ndo podem atribuir valores a uma variavel.

1.6.1.1.4. Diferenciar o nome atribuido a uma variavel em relagdo ao que ela faz (ex.: 0o nome da variavel pode ser média e a variavel receber
o valor da somatoria de dois niimeros).

1.6.1.2. Escolher nomes de variaveis coerentes com a sua fungéo no codigo.

1.6.1.2.1. *Avaliar se o nome de uma variavel ¢ adequado em relagdo as boas praticas de programagéo.

1.6.1.2.2. *Avaliar se nome da variavel nio viola regras sintaticas da linguagem de programagcéo utilizada.

1.6.1.2.3. *Avaliar se nome de uma variavel ndo sobrescreve fun¢des embutidas (built-in) ou palavras reservadas da linguagem utilizada.

1.6.2. Declarar variaveis.

1.6.2.1. Caracterizar variaveis em termos do seu escopo (local ou global), tipo, necessidade de inicializagdo e sintaxe correta para a sua
declaragao.

1.6.2.1.1. *Identificar as implicagdes de uma variavel ser local ou global.

1.6.2.2. Identificar diferentes fungdes das variaveis (ex.: contador de repeticdo, selegdo, soma, inicializagdo, atribui¢do, acumulagio).

1.6.2.3. Identificar tipos de variaveis (ex.: inteiro, real, string).

1.6.2.4. Identificar o que acontece no computador quando uma variavel ¢ declarada.

1.6.2.5. Definir o tipo ¢ 0 nome da variavel.

1.6.3. Atribuir valores as variaveis compativeis com o tipo da variavel declarada.
1.6.3.1. Caracterizar atribui¢do de valores as variaveis.
1.6.3.1.1. Identificar o que acontece no computador quando valores sdo atribuidos a uma variavel.

1.6.4. Caracterizar etapas do processo de programagdo de computadores.

1.6.4.1. Caracterizar termos basicos de programagdo e como implementa-los (ex.: regras de precedéncia, operadores de atribui¢do, comparagao,
aritméticos e logicos, tipos abstratos de dados, estrutura de decis@o / sele¢do, estrutura de loop / lago de repeti¢do, fungdo, procedimento,
parametro, vetor, matriz, recursio, estruturas de dados basicas, ponteiro, arquivos).

1.6.4.1.1. *Identificar que, em uma estrutura condicional, ou o bloco de if ou o de else sera executado e ndo ambos.

1.6.4.1.2. *Identificar o escopo do lago de repetigdo.

1.6.4.1.3. *Identificar que a execug@o de um programa ¢ sequencial.

1.6.4.2. *Identificar necessidade de uso de bibliotecas para facilitar o desenvolvimento do programa.

1.6.4.3. Identificar a melhor maneira de leitura de um programa de computador.

1.6.4.4. *Caracterizar boas praticas de programagéo relacionadas ao uso de estruturas de sele¢do e repeticdo ¢ a modularizagdo do programa.
1.6.4.5. *Caracterizar estilos de programagao para identificagdo dos mais promissores.

1.6.4.6. *Identificar todos os passos de execug@o de um programa de computador.

1.6.5. Projetar programas de computador.

1.6.5.1. Definir paradigma de programagao.

1.6.5.2. Definir especificagdes do programa (ex.: o que o programa precisa resolver).

1.6.5.2.1. *Identificar os requisitos (ex.: funcionais e ndo-funcionais) que precisam ser atendidos para que o programa seja considerado
completo e correto.

1.6.5.2.2. *Diferenciar dados de entrada dos dados de saida.

1.6.5.3. *Planejar o que precisa ser codificado para evitar retrabalho.

1.6.5.3.1. *Definir o que precisa ser codificado primeiro e o que pode ser feito na sequéncia.

1.6.5.3.2. *Criar rascunho do programa de modo a facilitar a visualizacdo de sua estrutura e o que precisa ser desenvolvido, considerando,
ainda, o algoritmo formalizado.

1.6.5.3.3. *Auvaliar se codigo existente pode ser reutilizado, antes ou ap6s ajuste, ou integrado ao programa que precisa ser desenvolvido.
1.6.5.3.4. *Avaliar se ferramentas (ex.: inteligéncia artificial/LLMS) podem ajudar na produg¢do de codigo.

1.6.5.3.4.1. *Examinar se o uso de uma ferramenta respeita direitos autorais, legislagdo especifica do pais em que o programa esta sendo
desenvolvido ou regras definidas pelo cliente e aspectos técnicos como os de seguranga da informagéo.

1.6.5.3.5. *Propor estratégias para tratamento de casos atipicos relacionados ao uso do programa.

1.6.5.3.5.1. *Prever possiveis problemas no uso do programa como pré-requisito para que seja possivel o adequado tratamento desses erros
(ex.: evitar divisdo por zero).

1.6.6. *Caracterizar recursos e restricdes do Ambiente Integrado de Desenvolvimento (IDE) para garantir que o programa possa ser
desenvolvido com agilidade e seguranca.

1.6.7. *Ler programas de computador com conforto e sentido.

1.6.7.1. *Localizar elementos de interesse dentro do codigo.

1.6.7.2. *Identificar a finalidade do programa a partir da leitura do seu codigo-fonte.

1.6.7.3. *Identificar que estruturas estaticas podem representar processos dinimicos no codigo-fonte.

1.6.8. Escrever codigos em uma linguagem de programagéo.

1.6.8.1. Selecionar problemas possiveis de resolver com um programa de computador.

1.6.8.2. Identificar limitagdes para escrever um programa de computador.

1.6.8.3. *Traduzir algoritmo formalizado em termos de uma linguagem de programagéo.
1.6.8.4. *Modularizar codigo de modo que ele seja organizado em procedimentos ou fungdes.
1.6.8.5. *Unir blocos de cddigo que deveriam funcionar de modo coordenado.

1.6.8.6. *Identificar quais linhas sdo executadas e quais ndo sdo dado um conjunto de entradas.
1.6.8.7. *Atualizar o estado das variaveis a cada linha de instrugio

1.6.8.8. *Implementar medidas de seguranca (ex.: evitar divisdo por zero).

1.7. Avaliar programas de computador.
1.7.1. *Projetar casos de teste conforme o contexto do problema, para que o programa possa ser testado.

1.7.2. *Implementar casos de teste para exame do funcionamento do programa de computador.

1.7.3. Detectar possiveis erros para que sejam corrigidos.
1.7.3.1. *Interpretar mensagens de erro apresentadas pela linguagem de programagao.

1520

Henklain et al. RBIE v.33 - 2025

1.7.3.1.1. Classificar tipo de erro encontrado em um programa de computador (ex.: sintatico, semantico/ldgico).

1.7.3.1.2. *Corresponder termos na mensagem de erro a partes do codigo.

1.7.3.1.2.1. *Localizar erros no codigo-fonte do programa, considerando os proprios conhecimentos ou com auxilio de foruns e de modelos de
linguagem de larga escala, desde que observados aspectos éticos, juridicos e técnicos em relagdo ao uso dessa tecnologia.

1.7.3.1.3. *Investigar com prioridade erros mais provaveis como os de sintaxe ou cometidos em fun¢do da pequena experiéncia com a
programacao (ex.: relacionados a habitos de comunicagio, habitos de solugdo de problemas matematicos).

1.7.3.2. Identificar efeitos de erros no programa.

1.7.3.3. Testar o programa elaborado para deteccéo de erros.

1.7.4. Depurar erros por meio de rastreamento e teste do programa de computador.

1.7.4.1. Caracterizar depuragdo de erros como processo de analise do codigo-fonte.

1.7.4.2. Examinar os processos que levaram ao erro por meio de rastreamento do codigo-fonte.

1.7.4.2.1. Identificar o que foi escrito ou feito de errado a partir de mensagem de erro.

1.7.4.2.2. *Identificar fonte de erro relacionada a um problema de compilag@o ou interpretagio.

1.7.4.2.3. *Identificar fonte de erro relacionada a problema na execugio do codigo-fonte.

1.7.4.2.3.1. *Conduzir, sempre que for pertinente, teste de mesa.

1.7.4.2.4. *Identificar fonte de erro relacionada a problema em relagio aos requisitos de solu¢éo do problema.
1.7.4.2.5. Diferenciar o local onde o erro aparece do local em que ele se origina.

1.7.4.3. Corrigir erros encontrados por meio de rastreamento do codigo-fonte ou do uso de outras técnicas.
1.7.4.3.1. *Identificar acdes adequadas para lidar com os tipos de erros encontrados.

1.7.4.3.2. *Implementar solugdes para os erros identificados.

1.7.5. Avaliar qualidade de programas de computador.

1.7.5.1. Diferenciar um programa que funciona daquele que esta terminado e validado.
1.7.5.2. Definir critérios para avaliar programas de computador (ex.: eficiéncia, custo, atendimento aos requisitos, documentagdo e
legibilidade).

1.7.5.3. *Refatorar codigo-fonte sempre que possivel, podendo empregar os proprios conhecimentos ou o auxilio de inteligéncia artificial,
desde que observados aspectos éticos, juridicos e técnicos em relagdo ao uso dessa tecnologia.

Grau 01 — Classe Geral: 01 (“Programar computadores com sentido e conforto”)
Total de comportamentos intermediarios (constituintes da classe geral): 172
Comportamentos intermediarios propostos por Lazzari (2013): 82
Comportamentos intermedidrios descobertos no MSL (indicados por asterisco): 90

Total de comportamentos intermediarios identificados por Lazzari (2013) e neste estudo a partir de MSL

07 32 73 43 12 05

1521

