
Revista Brasileira de Informática na Educação – RBIE
Brazilian Journal of Computers in Education
(ISSN online: 2317-6121; print: 1414-5685)
https://sol.sbc.org.br/journals/index.php/rbie

Submission: 10/09/2025;
Camera ready: 19/12/2025;

1st round notif.: 04/12/2025;
Edition review: 09/02/2026;

New version: –/–/—;
Available online: 09/02/2026;

2nd round notif.: –/–/—;
Published: 09/02/2026;

Exploring the Use of Clustering Algorithms and LLMs to
Identify Programming Strategies

Rafaela Melo
Federal University of Amazonas (UFAM)
ORCID: 0000-0001-6198-8962
rmelo@icomp.ufam.edu.br

Tiago Souza
Federal University of Amazonas (UFAM)
ORCID: 0009-0002-9407-992X
tiago.souza@icomp.ufam.edu.br

Fernanda Pires
University of the State of Amazonas (UEA)
ORCID: 0000-0002-8180-9850
fpires@uea.edu.br

Elaine Oliveira
Federal University of Amazonas (UFAM)
ORCID: 0000-0003-2884-9359
elaine@icomp.ufam.edu.br

Leandro Carvalho
Federal University of Amazonas (UFAM)
ORCID: 0000-0003-2970-2084
galvao@icomp.ufam.edu.br

Marcela Pessoa
University of the State of Amazonas (UEA)
ORCID: 0000-0002-3064-5585
msppessoa@uea.edu.br

David Fernandes
Federal University of Amazonas (UFAM)
ORCID: 0000-0002-2887-2324
david@icomp.ufam.edu.br

Abstract
In programming courses, students may use various strategies to solve the same problem. Understanding these strate-
gies can be important for teachers and instructors to assess student progress and provide targeted feedback. Tradi-
tional clustering methods have been widely used to group similar programming solutions. However, these techniques
often rely on syntactical similarities that do not always reflect the strategies for solving a problem. This research uses
clustering algorithms and Large Language Models (LLMs) to identify programming strategies. We conducted the
experiments using a dataset of correct student solutions collected from ten Algorithms and Data Structures classes at
Federal University of Amazonas. Although the Mean Shift and Affinity Propagation clustering algorithms provided us
with visually well-separated clusters, quantitative results showed that the algorithms were not accurate in grouping
strategies. In contrast, LLMs demonstrated a better ability to identify strategies aligned with human labels. The
results suggest that LLMs can be valuable tools to assist programming instructors in analyzing student solutions.
Keywords: Programming strategies; LLMs; Clustering; Programming learning

Cite as: Melo, R., Souza, T., Pires, F., Oliveira, E., Carvalho, L., Pessoa, M. & Fernandes, D. (2025). Exploring
the Use of Clustering Algorithms and LLMs to Identify Programming Strategies. Revista Brasileira de
Informática na Educação, vol. 34, pp. 59–82. https://doi.org/10.5753/rbie.2026.6550.

https://sol.sbc.org.br/journals/index.php/rbie
https://orcid.org/0000-0001-6198-8962
https://orcid.org/0009-0002-9407-992X
https://orcid.org/0000-0002-8180-9850
https://orcid.org/0000-0003-2884-9359
https://orcid.org/0000-0003-2970-2084
https://orcid.org/0000-0002-3064-5585
https://orcid.org/0000-0002-2887-2324

Melo et al. RBIE v.34 – 2026

1 Introduction

In programming courses, a single exercise may have multiple possible solutions. The differences
between students’ code can be minor, such as variable naming, or more substantial, such as us-
ing different programming strategies to solve the problem (Huang et al., 2013). For example, in
a task involving sorting a list of numbers, one student might use bubblesort, while another opts
for mergesort (Knuth, 1998). Understanding the strategies students employ throughout a pro-
gramming course can help instructors determine whether the concepts taught are being applied in
assignments and exams (Koivisto and Hellas, 2022).

From a pedagogical perspective, evaluating only whether a solution is correct or not provides
a limited view of the student’s learning process. Functionally correct code may conceal inefficient
strategies, fragile solutions, or partial understandings of the underlying concepts (Koivisto and
Hellas, 2022). In contrast, identifying problem-solving strategies allows instructors to understand
how students structure their algorithmic reasoning, which concepts they have mastered, and which
difficulties persist, even when the final result is correct. This type of analysis enables more precise
pedagogical interventions and more meaningful feedback (Glassman et al., 2015).

However, manually evaluating code can be demanding for instructors, especially consider-
ing the large number of students per class and the high volume of exercises typically assigned in
programming courses. In response to this challenge, several studies in the literature have explored
ways to support instructors in this process (Effenberger and Pelánek, 2021; Glassman et al., 2015),
for example, by proposing methods to group similar solutions using clustering algorithms (Melo
et al., 2024). Despite these advances, most of these methods rely on syntactic similarity, which
does not always accurately reflect the programming strategies adopted by students (Melo et al.,
2025).

In this regard, some studies indicate that syntactic similarity captures only superficial differ-
ences, such as variable naming, instruction order, or writing style, without necessarily reflecting
the algorithmic essence of the solution. Huang et al. (2013), for example, observed that in thou-
sands of submissions from a massive online course, the enormous syntactic diversity corresponded
to a relatively small number of distinct approaches, highlighting that syntax does not accurately
convey the strategy employed. Similarly, Glassman et al. (2015), through the OverCode tool,
reinforced the need to go beyond textual comparison, resorting to transformations and dynamic
analyses to identify solutions that, although visually distinct, implemented the same underlying
logic.

More recently, Paiva et al. (2024) reinforced the limitations of purely syntactic approaches
and advanced by proposing the use of semantic representations of code, capable of identifying
similar algorithmic strategies even when expressed in different ways. These methods seek to
capture deeper aspects of program behavior, approaching the notion of “problem-solving strategy”
students adopt.

With the emergence of Large Language Models (LLMs), many research opportunities in-
volving natural language tasks such as text analysis, summarization, and translation have arisen.
In computing education, it is no different; some studies have explored using LLMs to support
programming courses, acting as assistants for students (Mehta et al., 2023).

60

Melo et al. RBIE v.34 – 2026

In this context, LLMs have proven promising as tools for directly supporting students and
as resources capable of assisting teachers in code evaluation (Piscitelli et al., 2025). Leinonen
et al. (2023) emphasize that these models can abstract problem-solving patterns and identify
programming strategies in a way that is closer to human interpretation, capturing the underlying
logic without relying exclusively on syntactic or semantic representations, as occurs in clustering
methods. Furthermore, recent studies demonstrate the feasibility of employing LLMs to generate
automatic and varied explanations about code fragments, expanding the possibilities for pedagog-
ical analysis and providing teachers with additional support to understand the different approaches
adopted by students (MacNeil et al., 2022).

Given this context, this article investigates the use of clustering algorithms to group pro-
gramming strategies adopted by students when solving exercises, as well as the use of Large
Language Models (LLMs) to identify and label such strategies. The main objective is to analyze
to what extent these approaches are able to organize and group solutions in a manner consistent
with the strategies actually implemented. Within this scope, the following research questions are
formulated:

RQ1: To what extent can clustering algorithms group programming solutions according to the
strategies used by students?

RQ2: To what extent can Large Language Models (LLMs) identify and describe programming
strategies?

To address the research questions, two distinct experiments were conducted, one with clus-
tering algorithms and one with LLMs, based on a dataset of codes submitted by students from ten
classes of the Algorithms and Data Structures course at the Federal University of Amazonas, col-
lected through the CodeBench online judge1 (Galvão et al., 2016). The results point to limitations
in traditional clustering methods, However, they show that LLMs hold potential for identifying
and describing programming strategies, as they do not rely solely on syntactic aspects of the code
in the analysis. Thus, the main contributions of this work are: i) the proposal of a method to clus-
ter student code according to the programming strategies adopted; and ii) a new research avenue
in computing education, through the use of LLMs to label code clusters.

We organize this paper as follows: Section 2 presents the theoretical foundation and related
work, Section 3 describes the proposed method, Section 4 discusses the experimental results,
Section 5 presents the discussion, and Section 6 outlines the conclusions.

2 Background and Related Work

This section presents recent studies on using clustering algorithms to group programming exercise
solutions and using LLMs in the context of computing education.

1https://cb.icomp.ufam.edu.br

61

Melo et al. RBIE v.34 – 2026

2.1 Clustering of programming solutions

Clustering is an unsupervised learning technique, meaning that training does not require prede-
fined labels or categories. It is an approach focused on grouping similar data into clusters (Xu and
Tian, 2015), in which instances share similar characteristics (Jain and Dubes, 1988). Clustering
algorithms can be organized into different categories, such as partition-based methods (e.g., k-
means (MacQueen et al., 1967)), hierarchical methods, density-based approaches (e.g., DBSCAN
(Ester et al., 1996)), and graph- or model-based methods (Xu and Tian, 2015). While partition-
based methods require prior specification of the number of groups, hierarchical and density-based
approaches allow the identification of grouping structures without the need to predefine the num-
ber of clusters. In the context of computing education, this characteristic is particularly relevant,
as the number of programming strategies adopted by students is not known in advance.

Some studies in the literature have applied clustering algorithms to group students’ pro-
gramming solutions. For example, Gao et al. (2019) used this type of approach across different
sets of exercises. In one of the exercises analyzed, the goal was to calculate the strength of a
password based on its length and character diversity. The algorithm identified six distinct groups,
including: (i) the use of a single for statement combined with conditionals to check different
characters; (ii) the use of helper functions; (iii) the excessive use of logical operators &&; and
(iv) the redundant use of for statements for the same task. The two remaining groups were not
detailed. The authors concluded that, in some exercises, the clusters can provide relevant insights
into the different types of solutions adopted by students; however, they highlighted the need to
improve cluster interpretability as a limitation. The main goal of the study was to identify similar
behaviors among students when solving programming problems, in line with other research in the
area, such as Glassman et al. (2015), Luo and Zeng (2016), Fu et al. (2021), and Effenberger and
Pelánek (2021).

Silva et al. (2023) applied a hierarchical clustering algorithm to group students with similar
programming styles. The authors identified four distinct clusters of students, based on the char-
acteristics of the code they developed: (i) students who wrote concise functions with few lines
of code; (ii) students who produced lengthy functions with a large number of lines; (iii) students
whose code contained fewer functions than expected for the task; and (iv) students who achieved
results far below expectations.

The use of clustering algorithms in the context of computing education has also been em-
ployed to identify common errors among students (Combéfis and Schils, 2016; Emerson et al.,
2020; Head et al., 2017; Kawabayashi et al., 2021), generate personalized feedback (Beh et al.,
2016; Joyner et al., 2019; Koivisto and Hellas, 2022; Rahman et al., 2021), support pedagogical
decision-making (Rahman et al., 2022; Silva and Silla, 2020; Silva et al., 2023), enhance instruc-
tors’ review capacity (Barbosa et al., 2018; Rosales-Castro et al., 2016), and identify disengaged
students (Lokkila et al., 2022).

Although other studies in the literature have addressed the use of clustering to identify sim-
ilar programming styles, as can be seen in the works of Gao et al. (2019) and Silva et al. (2023),
it is clear that the approaches presented focus mainly on syntactic aspects of the codes, such as
the use of conditional structures, functions, and even the number of lines used. The focus of the
method presented in this journal is identifying programming strategies adopted by students, inves-
tigating whether conventional clustering approaches can group solutions based on aspects beyond

62

Melo et al. RBIE v.34 – 2026

syntactic similarity. To this end, clustering algorithms that do not require the number of clusters
to be defined in advance were selected, since the number of different strategies that may exist to
solve a given programming problem is unknown.

2.2 LLMs in computing education

Large Language Models (LLMs) are large-scale generative models, typically based on the Trans-
former architecture, trained on vast amounts of textual and code data (Brown et al., 2020; Vaswani
et al., 2017). These models are capable of performing tasks such as text and program generation,
analysis, summarization, and explanation.

With the dissemination of LLMs, several studies in the literature have been exploring the
potential of these language models in educational contexts, including the field of computing ed-
ucation (Raihan et al., 2025). For example, Neumann et al. (2024) developed and evaluated an
educational chatbot integrated with an LLM designed for undergraduate students in Database and
Information Systems courses. As a result, an experiment conducted with 47 students found that
the chatbot helped support exam preparation and review key concepts. However, in some cases,
the responses provided by the chatbot were vague or incorrect. Similarly, in the study by Lyu
et al. (2024), an experiment was conducted with students enrolled in introductory programming
courses using an LLM-based assistant called CodeTutor. The authors reported positive results,
including higher scores among the experimental group (which used the tool), even in assessments
where using CodeTutor was not allowed, indicating that the tool contributed to long-term learn-
ing. However, over time, students’ trust in the assistant decreased, and they began to prefer help
from human tutors. Both studies, Neumann et al. (2024) and Lyu et al. (2024), highlighted the
importance of formulating good questions for the LLM to obtain better answers. In other words,
the potential of these language models is directly tied to the ability to use them effectively.

Still, within the context of programming education, Miguel et al. (2025) presented a pro-
gramming expert designed to guide students during problem-solving tasks without providing
ready-made code. The expert was built using ChatGPT-4, with the addition of clear instructions to
ensure that the LLM would not return complete code solutions. An initial experiment conducted
with three participants showed that, when answering a question, the expert focused on explain-
ing concepts and logical flows, demonstrating the potential to support the programming learning
process, especially in the current context, where students have become increasingly dependent on
LLMs (Lima, 2023).

The work of MacNeil et al. (2022) explored the ability of GPT-3 to automatically generate
multiple and varied code explanations, considering that high-quality feedback and explanations
are important for learning introductory programming. The authors conducted a systematic anal-
ysis of the types of explanations GPT-3 can generate, which include: time complexity analysis,
identification of common beginner programming errors, code summarization at different levels
of abstraction (execution details, code purpose, related concepts, etc.), bug correction, analogies
with real-life situations, and listing of important programming concepts. In addition to serving as
feedback for students to understand their solutions and how to improve them, the work of Mac-
Neil et al. (2022) demonstrates that LLMs have the potential to explain code based on aspects
beyond syntax. Similarly, Leinonen et al. (2023) compared code explanations created by students
with those generated by LLMs. The results showed that LLMs can support students in learning

63

Melo et al. RBIE v.34 – 2026

programming by helping them understand code more clearly. Furthermore, the authors noted that
LLMs: (i) provide more accurate explanations than those of students; (ii) can aid in code com-
prehension given the current context, where many automatic code generation tools exist; and (iii)
represent a viable alternative for providing explanation examples in large classes.

Considering the ability of LLMs to generate high-quality explanations of programming
code, as noted by MacNeil et al. (2022) and Leinonen et al. (2023), and the potential of these
models in the context of computing education, the method proposed in our paper is not limited to
providing feedback to students. Its main objective is to support teachers in analyzing and under-
standing the strategies employed by students in solving programming exercises.

3 Proposed method

The method proposed in this paper encompasses two distinct steps to identify and cluster program-
ming strategies students adopt. The first step is based on applying clustering algorithms to student
code, aiming to identify clusters of solutions that share similar strategies for a single programming
exercise.

The second step explores the use of large-scale language models (LLMs), which have ex-
celled in various natural language processing tasks and are increasingly being applied in the edu-
cational context (MacNeil et al., 2022; Mehta et al., 2023; Miguel et al., 2025). In this scenario,
LLMs are evaluated for their ability to identify and describe programming strategies, considering
different example configurations (zero-shot, one-shot, and few-shot). In Figure 1 we present an
overview of the proposed method, including the two steps we detail in the following subsections.

Figure 1: Overview of the proposed method.

3.1 Clustering of similar solutions

Clustering is an unsupervised machine learning technique that allows identifying groups based on
existing patterns in data (Xu and Tian, 2015). Some studies in the literature have used clustering
algorithms to group programming solutions (Effenberger and Pelánek, 2021; Koivisto and Hellas,
2022; Lokkila et al., 2022; Silva et al., 2023), using students’ codes as data.

Therefore, this paper proposes using clustering algorithms to group codes with similar
strategies. To this end, we used the correct codes submitted by students as answers to different
programming exercises in an online judge (Figure 2, step 1). To convert the codes into a high-

64

Melo et al. RBIE v.34 – 2026

dimensional numerical representation (embeddings), we used the CodeBERT model 2 (Feng et al.,
2020), a transformer network pre-trained on large volumes of source code (Figure 2, step 2). Each
solution is transformed into a d-dimensional embedding vector, where d represents the dimension
of the latent space generated by the model (Figure 2, step 3). We chose this approach because
it considers the student’s source code as a whole, without removing comments, for example, and
allows us to capture syntactic and semantic characteristics of the code.

Code 1

Code 2

Code N
. . .

V1, V2 ... Vn

V1, V2 ... Vn

V1, V2 ... Vn

Mean Shift

Affinity
Propagation

Student's Code codeBERT Embeddings Algorithms Clustering

For each item in the set of exercises

Figure 2: Steps for exercise clustering.

After transforming the codes into embedding vectors, we applied the Mean Shift and Affin-
ity Propagation algorithms (Figure 2, step 4) to generate clusters for each exercise (Figure 2, step
5). Mean Shift is a density-based algorithm that identifies dense regions of points in vector space
by iteratively shifting each point toward the local maximum of the estimated density. This shift
allows us to detect clusters of arbitrary shapes without the need to previously define the number of
groups (Comaniciu and Meer, 2002), which is particularly relevant in a context where the number
of distinct strategies in a programming exercise is unknown and may vary depending on the type
of exercise or the number of solutions available for analysis.

Affinity Propagation clusters the data through a process of “messages” exchanged between
pairs of points, automatically determining which examples serve as representatives of each cluster
(Frey and Dueck, 2007). This algorithm suits the problem because it can capture similarity rela-
tionships between embedding vectors without relying on an initialization with a fixed number of
clusters.

Thus, these algorithms were chosen because they are both capable of handling situations
in which the number of strategies (i.e., the number of clusters) is unknown in advance, and they
also allow for the exploration of different perspectives: while Mean Shift emphasizes the notion
of density, Affinity Propagation relies on similarity measures.

To evaluate the resulting clusters, we performed qualitative analyses, including visual anal-
ysis with dimensionality reduction techniques such as UMAP (Uniform Manifold Approximation
and Projection) and PCA (Principal Component Analysis) to visualize the clusters in two dimen-
sions, allowing us to see whether there is clear separation between clusters and whether there is
significant overlap.

Furthermore, we conducted a quantitative evaluation of the clusters using the Adjusted Rand
Index (ARI) and Normalized Mutual Information (NMI) metrics, which compare the generated

2Available at: https://github.com/microsoft/CodeBERT

65

Melo et al. RBIE v.34 – 2026

clusters with previously defined labels (ground truth), thus providing an objective indicator of the
quality of the clusters in terms of identifying similar programming strategies.

3.2 Using LLMs to identify programming strategies

In recent years, LLMs have been applied to various natural language processing tasks, including
translation, text summarization and classification, semantic analysis in different contexts, and
text-to-speech. More recently, these models have also gained prominence in computer science
education, being used, for example, to provide feedback on programming assignments (Mehta
et al., 2023), generate practical examples in introductory courses (Jury et al., 2024), and support
teachers in analyzing student solutions.

In this paper, we explore LLMs such as ChatGPT and Gemini to verify their ability to
identify and describe programming strategies adopted by students. We performed this analysis
considering three distinct usage configurations: zero-shot, one-shot, and few-shot (Brown et al.,
2020). These configurations vary depending on the number of examples presented to the model
before the assignment:

• Zero-shot: the model receives only the instruction, without additional examples;

• One-shot: the model receives a single clustering example with its corresponding strategy;

• Few-shot: the model receives two or more examples, allowing the model to recognize more
consistent patterns.

The Zero, One, and Few-shot configurations are relevant because, in the context of strategy
identification, the number of examples provided can directly influence the responses’ accuracy,
consistency, and generalizability. To operationalize this step, we used the n8n platform3, a work-
flow automation tool that allows us to execute and record the prompts sent to the models system-
atically. Furthermore, we used pre-labeled code sets to construct the prompts (necessary in the
One-shot and Few-shot scenarios) and evaluate the responses.

The evaluation follows two main criteria: i) correctness: it verifies whether the description
provided by the LLM aligns with the expected strategies and previously defined labels; and ii) de-
scription quality: assesses whether the responses are simple, direct, and focused on characterizing
the strategies, facilitating interpretation by teachers. Thus, using LLMs aims to automate strategy
identification, offering a more accessible and interpretable view of how students solve program-
ming exercises. Figure 3 presents the steps for identifying programming strategies using LLMs,
where there is a set of code clusters that we use to prepare the prompts; after that, the prompts are
processed by the LLMs, which return descriptions of the strategies contained in the clusters.

3Available at: https://n8n.io/

66

Melo et al. RBIE v.34 – 2026

Figure 3: Steps for identifying strategies with LLMs.

4 Experimental results

In this section, we present the results of the experiments to evaluate the proposed method. We
describe the dataset used, the student code clustering experiment, and the experiment with LLMs
to identify programming strategies.

4.1 Dataset

The data we used to evaluate the proposed method were collected through the CodeBench online
judge, from Algorithms and Data Structures (AED) courses at the Federal University of Ama-
zonas, offered in the Computer Science, Computer Engineering, and Software Engineering pro-
grams between 2021 and 2023. The AED course is part of the second semester of the course
curriculum. It covers content such as elementary data structures, operators, functions, conditional
and repetition structures, local and global parameters, recursion, vectors, matrices, records, lists,
queues, and stacks.

The online judge can be used for any programming course using C, C++, Java, Python,
Haskell, Lua, Bash (with AWK and SED), Assembly, and SQL. For each exercise provided to
students, the instructor must develop the statement and a set of test cases. The test cases will be
used to evaluate the correctness of the solutions submitted by the students.

The database contains code collected from ten different classes. The classes had an average
of 30 students, and each student was required to solve approximately ten sets of exercises, each
with approximately twelve questions. Typically, a set of exercises is associated with a curriculum,
with varying difficulty levels.

The codes for the ten selected classes were in the Python and C programming languages,
typically used in the Algorithms and Data Structures course at UFAM.

To conduct the experiments, we selected only the students’ correct solutions. That is, we
removed from the dataset all code submitted by students to the online judge that did not meet the
requirements of the exercises. In total, the set of correct solutions contains over 12,000 code files.

We present the database structure in Figure 4. Each class consists of different exercise lists,
each containing the codes of different students.

67

Melo et al. RBIE v.34 – 2026

Data selection

. . .Class 1
Exercise list 1

Student's code files

Exercise list 2

Student's code files

Exercise list n

Class 2
Exercise list 1

Student's code files

Exercise list 2

Student's code files

Exercise list n

Class 10
Exercise list 1

Student's code files

Exercise list 2

Student's code files

Exercise list n

Selection of programming exercises evaluated as correct by the online judge

Database > 12.000 codes

.

Figure 4: Database description.

4.1.1 Set of exercises

Considering the diversity of exercises available in the database, we randomly selected only six
programming exercises to evaluate the proposed method. Since the focus of the experiments is:
i) the identification of groups of similar strategies and ii) the description of these strategies, an
important step in the evaluation consisted of the manual analysis of a subset of solutions. For
this purpose, six code submissions were selected for each exercise, totaling 36 manually analyzed
codes. These codes were grouped according to similar strategies and used as the basis for defining
the reference labels and strategy descriptions4.

We, the authors, performed this labeling work manually. One author, a professor with ex-
perience teaching programming in higher education, was responsible for reviewing the defined
strategies. We present a summary of the exercise statements and the identified strategies in Table
1. Therefore, we used this set of exercises to evaluate the proposed method, as described below.

4.2 Student code clusters

Several strategies for solving a problem may exist within a programming class, and it is impossible
to determine the exact number in advance. Therefore, to group similar solution strategies, we
explore clustering algorithms such as Affinity Propagation and Mean Shift, as these algorithms
do not require pre-determining the number of clusters. To use these algorithms, we first apply
a technique to transform the codes into embedding vectors. We use the CodeBERT model and
tokenizer, which Microsoft provides, to do this.

4Available at: https://github.com/rafaelamwlo/exercisesdata.git

68

Melo et al. RBIE v.34 – 2026

Table 1: Summary of exercises and strategies.

Example Exercise summary Strategies
Exercise 1 Merge two linked lists by alternating their elements, empty and

free the original lists, and preserve the order of any remaining
elements in the new list.

Cluster 1: Interleaving is done iteratively with the explicit
construction of a new list. Cluster 2: Recursive interleaving
without creating a new list; only prints the data, which does not
fully meet the requirements. Cluster 3: Recursive interleaving
with the creation and population of a new linked list. Cluster
4: Interleaves data into an auxiliary list in reverse order, then
reverses it again to maintain the correct sequence.

Exercise 2 Check if sequences of parentheses, brackets, and braces are
well-formed using dynamic stacks, printing "YES" or "NO"
for each input until "###" is encountered.

Cluster 1: Stack implementations that push and pop brackets
using ASCII value difference calculations. Cluster 2: Stack
implementations that push and pop brackets through direct
symbol comparisons.

Exercise 3 Simulate a card game using a doubly linked list, repeatedly
discarding the top card and moving the next one to the bottom
until only one card remains, printing the discarded cards and
the last remaining card for each input value N.

Cluster 1: Uses a circular doubly linked list to simulate the
continuous rotation of the cards. Cluster 2: Uses a doubly
linked list as a queue, removing the top card and inserting the
next at the end. Cluster 3: Reverses the list direction: inserts
at the beginning and removes from the end, treating the top
card as the last element. Cluster 4: Uses a singly linked list
with insertions at the end and removals from the beginning, but
does not meet the requirement of using a doubly linked list.

Exercise 4 Build a generic n-ary tree from (child, parent) pairs and print it
recursively in the following order: node, then its children from
left to right.

Cluster 1: N-ary tree with a search that prioritizes siblings
before children. Cluster 2: N-ary tree with children stored in
linked lists. Cluster 3: N-ary tree with a search that prioritizes
children before siblings.

Exercise 5 Sort the Olympic medal table using Selection Sort by prioritiz-
ing countries with more gold medals, then silver, then bronze,
and finally alphabetically in case of ties, and print the sorted
list with each country’s medal counts.

Cluster 1: Uses a doubly linked list with manual node swap-
ping based on multiple criteria (gold, silver, bronze, name).
Cluster 2: Uses a singly linked list and swaps node con-
tents using Selection Sort according to the tie-breaking criteria.
Cluster 3: Uses the standard library’s qsort function instead of
implementing Selection Sort, which does not meet the require-
ments. Cluster 4: Uses an array of pointers to structs and an
auxiliary function to handle tie-breaking after comparing gold
medals. Cluster 5: Uses an array of structs and directly im-
plements the tie-breaking logic within the Selection Sort.

Exercise 6 Build binary search trees from sequences of keys, apply a sin-
gle right rotation (RR) at the root of each tree, and print the
resulting pre-order and post-order traversals.

Cluster 1: Represents tree nodes using dictionaries with the
keys ’value’, ’left’, and ’right’. Cluster 2: Uses classes with
attributes to represent the nodes, which does not fully meet the
requirement, as the prompt specifies the use of dictionaries.

Next, we applied the algorithms using the scikit-learn library, which has ready-made imple-
mentations of clustering algorithms, where we only need to define the parameters and similarity
metrics. We present in Figure 5 the visual results of the clustering with the Mean Shift algorithm
and one of the sets of codes referring to one of the exercises available in the database. In Figure
5(a), we used the PCA dimensionality reduction technique, and in Figure 5(b), we used the UMAP
technique. It is possible to see that there was good separation of the groups since there was no
apparent overlap; however, the visual results do not mean that the codes identified in each cluster
represent similar strategies.

Therefore, we next performed a quantitative evaluation using ground truth; that is, we used
a small manually labeled and clustered dataset to verify whether the algorithm returned something
similar to what was expected. To do so, we randomly selected six exercises from the database,
and from each exercise, we selected a random set of six codes from different students. We present
the summary of the exercises in Table 1, along with the strategies identified for each. It is worth
mentioning that a programming teacher validated the descriptions of the strategies.

Subsequently, we use the Adjusted Rand Index (ARI) and Normalized Mutual Information
(NMI) metrics to compare the results obtained by the algorithms with the labeled set. In Table
2, we present the results of applying the Mean Shift and Affinity Propagation algorithms to six

69

Melo et al. RBIE v.34 – 2026

(a) Plot results with PCA. (b) Plot results with UMAP.

Figure 5: Visual results of clusters with Mean Shift.

different exercises involving linked lists, stacks, AVL trees, and sorting algorithms. The ARI
metric ranges from -1 (completely random) to 1 (clustering identical to the expected one). NMI,
in turn, ranges from 0 (no relationship) to 1 (perfect correspondence).

Table 2: Ground truth results with Mean Shift.

Example Mean Shift Affinity Propagation
ARI NMI ARI NMI

Exercise 1 0.143 0.506 0.062 0.579
Exercise 2 0.348 0.404 -0.132 0.369
Exercise 3 -0.071 0.247 -0.098 0.760
Exercise 4 -0.250 0.115 -0.176 0.339
Exercise 5 -0.129 0.524 -0.111 0.722
Exercise 6 -0.174 0.139 0.151 0.579

Among the results obtained in Exercise 2, the ARI metric of 0.348 indicates a moderate
agreement between the groupings generated by the method and those generated manually. For
the other exercises, we noticed negative values, which indicate that the grouping is worse than
random; the algorithm divided the groups very differently when compared to the labeled base.

As for the MNI metric, the 0.404 obtained in Exercise 2 indicates recognizable patterns
between the clusters and the labels provided. However, the division is imperfect; there is still a
combination of different strategies in the same cluster. The clustering is not entirely random, but
it is not perfect either. The same can be said for the other exercises since the maximum MNI value
achieved with Mean Shift was 0.524..

Regarding the results obtained with Affinity Propagation, the behavior was similar to that
of Mean Shift, especially with the ARI metric, which showed low and negative values. As for the
NMI, some values were higher, but the groupings were still far from perfect.

The results show that although the algorithms can capture specific patterns (as evidenced
in Exercise 2), most clusters exhibit low agreement or performance below chance, as indicated
by the negative ARI values. The NMI values, while higher in some cases, suggest only partial
alignment, in which clusters combine distinct strategies. These findings indicate that when applied
in isolation, clustering is not sufficient to identify programming accurately.

70

Melo et al. RBIE v.34 – 2026

4.3 Using LLMs to label strategies

This section presents the experiment results with LLMs for identifying programming strategies
using Zero-shot, One-shot, and Few-shot. We selected two distinct models for this experiment:
ChatGPT-4.1 Mini and Gemini 2.5 Flash.

Before presenting the results of the LLM experiment, it is important to clarify that this
experiment is independent of the clustering experiment. Although both experiments rely on the
same dataset, the clustering experiment evaluates unsupervised grouping of solutions, whereas the
LLM experiment evaluates the ability of language models to identify and describe programming
strategies based on a manually labeled reference set. The clusters obtained in the first experiment
are not used in the second.

For the execution of the prompts, a workflow was created in n8n, as illustrated in Figure
6. This workflow aimed to facilitate interaction with the LLMs and automate the storage of re-
sponses. As shown in Figure 6, the prompt is sent simultaneously to both language models; the
responses are then recorded individually, merged, and finally stored in a Google Sheets spread-
sheet.

Figure 6: Workflow created in n8n.

The dataset used for this experiment is the same as in the clustering experiment: the set of
examples presented in Table 1.

4.3.1 Zero-shot approach

First, we applied the zero-shot approach. No label examples (i.e., example descriptions of pro-
gramming strategies) are sent to the LLM, only the code clusters that should be labeled, as shown
in Table 3.

It is worth noting that this prompt underwent a refinement process until it reached a more
appropriate response format. The first attempts, where we did not specify the number of char-
acters per strategy, resulted in long responses, with code-by-code analysis and suggestions for
improvements, which was not the experiment’s intention.

We tested the LLMs with the same prompt model in the other five exercises, but we needed
minor adjustments, such as specifying the number of clusters submitted. These adjustments were
necessary because the models now describe the strategy of each code individually, rather than the
set of codes. Thus, we added the following to the prompt for the remaining exercises: "Note that I

71

Melo et al. RBIE v.34 – 2026

Table 3: Prompt structure with Zero-shot.

Given the statement:
Implement a program that reads two linked lists, generates, and prints the interleaving of the two lists.
At the end of the function, the original lists must be empty and freed. If one list has more elements than the
other, the remaining elements are transferred in the same order to the new list.
And the clusters below (for this example, only 4 solution strategies were identified, whose codes were
grouped into clusters and then provided):
Codes from cluster 0, unlabeled (total of 2 codes)
Codes from cluster 1, unlabeled (total of 1 code)
Codes from cluster 2, unlabeled (total of 2 codes)
Codes from cluster 3, unlabeled (total of 1 code)
Provide a description of at most 120 characters for the problem-solving strategy addressed in each
code cluster.

am not asking for a description of each code, but rather of the clusters. In this case, there are only
N clusters." For each exercise, we explicitly indicated the number of clusters.

Table 4 presents the results for the exercise cited in the prompt in Table 3 (and corresponds
to the first exercise in Table 1), where you can see that both LLMs demonstrated a good ability to
return the cluster strategies concisely.

Table 4: Gemini and GPT-4o-mini results with Zero-shot..

Gemini Response GPT-4.1-mini Response
Here are the descriptions of the strategies for each
cluster:
Cluster 0: Creates a new interleaved list by copy-
ing data from the originals; originals freed after
use.
Cluster 1: Interleaves by printing elements and
tries to empty the original lists recursively (fails
due to pass by value).
Cluster 2: Recursive interleaving creates a new
list by copying elements, with the originals freed.
Cluster 3: Creates an auxiliary list to interleave in
reverse order, then reverses to the final list. Frees
originals but leaks new ones.

Cluster 0: Interleaves by creating a new list, in-
serts data by copying; original lists must be freed
manually.
Cluster 1: Interleaves by printing element by el-
ement and removing nodes; original lists remain
empty after use.
Cluster 2: Interleaves using recursion and inser-
tion at the end, with dynamic lists and helper func-
tions.
Cluster 3: Interleaves by reversing with inser-
tions at the beginning, creates an auxiliary list, and
then reverses to the correct order.

Both LLMs were able to identify the strategies adopted in the code to solve the linked list
problem presented, such as the use of recursion to solve the problem or the creation of auxiliary
lists. The strategies are similar to those presented in Table 1, aligning with our expectations. In
cluster 1, the models identified that the values were printed, instead of creating a new list, as
requested in the question statement.

Based on these results, we decided that the next step in the LLM experiment would be to
test whether adding manually labeled examples influences the responses. We then applied the
one-shot approach, adding a labeled example to the prompt.

72

Melo et al. RBIE v.34 – 2026

4.3.2 One-shot approach

For the One-shot approach, we structured the prompt the same way as the Zero-shot approach.
However, we added a labeled code cluster to the prompt before asking the LLM to identify the
strategy of the submitted code sets to be labeled, as shown in Table 5.

Table 5: Prompt structure with One-shot.

Given the statement:
Implement a program that reads two linked lists, generates, and prints the interleaving of the two
lists.
At the end of the function, the original lists must be empty and freed. If one list has more elements
than the other, the remaining elements are transferred in the same order to the new list.
And the cluster below with its respective description:
Cluster 0 – Description: The codes iteratively traverse the lists and explicitly insert the elements
alternately into a new list.
Codes from cluster 0 (total of 2 codes)
Provide a description of at most 120 characters for the code clusters below.
Codes from cluster 1, unlabeled (total of 1 code)
Codes from cluster 2, unlabeled (total of 2 codes)
Codes from cluster 3, unlabeled (total of 1 code)

Table 6: Results with One-shot approach.

Example LLM Format Labeled Correctly

Exercise 1 Gemini Flash 2.5 Agreeable Y
GPT 4.1 Mini Agreeable Y

Exercise 2 Gemini Flash 2.5 Agreeable Y
GPT 4.1 Mini Agreeable N

Exercise 3 Gemini Flash 2.5 Agreeable Y
GPT 4.1 Mini Agreeable N

Exercise 4 Gemini Flash 2.5 Agreeable Y
GPT 4.1 Mini Agreeable Y

Exercise 5 Gemini Flash 2.5 Agreeable N
GPT 4.1 Mini Agreeable Y

Exercise 6 Gemini Flash 2.5 Agreeable Y
GPT 4.1 Mini Agreeable Y

During the execution of the experiment, as in the One-shot approach, it was also necessary
to make adjustments to the prompt, since in some cases the models recognized more clusters than
requested. As shown in Table 6, the LLMs provided a well-structured response format in all cases,
that is, a concise description of the code cluster strategies, limited to 120 characters. In Exercise
3, despite the specification of the number of clusters, GPT added one more cluster to the response,
which we did not expect, so we consider that the model did not label correctly.

Regarding the other exercises, in Example 3, GPT focused on the data structure being used
rather than on the strategy itself, and for this reason, we considered the response incorrect. In
Example 5, where it was necessary to implement the Selection Sort algorithm, Gemini did not
indicate in its response that one of the clusters used a built-in language function to solve the
problem, unlike GPT. For the remaining exercises, the models provided similar strategies.

Based on the results of the One-shot approach, where in some cases the LLMs did not label
as expected or even close to what we expected, we decided to add more examples to the prompt,

73

Melo et al. RBIE v.34 – 2026

that is, to apply the Few-shot approach in order to assess the impact of additional examples on the
results.

4.4 Few-shot approach

For the Few-shot approach, we used the same prompt as in the One-shot approach, but with the
addition of two examples instead of one, as shown in Table 7.

Table 7: Prompt structure with Few-shot.

Given the statement:
Implement a program that reads two linked lists, generates, and prints the interleaving of the two
lists.
At the end of the function, the original lists must be empty and freed. If one list has more elements
than the other, the remaining elements are transferred in the same order to the new list.
And the cluster below with its respective description:
Cluster 0 – Description: The codes iteratively traverse the lists and explicitly insert the elements
alternately into a new list.
Codes from cluster 0 (total of 2 codes)
Cluster 1 – Description: Performs the interleaving recursively, without creating a new explicit list:
directly prints the data during the recursive call.
Codes from cluster 1 (total of 1 code)
Provide a description of at most 120 characters for the code clusters below.
Codes from cluster 2, unlabeled (total of 2 codes)
Codes from cluster 3, unlabeled (total of 1 code)

During the experiment, we needed to adjust the prompt, indicating the number of clusters
being sent for strategy identification, as in the zero-shot and one-shot approaches. We ran the tests
with four exercises, as shown in Table 8. We did not use exercises 2 and 6 because they only had
two labeled clusters.

Table 8: Results with Few-shot approach.

Example LLM Format Labeled Correctly

Exercício 1 Gemini Flash 2.5 Agreeable Y
GPT 4.1 Mini Agreeable Y

Exercício 3 Gemini Flash 2.5 Agreeable Y
GPT 4.1 Mini Agreeable Y

Exercício 4 Gemini Flash 2.5 Agradável Y
GPT 4.1 Mini Agreeable Y

Exercício 5 Gemini Flash 2.5 Agreeable Y
GPT 4.1 Mini Agreeable Y

As shown in Table 8, when using the Few-shot approach, the LLMs returned a well-structured
format in all cases, as in the other approaches tested. This outcome is related to the constructed
prompt, which already specified the desired character limit for the output of each strategy. Al-
though the strategies provided by the models were not identical to what we expected (Table 1),
the responses presented similar strategies, sometimes highlighting another aspect of the clusters,
such as the use of recursion or the use of specific data structures.

Table 9 presents the percentage of correct identifications achieved by the LLMs across the
different approaches. It can be observed that, for both tools, providing examples in the prompt

74

Melo et al. RBIE v.34 – 2026

directly impacts performance. While the Zero-shot and One-shot approaches show variations
between models, the Few-shot configuration achieves 100% accuracy for both GPT and Gemini.
These quantitative results corroborate the qualitative analysis, indicating that the use of explicit
examples enables LLMs to identify programming strategies more consistently with human-defined
labels.

Table 9: Percentage of correct answers for LLMs by approach.

Approach GPT (%) Gemini (%)
Zero-shot 83.3 66.7
One-shot 66.7 83.3
Few-shot 100.0 100.0

Overall, the experiments show that prompt construction and providing examples directly in-
fluence the quality of LLM responses. The Zero-shot approach presented limitations, particularly
in the models’ tendency to describe code by code rather than synthesizing the strategies of the
clusters. Adding a single example (One-shot) brought gains in consistency, but misinterpretations
still occurred in some exercises. In the Few-shot configuration, the responses were closer to what
was expected, with concise descriptions aligned with the strategies, although not identical to the
previously labeled ones. These results reinforce that LLMs, when guided with clear examples,
can play an important role as a supporting tool for labeling programming strategies.

5 Discussion

The results we obtained in the two experiments offer different perspectives on identifying pro-
gramming strategies students adopt. We guide the discussion by the two research questions pro-
posed in this work: (i) to what extent clustering algorithms can group solutions according to the
strategies used (RQ1), and (ii) to what extent LLMs can identify and describe these strategies
(RQ2). Below, we discuss the main findings concerning each question, highlighting limitations,
potentialities, and pedagogical implications.

5.1 QP1 - Clustering of programming solutions

The results showed that, despite the good visual separation of clusters using techniques such as
PCA and UMAP, the low or negative values of the ARI and NMI metrics suggest that the groupings
obtained with the Mean Shift and Affinity Propagation algorithms do not coincide with the actual
strategies used by students. These findings may indicate that clustering algorithms based solely
on syntactic embeddings (even semantic ones, such as CodeBERT) do not adequately capture
the strategy adopted in problem-solving. Thus, it can be concluded that clustering with code
embeddings alone is not sufficient to identify programming strategies, making it necessary to
apply these techniques in combination with others.

Furthermore, we observed that even when the NMI values were relatively high (above 0.5
in some cases), this did not imply a semantically correct separation of the strategies. This result

75

Melo et al. RBIE v.34 – 2026

suggests that the similarity between codes may be more related to syntactic patterns than strategic
reasoning.

Another important point observed during the execution of the clustering experiment is that,
when analyzing the labeled exercise examples to evaluate the clusters (Table 1), it becomes ev-
ident that within a small set of codes in certain exercises, the strategies vary considerably, as in
Examples 3, 4, and 5. The variation in student responses may lead us to understand that, within a
classroom of fifty students, several different strategies may exist, which may not be fully identified
by code clustering.

Furthermore, among the strategies, we found that in some cases the code was considered
correct by the online judge (it passed the online judge’s test cases), but the code did not fully
follow the instructions, as is the case in exercise four, where the problem was supposed to be
solved using doubly linked lists, but one of the labeled clusters presented answers with linked
lists. Within programming learning, the fact that an answer does not fulfill the instructions is
also interesting to explore, as many institutions use online judges for automatic code correction
(Barbosa et al., 2023). Test cases alone do not guarantee that students followed the instructions, as
there are other ways to solve the problem besides the one requested, as seen in the labeled codes
in this research.

Therefore, regarding RQ1, we concluded that the clustering algorithms explored were help-
ful in an initial exploratory analysis but showed significant limitations when the goal is to identify
programming strategies accurately.

5.2 QP2 - LLMs to identify programming strategies

Regarding the second experiment, the use of LLMs demonstrated a greater ability to recognize
student strategies compared to traditional clustering methods. Even with the zero-shot approach,
the models were able to identify relevant code characteristics, such as the use of object orientation
or dictionary structures.

As One-shot and Few-shot approaches were introduced, with prior examples in the prompts,
the LLMs showed improved performance in correctly identifying the strategies and in returning
the responses in the expected format. The Few-shot approach stood out by providing the best
results, suggesting that supplying well-constructed examples in the prompt is essential for the
accuracy and consistency of the models’ responses.

In our previous study (Melo et al., 2025), the experiments with LLMs had a more exploratory
nature, without formal validation of the labels by experts, which limited the reliability of the anal-
yses. Moreover, Gemini presented significant limitations, such as verbose responses and poor
alignment with the requested format, which reduced its applicability. In the present study, how-
ever, Gemini 2.5 Flash demonstrated superior performance, sometimes achieving more accurate
results than GPT-4.1 Mini. This difference may be related to the evolution of the model itself
and to the refinement of the experimental design, using better-structured prompts, specification of
format, and definition of the number of clusters. Another aspect that contributed to the greater
robustness of the results was the use of exercises with labels previously validated by a program-
ming instructor, which reduced biases and provided a more reliable basis for evaluating the LLM
responses.

76

Melo et al. RBIE v.34 – 2026

The findings of this study have important implications for programming education. First,
they show that traditional clustering methods, although useful for exploratory analyses, are limited
when the goal is to understand cognitive and strategic aspects of students’ solutions. On the
other hand, LLMs are promising tools to support qualitative code analysis, enabling teachers
to identify patterns and strategies even in classes with large volumes of data. This possibility
opens pathways for more informed pedagogical practices, such as providing feedback targeted
to the type of strategy adopted and identifying unconventional approaches, or even identifying
approaches that did not follow the teacher’s request in the question statement.

The results of the two research questions point to a scenario in which the approaches an-
alyzed can be complementary. While clustering based on code embeddings proved helpful as
an initial exploratory tool for organizing large volumes of solutions (RQ1), LLMs demonstrated
a greater ability to produce interpretable descriptions of strategies, predominantly when guided
with well-constructed examples in the prompts (RQ2). Thus, integrating these approaches may
represent a promising path to broaden the understanding of programming strategies used by stu-
dents, supporting evidence-based pedagogical practices and enabling more targeted feedback in
programming education contexts. While clustering can help instructors understand the overall
profile of a class, LLMs can support individualized interventions focused on the student.

6 Conclusion

This research investigated the use of clustering algorithms and LLMs to identify programming
strategies in students’ solutions to different exercises. The results showed that although the clus-
tering algorithms produced satisfactory visual separations, the quantitative metrics revealed that
these groupings did not accurately reflect the actual strategies adopted by the students. This find-
ing reinforces the limitation of methods based solely on code embeddings, which capture syntactic
and semantic similarities but not necessarily strategic reasoning.

On the other hand, the experiments with LLMs showed promising results. Even with Zero-
shot approaches, the models were able to recognize relevant characteristics in the solutions. This
performance was even more satisfactory in the One-shot and Few-shot approaches, in which the
provision of examples in the prompt helped the LLM identify the strategies applied by the students
with greater accuracy and consistency.

Thus, the use of LLMs emerges as a viable alternative to support teachers in the analysis of
large volumes of code, enabling a deeper understanding of the strategies adopted in the solutions.
In addition, this approach can assist in identifying correct answers that did not follow the problem
statement specifications, a relevant aspect in the educational context where online judges are used.

Among the contributions of this work, the following stand out: (i) a method to cluster student
code based on programming strategies; (ii) empirical evidence of the potential of LLMs to identify
and describe programming strategies; and (iii) opportunities for research in the field of computing
education.

The limitations of this study include: (i) the limited set of exercises and manually labeled
solutions used for model evaluation; and (ii) the prompts used with the LLMs, which could be
further refined through advanced prompt engineering techniques and the use of adaptive con-

77

Melo et al. RBIE v.34 – 2026

texts. To mitigate these limitations, as future work we intend to expand the number of analyzed
exercises and solutions, explore different language models, and investigate the use of LLMs to
perform clustering jointly with strategy identification. This may enhance the automatic analysis
of programming strategies and contribute to the development of more robust educational tools for
teaching and learning programming.

7 Ethical aspects

The information we use in this paper was obtained from our own dataset, composed of files ex-
tracted from the CodeBench online judge, from the Federal University of Amazonas, referring
to source codes produced by students in programming courses between August 11, 2021, and
November 9, 2023. We emphasize that all data was anonymized correctly and did not contain
personally identifiable information.

Therefore, there was no need to submit the research to research ethics committees, since
no sensitive data were collected and there was no direct contact with the participants. Even so,
we ensure that we applied all ethical and confidentiality precautions at all stages of this research,
following good academic practices.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES), Brazil, Finance Code 001. This work was partially supported by Amazonas
State Research Support Foundation (FAPEAM) through the POSGRAD project.

References

Barbosa, A. d. A., Costa, E. d. B., & Brito, P. H. (2018). Adaptive clustering of codes for as-
sessment in introductory programming courses. Intelligent Tutoring Systems: 14th Inter-
national Conference, ITS 2018, Montreal, QC, Canada, June 11–15, 2018, Proceedings
14, 13–22. https://doi.org/10.1007/978-3-319-91464-0_2 [GS Search].

Barbosa, A. d. A., de Barros Costa, E., & Brito, P. H. (2023). Juízes online são suficientes ou
precisamos de um var? Simpósio Brasileiro de Educação em Computação (EDUCOMP),
386–394. https://doi.org/10.5753/educomp.2023.228224 [GS Search].

Beh, M. Y., Gottipatti, S., LO, D., & Shankararaman, V. (2016). Semi-automated tool for providing
effective feedback on programming assignments. https : / / ink . library. smu . edu . sg / sis _
research/3748 [GS Search].

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances
in neural information processing systems, 33, 1877–1901. [GS Search].

78

https://doi.org/10.1007/978-3-319-91464-0_2
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Adaptive+clustering+of+codes+for+assessment+in+introductory+programming+courses&btnG=
https://doi.org/10.5753/educomp.2023.228224
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Ju%C3%ADzes+Online+s%C3%A3o+suficientes+ou+precisamos+de+um+VAR%3F&btnG=
https://ink.library.smu.edu.sg/sis_research/3748
https://ink.library.smu.edu.sg/sis_research/3748
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Semi-automated+tool+for+providing+effective+feedback+on+programming+assignments&btnG=
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Language+models+are+few-shot+learners&btnG=

Melo et al. RBIE v.34 – 2026

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis.
IEEE Transactions on pattern analysis and machine intelligence, 24(5), 603–619. https:
//doi.org/10.1109/34.1000236 [GS Search].

Combéfis, S., & Schils, A. (2016). Automatic programming error class identification with code
plagiarism-based clustering. Proceedings of the 2nd International Code Hunt Workshop
on Educational Software Engineering, 1–6. https://doi.org/10.1145/2993270.2993271
[GS Search].

Effenberger, T., & Pelánek, R. (2021). Interpretable clustering of students’ solutions in introduc-
tory programming. International Conference on Artificial Intelligence in Education, 101–
112. https://doi.org/10.1007/978-3-030-78292-4_9 [GS Search].

Emerson, A., Smith, A., Rodriguez, F. J., Wiebe, E. N., Mott, B. W., Boyer, K. E., & Lester, J. C.
(2020). Cluster-based analysis of novice coding misconceptions in block-based program-
ming. Proceedings of the 51st ACM Technical Symposium on Computer Science Educa-
tion, 825–831. https://doi.org/10.1145/3328778.3366924 [GS Search].

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for discover-
ing clusters in large spatial databases with noise. kdd, 96(34), 226–231. [GS Search].

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D., et
al. (2020). Codebert: A pre-trained model for programming and natural languages. arXiv
preprint arXiv:2002.08155. https://doi.org/10.48550/arXiv.2002.08155 [GS Search].

Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. science,
315(5814), 972–976. https://doi.org/10.1126/science.1136800 [GS Search].

Fu, Y., Osei-Owusu, J., Astorga, A., Zhao, Z. N., Zhang, W., & Xie, T. (2021). Pacon: A symbolic
analysis approach for tactic-oriented clustering of programming submissions. Proceedings
of the 2021 ACM SIGPLAN International Symposium on SPLASH-E, 32–42. https://doi.
org/10.1145/3484272.3484963 [GS Search].

Galvão, L., Fernandes, D., & Gadelha, B. (2016). Juiz online como ferramenta de apoio a uma
metodologia de ensino híbrido em programação. Brazilian Symposium on Computers in
Education (Simpósio Brasileiro de Informática na Educação-SBIE), 27(1), 140. https :
//doi.org/10.5753/cbie.sbie.2016.140 [GS Search].

Gao, L., Wan, B., Fang, C., Li, Y., & Chen, C. (2019). Automatic clustering of different solutions
to programming assignments in computing education. Proceedings of the ACM Conference
on Global Computing Education, 164–170. https://doi.org/10.1145/3300115.3309515 [GS
Search].

Glassman, E. L., Scott, J., Singh, R., Guo, P. J., & Miller, R. C. (2015). Overcode: Visualizing
variation in student solutions to programming problems at scale. ACM Transactions on
Computer-Human Interaction (TOCHI), 22(2), 1–35. https:/ /doi.org/10.1145/2699751
[GS Search].

Head, A., Glassman, E., Soares, G., Suzuki, R., Figueredo, L., D’Antoni, L., & Hartmann, B.
(2017). Writing reusable code feedback at scale with mixed-initiative program synthesis.
Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale, 89–98. https :
//doi.org/10.1145/3051457.3051467 [GS Search].

Huang, J., Piech, C., Nguyen, A., & Guibas, L. (2013). Syntactic and functional variability of a
million code submissions in a machine learning mooc. AIED 2013 Workshops Proceedings
Volume, 25. [GS Search].

79

https://doi.org/10.1109/34.1000236
https://doi.org/10.1109/34.1000236
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Mean+shift%3A+A+robust+approach+toward+feature+space+analysis&btnG=
https://doi.org/10.1145/2993270.2993271
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Automatic+programming+error+class+identification+with+code+plagiarism-based+clustering&btnG=
https://doi.org/10.1007/978-3-030-78292-4_9
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Interpretable+clustering+of+students%E2%80%99+solutions+in+introductory+programming&btnG=
https://doi.org/10.1145/3328778.3366924
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Cluster-based+analysis+of+novice+coding+misconceptions+in+block-based+programming&btnG=
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=A+density-based+algorithm+for+discovering+clusters+in+large+spatial+databases+with+noise&btnG=
https://doi.org/10.48550/arXiv.2002.08155
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Codebert%3A+A+pre-trained+model+for+programming+and+natural+languages&btnG=
https://doi.org/10.1126/science.1136800
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Clustering+by+passing+messages+between+data+points&btnG=
https://doi.org/10.1145/3484272.3484963
https://doi.org/10.1145/3484272.3484963
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=2005&sciodt=0%2C5&cites=18074956036990963249&scipsc=&q=PaCon%3A+a+symbolic+analysis+approach+for+tactic-oriented+clustering+of+programming+submissions&btnG=
https://doi.org/10.5753/cbie.sbie.2016.140
https://doi.org/10.5753/cbie.sbie.2016.140
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Juiz+online+como+ferramenta+de+apoio+a+uma+metodologia+de+ensino+h%C3%ADbrido+em+programa%C3%A7%C3%A3o&btnG=
https://doi.org/10.1145/3300115.3309515
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Automatic+clustering+of+different+solutions+to+programming+assignments+in+computing+education&btnG=
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Automatic+clustering+of+different+solutions+to+programming+assignments+in+computing+education&btnG=
https://doi.org/10.1145/2699751
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=OverCode%3A+Visualizing+variation+in+student+solutions+to+programming+problems+at+scale&btnG=
https://doi.org/10.1145/3051457.3051467
https://doi.org/10.1145/3051457.3051467
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Writing+reusable+code+feedback+at+scale+with+mixed-initiative+program+synthesis&btnG=
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Syntactic+and+functional+variability+of+a+million+code+submissions+in+a+machine+learning+mooc&btnG=

Melo et al. RBIE v.34 – 2026

Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc. [GS
Search].

Joyner, D., Arrison, R., Ruksana, M., Salguero, E., Wang, Z., Wellington, B., & Yin, K. (2019).
From clusters to content: Using code clustering for course improvement. Proceedings of
the 50th ACM Technical Symposium on Computer Science Education, 780–786. https :
//doi.org/10.1145/3287324.3287459 [GS Search].

Jury, B., Lorusso, A., Leinonen, J., Denny, P., & Luxton-Reilly, A. (2024). Evaluating llm-generated
worked examples in an introductory programming course. Proceedings of the 26th Aus-
tralasian computing education conference, 77–86. https : / / doi . org / 10 . 1145 / 3636243 .
3636252 [GS Search].

Kawabayashi, S., Rahman, M. M., & Watanobe, Y. (2021). A model for identifying frequent errors
in incorrect solutions. 2021 10th International Conference on Educational and Informa-
tion Technology (ICEIT), 258–263. https://doi.org/10.1109/ICEIT51700.2021.9375615
[GS Search].

Knuth, D. E. (1998). The art of computer programming: Sorting and searching, volume 3. Addison-
Wesley Professional. [GS Search].

Koivisto, T., & Hellas, A. (2022). Evaluating codeclusters for effectively providing feedback on
code submissions, 1–9. https://doi.org/10.1109/FIE56618.2022.9962751 [GS Search].

Leinonen, J., Denny, P., MacNeil, S., Sarsa, S., Bernstein, S., Kim, J., Tran, A., & Hellas, A.
(2023). Comparing code explanations created by students and large language models. Pro-
ceedings of the 2023 Conference on Innovation and Technology in Computer Science Ed-
ucation V. 1, 124–130. https://doi.org/10.1145/3587102.3588785 [GS Search].

Lima, J. (2023). Como o chatgpt afeta a educação e o desenvolvimento universitário. The Trends
Hub, (3). https://doi.org/10.34630/tth.vi3.5020 [GS Search].

Lokkila, E., Christopoulos, A., & Laakso, M.-J. (2022). A clustering method to detect disengaged
students from their code submission history. Proceedings of the 27th ACM Conference
on Innovation and Technology in Computer Science Education Vol. 1, 228–234. https :
//doi.org/10.1145/3502718.3524754 [GS Search].

Luo, L., & Zeng, Q. (2016). Solminer: Mining distinct solutions in programs. Proceedings of
the 38th International Conference on Software Engineering Companion, 481–490. https:
//doi.org/10.1145/2889160.2889202 [GS Search].

Lyu, W., Wang, Y., Chung, T., Sun, Y., & Zhang, Y. (2024). Evaluating the effectiveness of llms in
introductory computer science education: A semester-long field study. Proceedings of the
Eleventh ACM Conference on Learning@ Scale, 63–74. https://doi.org/10.1145/3657604.
3662036 [GS Search].

MacNeil, S., Tran, A., Mogil, D., Bernstein, S., Ross, E., & Huang, Z. (2022). Generating diverse
code explanations using the gpt-3 large language model. Proceedings of the 2022 ACM
conference on international computing education research-volume 2, 37–39. https://doi.
org/10.1145/3501709.3544280 [GS Search].

MacQueen, J., et al. (1967). Some methods for classification and analysis of multivariate ob-
servations. Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, 1(14), 281–297. https://cir.nii.ac.jp/crid/1571135649659368064 [GS Search].

Mehta, A., Gupta, N., Balachandran, A., Kumar, D., Jalote, P., et al. (2023). Can ChatGPT play
the role of a teaching assistant in an introductory programming course? arXiv preprint
arXiv:2312.07343. https://doi.org/10.48550/arXiv.2312.07343 [GS Search].

80

https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Algorithms+for+clustering+data&btnG=
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Algorithms+for+clustering+data&btnG=
https://doi.org/10.1145/3287324.3287459
https://doi.org/10.1145/3287324.3287459
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=From+clusters+to+content%3A+Using+code+clustering+for+course+improvement&btnG=
https://doi.org/10.1145/3636243.3636252
https://doi.org/10.1145/3636243.3636252
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Evaluating+llm-generated+worked+examples+in+an+introductory+programming+course&btnG=
https://doi.org/10.1109/ICEIT51700.2021.9375615
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=A+model+for+identifying+frequent+errors+in+incorrect+solutions&btnG=
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=The+Art+of+Computer+Programming%3A+Sorting+and+Searching%2C+volume+3&btnG=
https://doi.org/10.1109/FIE56618.2022.9962751
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Evaluating+CodeClusters+for+Effectively+Providing+Feedback+on+Code+Submissions&btnG=
https://doi.org/10.1145/3587102.3588785
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Comparing+code+explanations+created+by+students+and+large+language+models&btnG=
https://doi.org/10.34630/tth.vi3.5020
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Como+o+ChatGPT+afeta+a+educa%C3%A7%C3%A3o+e+o+desenvolvimento+universit%C3%A1rio&btnG=
https://doi.org/10.1145/3502718.3524754
https://doi.org/10.1145/3502718.3524754
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=A+clustering+method+to+detect+disengaged+students+from+their+code+submission+history&btnG=
https://doi.org/10.1145/2889160.2889202
https://doi.org/10.1145/2889160.2889202
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Solminer%3A+mining+distinct+solutions+in+programs&btnG=
https://doi.org/10.1145/3657604.3662036
https://doi.org/10.1145/3657604.3662036
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Evaluating+the+effectiveness+of+llms+in+introductory+computer+science+education%3A+A+semester-long+field+study&btnG=
https://doi.org/10.1145/3501709.3544280
https://doi.org/10.1145/3501709.3544280
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Generating+diverse+code+explanations+using+the+gpt-3+large+language+model&btnG=
https://cir.nii.ac.jp/crid/1571135649659368064
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Some+methods+for+classification+and+analysis+of+multivariate+observation&btnG=
https://doi.org/10.48550/arXiv.2312.07343
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Can+ChatGPT+play+the+role+of+a+teaching+assistant+in+an+introductory+programming+course%3F&btnG=

Melo et al. RBIE v.34 – 2026

Melo, R., Pessoa, M., & Fernandes, D. (2024). Clusterização de soluções de exercícios de progra-
mação: Um mapeamento sistemático da literatura. Simpósio Brasileiro de Informática na
Educação (SBIE), 1715–1729. https://doi.org/10.5753/sbie.2024.242403 [GS Search].

Melo, R., Souza, T., Oliveira, E., Galvao, L., Pessoa, M., & Fernandes, D. (2025). Explorando o
uso de llms para rotular estratégias de programação. Simpósio Brasileiro de Educação em
Computação (EDUCOMP), 178–190. https://doi.org/10.5753/educomp.2025.5335 [GS
Search].

Miguel, J., Martins, W., Benarrós, Í., & Duarte, J. C. (2025). Especialista em algoritmos para
apoio interativo na aprendizagem de programação utilizando chatgpt. Simpósio Brasileiro
de Educação em Computação (EDUCOMP), 204–215. https://doi.org/10.5753/educomp.
2025.5378 [GS Search].

Neumann, A. T., Yin, Y., Sowe, S., Decker, S., & Jarke, M. (2024). An llm-driven chatbot in higher
education for databases and information systems. IEEE Transactions on Education. https:
//doi.org/10.1109/TE.2024.3467912 [GS Search].

Paiva, J. C., Leal, J. P., & Figueira, Á. (2024). Clustering source code from automated assessment
of programming assignments. International Journal of Data Science and Analytics, 1–12.
https://doi.org/10.1007/s41060-024-00554-5 [GS Search].

Piscitelli, A., De Rosa, M., Fuccella, V., Costagliola, G., et al. (2025). Large language models
for student code evaluation: Insights and accuracy. Proceedings of the 17th International
Conference on Computer Supported Education-(Volume 2), 534–544. https://doi.org/10.
5220/0013287500003932 [GS Search].

Rahman, M. M., Watanobe, Y., Matsumoto, T., Kiran, R. U., & Nakamura, K. (2022). Educational
data mining to support programming learning using problem-solving data. IEEE Access,
10, 26186–26202. https://doi.org/10.1109/ACCESS.2022.3157288 [GS Search].

Rahman, M. M., Watanobe, Y., Rage, U. K., & Nakamura, K. (2021). A novel rule-based online
judge recommender system to promote computer programming education. Advances and
Trends in Artificial Intelligence. From Theory to Practice: 34th International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE
2021, Kuala Lumpur, Malaysia, July 26–29, 2021, Proceedings, Part II 34, 15–27. https:
//doi.org/10.1007/978-3-030-79463-7_2 [GS Search].

Raihan, N., Siddiq, M. L., Santos, J. C., & Zampieri, M. (2025). Large language models in com-
puter science education: A systematic literature review. Proceedings of the 56th ACM Tech-
nical Symposium on Computer Science Education V. 1, 938–944. https://doi.org/10.1145/
3641554.3701863 [GS Search].

Rosales-Castro, L. F., Chaparro-Gutiérrez, L. A., Cruz-Salinas, A. F., Restrepo-Calle, F., Camargo,
J., & González, F. A. (2016). An interactive tool to support student assessment in pro-
gramming assignments. Advances in Artificial Intelligence-IBERAMIA 2016: 15th Ibero-
American Conference on AI, San José, Costa Rica, November 23-25, 2016, Proceedings
15, 404–414. https://doi.org/10.1007/978-3-319-47955-2_33 [GS Search].

Silva, D. B., Carvalho, D. R., & Silla, C. N. (2023). A clustering-based computational model to
group students with similar programming skills from automatic source code analysis using
novel features. IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.
2023.3273926 [GS Search].

Silva, D. B., & Silla, C. N. (2020). Evaluation of students programming skills on a computer
programming course with a hierarchical clustering algorithm. 2020 IEEE Frontiers in Ed-

81

https://doi.org/10.5753/sbie.2024.242403
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Clusteriza%C3%A7%C3%A3o+de+solu%C3%A7%C3%B5es+de+exerc%C3%ADcios+de+programa%C3%A7%C3%A3o%3A+um+mapeamento+sistem%C3%A1tico+da+literatura&btnG=
https://doi.org/10.5753/educomp.2025.5335
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Explorando+o+uso+de+LLMs+para+rotular+estrat%C3%A9gias+de+programa%C3%A7%C3%A3o&btnG=
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Explorando+o+uso+de+LLMs+para+rotular+estrat%C3%A9gias+de+programa%C3%A7%C3%A3o&btnG=
https://doi.org/10.5753/educomp.2025.5378
https://doi.org/10.5753/educomp.2025.5378
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Especialista+em+algoritmos+para+apoio+interativo+na+aprendizagem+de+programa%C3%A7%C3%A3o+utilizando+ChatGPT&btnG=
https://doi.org/10.1109/TE.2024.3467912
https://doi.org/10.1109/TE.2024.3467912
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=An+llm-driven+chatbot+in+higher+education+for+databases+and+information+systems&btnG=
https://doi.org/10.1007/s41060-024-00554-5
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Clustering+source+code+from+automated+assessment+of+programming+assignments&btnG=
https://doi.org/10.5220/0013287500003932
https://doi.org/10.5220/0013287500003932
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Large+Language+Models+for+Student+Code+Evaluation%3A+Insights+and+Accuracy&btnG=
https://doi.org/10.1109/ACCESS.2022.3157288
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Educational+data+mining+to+support+programming+learning+using+problem-solving+data&btnG=
https://doi.org/10.1007/978-3-030-79463-7_2
https://doi.org/10.1007/978-3-030-79463-7_2
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=A+novel+rule-based+online+judge+recommender+system+to+promote+computer+programming+education&btnG=
https://doi.org/10.1145/3641554.3701863
https://doi.org/10.1145/3641554.3701863
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Large+language+models+in+computer+science+education%3A+A+systematic+literature+review&btnG=
https://doi.org/10.1007/978-3-319-47955-2_33
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=An+Interactive+Tool+to+Support+Student+Assessment+in+Programming+Assignments&btnG=
https://doi.org/10.1109/TLT.2023.3273926
https://doi.org/10.1109/TLT.2023.3273926
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=A+Clustering-Based+Computational+Model+to+Group+Students+With+Similar+Programming+Skills+From+Automatic+Source+Code+Analysis+Using+Novel+Features&btnG=

Melo et al. RBIE v.34 – 2026

ucation Conference (FIE), 1–9. https://doi.org/10.1109/FIE44824.2020.9274130 [GS
Search].

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polo-
sukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30. [GS Search].

Xu, D., & Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of data
science, 2(2), 165–193. https://doi.org/10.1007/s40745-015-0040-1 [GS Search].

82

https://doi.org/10.1109/FIE44824.2020.9274130
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Evaluation+of+students+programming+skills+on+a+computer+programming+course+with+a+hierarchical+clustering+algorithm&btnG=
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Evaluation+of+students+programming+skills+on+a+computer+programming+course+with+a+hierarchical+clustering+algorithm&btnG=
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Attention+is+all+you+need&btnG=
https://doi.org/10.1007/s40745-015-0040-1
https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=A+comprehensive+survey+of+clustering+algorithms&btnG=

	Introduction
	Background and Related Work
	Clustering of programming solutions
	LLMs in computing education

	Proposed method
	Clustering of similar solutions
	Using LLMs to identify programming strategies

	Experimental results
	Dataset
	Set of exercises

	Student code clusters
	Using LLMs to label strategies
	Zero-shot approach
	One-shot approach

	Few-shot approach

	Discussion
	QP1 - Clustering of programming solutions
	QP2 - LLMs to identify programming strategies

	Conclusion
	Ethical aspects

