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Abstract. A path partition P of a digraph D is a collection of directed paths
such that every vertex belongs to precisely one path. Given a positive integer k,
the k-norm of a path partition P of D is defined as

∑
P∈P min{|Pi|, k}. A path

partition of a minimum k-norm is called k-optimal and its k-norm is denoted
by πk(D). A stable set of a digraph D is a subset of pairwise non-adjacent
vertices of V (D). Given a positive integer k, we denote by αk(D) the largest
set of vertices of D that can be decomposed into k disjoint stable sets of D. In
1981, Linial conjectured that πk(D) ≤ αk(D) for every digraph. We say that a
digraph D is arc-spine if V (D) can be partitioned into two sets X and Y where
X is traceable and Y contains at most one arc in A(D). In this paper we show
the validity of Linial’s Conjecture for arc-spine digraphs.

1. Introduction
For a digraph D, let V (D) denote its set of vertices and let A(D) denote its set of arcs.
Given an arc a = (u, v) ∈ A(D), we say that u and v are adjacent. The set of neighbors of
a vertex u inD, denoted byN(u), is the set of all vertices that are adjacent to u and distinct
from u. In this paper, we consider only digraphs without loops and parallel arcs. A path
P is a sequence of distinct vertices (v1, v2, . . . , v`) such that for every i = 1, 2, . . . , `− 1,
(vi, vi+1) ∈ A(D). We define the order of a path P , denoted by |P |, as the number of
its vertices. A Hamilton path is a path containing every vertex in V (D). We say that
a digraph D is traceable if it contains a Hamilton path. A cycle C is a sequence of
vertices (v0, v1, . . . , v`) such that (vi, vi+1) ∈ A(D) for every i = 0, 1, 2, . . . , ` − 1 and
all vertices are distinct except precisely v0 and v` which coincide. We say digraph D is
acyclic if it contains no cycles. A digraph D is transitive if whenever (u, v) ∈ A(D) and
(v, w) ∈ A(D), then (u,w) ∈ A(D) as well.
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Given a path P = (v1, v2, . . . , v`), we denote by ter(P) the terminal vertex v` of
P . The subpath (v1, v2, . . . , vi) of P is denoted by Pvi, the subpath (vi, vi+1, . . . , v`) of P
is denoted by viP and the subpath (vi, vi+1, . . . , vj) of P is denoted by viPvj . We denote
by λ(D) the order of a longest path in D. Given another path Q = (w1, w2, . . . , wf ),
where v` = w1, we denote the concatenation of P and Q by P ◦ Q = (v1, v2, . . . , v` =
w1, w2, . . . , wf ).

A path partition P of a digraph D is a collection of directed paths such that every
vertex belongs to precisely one path and we denote by |P| the number of paths in the
partition. We say that a path partitionP inD is optimal if there is no path partitionP ′ such
that |P ′| < |P|. We denote by π(D) the cardinality of an optimal path partition. Given a
positive integer k, the k-norm of a path partition P ofD is defined as

∑
P∈P min{|Pi|, k}.

A path partition ofD with minimum k-norm is called k-optimal and its k-norm is denoted
by πk(D). Note that π(D) = π1(D).

A stable set S in D is a subset of vertices of V (D) such that every two vertices of
S are nonadjacent. A stable set with maximum cardinality is called a maximum stable set
and its cardinality is denoted by α(D). Let k be a positive integer and D be a digraph. A
k-partial coloring Ck of D is a set of k disjoint stable sets. Each such stable set is called
a color class. Note that some vertices may not belong to any of the k color classes. The
weight of a k-partial coloring is defined as

∑
C∈Ck |C| and it is denoted by ||Ck||. We say

that Ck is an optimal k-partial coloring of D if it is a partial coloring of maximum weight
and we denote its weight by denoted αk(D). Note that α(D) = α1(D).

Dilworth [Dilworth 1950] was the first to associate a path partition with stable
set in digraphs. In 1950, he showed that π(D) = α(D) when the digraph D is transi-
tive and acyclic. A decade later, in 1960, Gallai and Milgram [Gallai and Milgram 1960]
generalized Dilworth’s Theorem to arbitrary digraphs by relaxing the equality to the in-
equality π(D) ≤ α(D). Note that equality does not always hold; for instance if D is a
cycle of order 5, then π(D) = 1 but α(D) = 2. Much later, in 1976, Greene and Kleit-
man [Greene and Kleitman 1976] found a different way to generalize Dilworth’s theorem
by establishing a relation between πk(D) and αk(D), i.e., changing the notion of min-
imality of a path partition and allowing the use of up to k disjoint stable sets to cover
the maximum number of vertices possible. They showed that for any transitive acyclic
digraph D and any positive integer k, we have πk(D) = αk(D).

As much as Gallai-Milgram’s Theorem extends Dilworth’s Theorem by relaxing
the equality when dealing with arbitrary digraphs, we may think that the next step is to
relax the equality proved by Greene and Kleitman to the inequality πk(D) ≤ αk(D) in
order to generalize their theorem for arbitrary digraphs. However, it is an open prob-
lem whether such generalization holds. Such question was raised by Linial [Linial 1981]
in 1981 and is known as Linial’s Conjecture. Some particular cases of the conjec-
ture were already proved. We highlight the cases k = 1 (Gallai-Milgram’s Theo-
rem itself), k = 2 [Berger and Hartman 2008], acyclic digraphs [Linial 1981], bipar-
tite digraphs [Berge 1982], digraphs with λ(D) ≤ k [Berge 1982] and traceable di-
graphs [Berge 1982]. For more details on the state of the art of Linial’s Conjecture we
refer the reader to [Sambinelli 2018, Table 6.1].

There is one recent partial result on Linial’s Conjecture that is particularly relevant



to this work. In 2017, Sambinelli, Nunes da Silva and Lee proved Linial’s Conjecture
for a class of digraphs called spine digraphs [Sambinelli et al. 2017]. A digraph D is
a spine digraph if there exists a partition {X, Y } of V (D) such that D[X] is traceable
and Y is a stable set in D. Spine digraphs are a superclass of split digraphs. Long
before, in 1994, Hartman, Saleh and Hershkowitz [Hartman et al. 1994] gave a proof
of a different (although related) conjecture of Linial which we refer to as Linial’s Dual
Conjecture (see [Sambinelli 2018] for its statement). The proof of Sambinelli, Nunes da
Silva and Lee [Sambinelli et al. 2017] has some similarity in structure to that of Hartman,
Saleh and Hershkowitz; however some particular technique had to be developed to address
Linial’s Conjecture. The recent discovery of this new technique motived this work. Here
we present an extension of the use of that technique on a superclass of spine digraphs.
The purpose of the work is to start the investigation of more superclasses where the new
technique may be applied to solve Linial’s Conjecture. We started with the class of arc-
spine digraphs, defined in the next section.

2. Arc-spine Digraphs

We say that a digraphD is an arc-spine digraph if there exists a partition {X, Y } in V (D)
where D[X] is traceable and D[Y ] contains at most one arc. One such partition {X, Y }
of an arc-spine digraph is maximal ifX is maximal. We useD[X, Y ] to denote thatD has
one such partition {X, Y } and that it is maximal. We denote by a the unique arc of D[Y ]
that may exist and by u and v the tail and head of a, respectively. Let P = (x1, x2, . . . , x`)
be a Hamilton path of D[X].

The proof of Linial’s Conjecture for spine digraphs presented by Sambinelli,
Nunes da Silva and Lee [Sambinelli et al. 2017] involves defining a canonical path parti-
tion and a canonical partial k-coloring that have k-norm and weight differing by exactly
one. Then, a subclass of spine digraphs whose optimal partial k-coloring has weight
higher than that of the canonical one is identified. Those are called k-loose spine di-
graphs. For the remaining digraphs, called k-tight spine digraphs, it is shown that the
canonical path partition is not k-optimal. The proof of Linial’s Conjecture for arc-spine
digraphs presented in this paper follows the same structure while adapting the definitions
and arguments for the superclass of arc-spine digraphs. We assume that positive integer
k is at least 2 throughout the paper; this is fundamental in many steps of our proof. How-
ever, since Gallai-Milgram’s Theorem is a proof of Linial’s Conjecture for the case k = 1,
Linial’s Conjecture does hold for every positive integer k for arc-spine digraphs.

Let D[X, Y ] be an arc-spine digraph. We define a canonical (path) partition of
D[X, Y ] with respect to some Hamilton path P of D[X] as {P, (u, v)} ∪ {(y) : y ∈
Y − {u, v}}. Clearly, this path partition has k-norm equal to min{|X|, k}+ |Y |. Hence,
πk(D) ≤ min{|X|, k} + |Y |. We say that P is zigzag-free in D if none of the following
types of arcs exist in D: (i) (y, x1) or (ii) (x`, y), where y ∈ Y ; (iii) (v, x2) or (iv)
(x`−1, u); (v) (xi−1, u) and (v, xi+1) simultaneously or (vi) (xi, u) and (v, xi+1) simul-
taneously or (vii) (xi, y) and (y, xi+1) simultaneously, where 1 < i < ` and y ∈ Y .
The motivation for defining this concept is because if P is not zigzag-free, then there is
X ′ ⊃ X such that D[X ′] is traceable and Y ′ = V (D)−X ′ induces at most one arc. We
ommitt the details on how to obtain X ′ in each case since it is not had to verify, and state
this conclusion as a proposition below.



Proposition 1. Let D[X, Y ] be an arc-spine digraph and let P = (x1, x2, . . . , x`) be a
Hamilton path of D[X]. Then, P is zigzag-free.

All of the following properties hold when P is zigzag-free:
Lemma 1. LetD[X, Y ] be an arc-spine digraph and let P = (x1, x2, . . . , x`) be a Hamil-
ton zigzag-free path of D[X]. For every subpath xqPxr = (xq, xq+1, . . . , xr) of P , if
there exists a vertex y ∈ Y such that y is adjacent to all vertices of xqPxr, then for every
q ≤ i ≤ r:

(i) (xi, y) ∈ A(D) if (xq, y) ∈ A(D) and,
(ii) (y, xi) ∈ A(D) if (y, xr) ∈ A(D).

Proof. The proof is by induction on i. Consider first the case (i); the base case i = q
is thus verified. Now, suppose that i > q. By the induction hypothesis, we have that
(xt, y) ∈ A(D) for q ≤ t ≤ i − 1. If (y, xi) ∈ A(D), then P is not zigzag-free in D;
whence (xi, y) ∈ A(D). In particular, when i = r, we have shown that (xi, y) ∈ A(D)
for q ≤ i ≤ r. A symmetric reasoning can be used to prove case (ii).

Corollary 1. Let D[X, Y ] be an arc-spine digraph and let P = (x1, x2, . . . , x`) be a
zigzag-free Hamilton path of D[X]. Then there is no vertex y ∈ Y adjacent to all vertices
of P .

Proof. Assume to the contrary that there is some vertex y ∈ Y adjacent to every vertex
of P . Since P is zigzag-free, (x1, y) ∈ A(D). Then, by Lemma 1, (x`, y) ∈ A(D); a
contradiction to the fact that P is zigzag-free.

Linial’s Conjecture is valid for spine digraphs, thus we will assume that D[Y ]
contains an arc (u, v). Thus, by Corollary 1, there is some vertex xv ∈ X that is not
adjacent to vertex v. Now let S be any subset of X − xv containing min{|X| − 1, k − 2}
vertices. We may thus define a canonical k-partial coloring with respect to S as {Y −
v, {v, xv}} ∪ {{x} : x ∈ S}}. Clearly, this k-partial coloring has weight |Y | − 1 +
2 + min{|X| − 1, k − 2}. But min{|X| − 1, k − 2} = min{|X|, k − 1} − 1; whence
αk(D) ≥ |Y |+min{|X|, k − 1} for every arc-spine digraph D.

An arc-spine digraph is k-loose if either |X| < k or there is a subset S ⊆ X with
|S| = k such that no vertex y ∈ Y is adjacent to every vertex of S and there are at least
two distinct vertices xu and xv in S such that {u, xu} and {v, xv} are independent sets. In
constrast, an arc-spine digraph is k-tight if it is not k-loose, i.e., |X| ≥ k and for every
subset S ⊆ X with |S| = k either:

(a) there exists y ∈ Y : S ⊆ N(y) or
(b) there exists x ∈ S such that N(u) ∩ S = N(v) ∩ S = S − {x}.

In Lemma 2 we show that there is an analogue of [Sambinelli et al. 2017,
Lemma 1] for k-loose arc-spine digraphs. Note, however, that the concept of k-
loose for arc-spine digraphs presented here is different from the concept of k-loose
for spine digraphs presented in [Sambinelli et al. 2017]. The different definition of k-
loose was needed as a means to guarantee that there would be perfect analogues of
Lemmas 1 and 3 from [Sambinelli et al. 2017] for arc-spine digraphs. The analogue
of [Sambinelli et al. 2017, Lemma 3] is Lemma 6.



Lemma 2. If D[X, Y ] is a k-loose arc-spine digraph, then:

(i) αk(D) ≥ |Y |+min{|X|, k} and
(ii) πk(D) ≤ αk(D).

Proof. Recall that πk(D) ≤ |Y | +min{|X|, k} since this is the k-norm of the canonical
partition (even when D is spine there is a path partition with such k-norm). Also, recall
that the canonical k-partial coloring |Y |+min{|X|, k−1} (even when D is spine there is
a k-partial coloring with such weight). If |X| < k, then min{|X|, k − 1} = min{|X|, k}
in this case and both (i) and (ii) hold. Thus, we may assume that |X| ≥ k. So, there
exists S ⊆ X with |S| = k such that no vertex y ∈ Y is adjacent to every vertex in S and
there are at least two distinct vertices xu and xv in S such that {u, xu} and {v, xv} are
independent sets. Suppose that S = {x1, x2, . . . , xk} and let Ck0 = {C1, C2, . . . , Ck} be a
k-partial coloring in which Cp = {xp}, p = 1, 2, . . . , k. By the choice of S, {u, xu} is an
independent set for some xu ∈ S and {v, xv} is an independent set for some xv ∈ S such
that xu 6= xv. We thus add u to the color class of xu, v to the color class of xv and every
other vertex y ∈ Y − {u, v} to some color class Cp such that {y, xp} is an independent
set (which exists by the choice of S). The k-partial coloring Ck thus obtained has weight
|Y |+ k = |Y |+min{|X|, k}. Therefore, αk(D) ≥ ||Ck|| = |Y |+min{|X|, k}. Hence,
we establish that (i) and (ii) hold. This finishes the proof.

Lemma 3. Given a k-tight arc-spine digraph D[X, Y ], and a zigzag-free path P =
(x1, x2, . . . , x`) of D[X], there is an arc (xj, y) ∈ A(D) such that y ∈ Y for some
k − 1 ≤ j ≤ `.

Proof. Consider S = {x1, x2, . . . , xk}, the set of the k first vertices of P . First assume
that condition (a) in the definition of k-tight digraphs is valid, that is, there exists y ∈ Y
such that S ⊆ N(y). Since P is zigzag-free, we have (x1, y) ∈ A(D). So by Lemma 1(i),
the result follows with j = k. We may thus assume that exclusively condition (b) is valid.
Let xt be the only vertex of S not adjacent to both u and v (note that 1 ≤ t ≤ k). If t 6= 1,
we conclude that (x1, u) ∈ A(D) and (x1, v) ∈ A(D) as P is zigzag-free. By Lemma 1
applied to subpath x1Pxt−1 and u, we conclude that (xt−1, u) ∈ A(D). If t = k, the
result follows; we may thus assume that t < k. Thus xt+1 is in S and v is adjacent to
xt+1. Arc (v, xt+1) 6∈ A(D), otherwise there would be a zigzag in P . The latter assertion
is true even if t = 1; in fact, the only difference when t = 1 is that we do not know
the orientation of the arcs joining vertices of S to u. Since (xt+1, v) ∈ A(D) whenever
1 ≤ t < k, by Lemma 1 applied to subpath xt+1Pxk and v, (xk, v) ∈ A(D) and the result
follows.

Lemma 4. Given a k-tight arc-spine digraph D[X, Y ], and a zigzag-free path P =
(x1, x2, . . . , x`) of D[X], there is an arc (y, xi) ∈ A(D) such that y ∈ Y for some
1 ≤ i ≤ `.

Proof. Consider S = {x`−k−1, x`−k, . . . , x`}, the set of the k last vertices of P . First
assume that condition (a) is valid. By Lemma 1, the result follows immediately. We may
thus assume that exclusively condition (b) is valid. So let x be the unique vertex of S not
adjacent to u and v. Consider first the case in which vertex x 6= x`. Then, as u is adjacent
to every vertex of S − {x}, it is adjacent to x`. Since P is zigzag-free, (u, x`) ∈ A(D)



in this case. Now, when x = x`, vertex u is adjacent to every vertex of S − {x}, it is
adjacent to x`−1. Since P is zigzag-free, (u, x`−1) ∈ A(D) and the result follows in both
cases.

Lemma 5. Given a 2-tight arc-spine digraph D[X, Y ], and a zigzag-free path P =
(x1, x2, . . . , x`) of D[X], for each vertex xp of P , there must be some vertex yp ∈ Y
adjacent to xp, for every p = 1, 2, . . . , `.

Proof. Assume, to the contrary, that there is some p such that no vertex of Y is adjacent
to xp. First we show that both u and v are adjacent to every vertex in X − {xp}, let
Sq = {xp, xq} be a set of two vertices of X for some q 6= p. Since no vertex of Y
is adjacent to xp and D is 2-tight, we conclude (b) holds for Sq. Thus, both u and v are
adjacent to xq. Such argument holds for every q, 1 ≤ q ≤ `, p 6= q. We therefore conclude
that both u and v are adjacent to every vertex in X − xp.

Consider first the case in which p = 1. As the digraph D is 2-tight, |X| = ` ≥ 2.
Since P is zigzag-free, (u, x`) ∈ A(D) and (v, x`) ∈ A(D). By Lemma 1, we deduce
(v, x2) ∈ A(D). But then P has a zigzag, a contradiction. We may thus assume p 6= 1.
By a symmetric reasoning, we can deduce p 6= `.

Since P is zigzag-free, we conclude that (x1, u) ∈ A(D), (x1, v) ∈ A(D),
(u, x`) ∈ A(D) and (v, x`) ∈ A(D). By Lemma 1, we conclude that (xq, u) ∈ A(D),
(xq, v) ∈ A(D) for 1 ≤ q < p and (u, xq) ∈ A(D) and (v, xq) ∈ A(D) for p < q ≤ `.
But then (xp−1, u, v, xp+1) is a zigzag in P ; again a contradiction.

The most ingenious part of the proof presented by Sambinelli, Nunes da Silva
and Lee is the proof of [Sambinelli et al. 2017, Lemma 3] . Next, we show the proof of
its analogue for arc-spine digraphs, Lemma 6. Again, note that the concept of k-tight
for spine digraphs is different from the presented definition of k-tight arc-spine digraphs.
Furthermore, we point out that the proof of the base case of Lemma 6 is considerably
more intricate than the base case of [Sambinelli et al. 2017, Lemma 3].
Lemma 6. Let D[X, Y ] be a k-tight arc-spine digraph and let P = (x1, x2, . . . , x`) be a
zigzag-free path of D. Then, there exist paths P1 and P2 such that:

(i) V (P1) ∩ V (P2) = ∅;
(ii) |P1|+ |P2| ≥ |X|+ k + 1;

(iii) ter(P1) ∪ ter(P2) = {x`, y}, for some y ∈ Y ;
(iv) X ⊆ V (P1) ∪ V (P2).

Proof. The proof is by induction on k. The base case is k = 2. Given a 2-tight arc-spine
digraph D, by Lemma 3 there is a vertex y ∈ Y such that (xj, y) ∈ A(D) for some
xj ∈ V (P ). Among all arcs (xj, yj) ∈ A(D) with yj ∈ Y choose an arc aj such that j
is maximum. As P is zigzag-free in D, we have that j < ` and so the vertex xj+1 exists.
Note that by Lemma 5 and the choice of aj , we can claim the existence of some vertex
yj+1 ∈ Y such that (yj+1, xj+1) ∈ A(D).

Claim 1. Suppose k = 2 and let t < `. If there exist yt and yt+1 such that (xt, yt) ∈ A(D)
and (yt+1, xt+1) ∈ A(D) then:

• yt 6= yt+1;



x1 xi−1 xi . . . xj xj+1 x`
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Figure 1. yi 6= yj . The paths P1 = Pxi−1 ◦ (xi−1, y
′, xj+1) ◦ xj+1P and P2 = (yi, xi) ◦ xiPxj ◦ (xj , yj).

• yt 6= u;
• yt+1 6= v.

Proof. We know that yt 6= yt+1 because P is zigzag-free. Then, the first condition follows
trivially. Assume that yt = u. Then yt+1 6= v, since P is zigzag-free. Now, consider the
paths P1 = Pxt ◦ (xt, yt = u, v) and P2 = (yt+1, xt+1) ◦ xt+1P . Paths P1 and P2 meet
conditions (i) through (iv). Finally, assume that yt+1 = v. Then yt 6= u, since P is zigzag-
free. Consider the two paths P1 = Pxt ◦ (xt, yt) and P2 = (u, v = yt+1, xt+1) ◦ xt+1P .
Paths P1 and P2 meet conditions (i) through (iv).

By Claim 1, we conclude that yj 6= yj+1, yj 6= u and yj+1 6= v. By Lemma 4 there
is a vertex y ∈ Y such that (y, x) ∈ A(D) for some x ∈ V (P ). Let (yi, xi) ∈ A(D) such
that i is minimum. We shall now show that i ≤ j. Let S = {xj, xj+1}. Since yj+1 6= v,
we know that (v, xj+1) /∈ A(D). If (a) holds for S, then there is a vertex y ∈ Y adjacent
to both vertices in S. Thus, (y, xj+1) ∈ A(D) by the choice of the arc aj and since P is
zigzag-free, (y, xj) ∈ A(D). If (b) holds for the subset S, then by the choice of the arc
aj , (xj+1, v) /∈ A(D) and since v 6= yj+1, we deduce that (v, xj+1) /∈ A(D). Therefore,
u and v are adjacent to xj where (u, xj) ∈ A(D) as yj 6= u. Since i is minimum, the
analysis of these two cases allow us to conclude i ≤ j. Moreover, i > 1, otherwise P is
not zigzag-free. Then, vertex xi−1 exists and so does arc (xi−1, yi−1) by the minimality of
i and Lemma 5. Again, by Claim 1, we conclude that yi−1 6= yi, yi−1 6= u and yi 6= v.

To conclude the base case, let S ′ = {xi−1, xj+1}. Since yj+1 6= v and yi−1 6= u,
neither xj+1 nor xi−1 can be simultaneously adjacent to u and v; therefore, (b) cannot
hold for S ′. Then, (a) holds for S ′ and there is a vertex y′ such that it is adjacent to both
vertices of S ′. By the choice of j, we have that (y′, xj+1) ∈ A(D). Therefore, y′ 6= yj
because P is zigzag-free. By a symmetric reasoning we deduce that (xi−1, y′) ∈ A(D)
and y′ 6= yi. By Claim 1 we have that y′ 6= u and y′ 6= v.

Vertices yi and yj may or may not be the same. Consider first the case in which
yi 6= yj . Then, paths P1 = Pxi−1 ◦ (xi−1, y′, xj+1) ◦ xj+1P and P2 = (yi, xi) ◦ xiPxj ◦
(xj, yj) satisfy conditions (i) through (iv) (Figure 1).

We may thus assume that yi = yj . We will now show that some vertex xt, i ≤
t ≤ j, is not adjacent to y′. To do so, assume the contrary. Then, by Lemma 1, since
(y′, xj+1) ∈ A(D), we must have arc (y′, xi−1) ∈ A(D) as well; a contradiction to the



x1 xi−1 xt−1 xt xt+1 xj+1 x`

ytyj

y′

P1

P2

xi xj

Figure 2. yi = yj and (xt, yt) ∈ A(D). The paths P1 = Pxt−1◦(xt−1, y′, xj+1)◦xj+1P and P2 = (yt, xt)◦xtPxj ◦(xj , yj)
satisfy the conditions (i) through (iv).

x1 xi−1 xi xt−1 xt xt+1 xj+1 x`

ytyj

y′

P1

P2

xj

Figure 3. yi = yj and (yt, xt) ∈ A(D). The paths P1 = Pxt−1◦(xt−1, y′, xj+1)◦xj+1P and P2 = (yt, xt)◦xtPxj ◦(xj , yj)
satisfy the conditions (i) through (iv).

choice of i. Thus, choose i ≤ t ≤ j such that t is minimum and xt is not adjacent to
y′. By Lemma 5, there is some vertex yt ∈ Y adjacent to xt. As yt is adjacent to xt,
clearly yt 6= y′. We shall now show that yt is distinct from yi = yj . Assume to the
contrary that yt = yi = yj is the only vertex in Y adjacent to xt. Recall that yi 6= u and
yj 6= v. Let St = {xt, xj+1}. Since yi 6= u and yj 6= v, (a) must hold for St. Therefore,
(xj, yj = yt) ∈ A(D) and (yt, xj+1) ∈ A(D); so P has a zigzag, a contradiction. We thus
deduce that yt is distinct from yi = yj .

If (xt, yt) ∈ A(D), then the paths P1 = Pxi−1 ◦ (xi−1, y′, xj+1) ◦ xj+1P and
P2 = xt+1Pxj ◦ (xj, yj = yi, xi) ◦ xiPxt ◦ (xt, yt) satisfy the conditions (i) through (iv)
(Figure 2).

If (yt, xt) ∈ A(D) note that, by the choice of twe know that y′ is adjacent to every
vertex in (xi−1, . . . , xt−1). Moreover, since (xi−1, y

′) ∈ A(D), by Lemma 1 (xt−1, y
′) ∈

A(D). Then, the paths P1 = Pxt−1 ◦ (xt−1, y′, xj+1) ◦ xj+1P and P2 = (yt, xt) ◦ xtPxj ◦
(xj, yj) satisfy the conditions (i) through (iv) (Figure 3).

Finally, the proof of the base case k = 2 is complete. Assume thus that k > 2.

By Lemma 3 there is some vertex xj ∈ V (P ) such that there is some arc (xj, yj) ∈
A(D) for yj ∈ Y and j ≥ k− 1. Among all such arcs choose an arc aj with j maximum.
Since P is zigzag-free, we know that j < ` and thus there is a vertex xj+1 in P . Let



X ′ = V (Pxj) and let

Y ′ = {y′ : y′ ∈ Y and y′ is adjacent to xj+1}.

Let D′ = D[X ′, Y ′] and let P ′ = Pxj . If Y ′ is a stable set, then D′ is a spine digraph
and according to [Sambinelli et al. 2017, Lemma 3], D′ has paths P ′1 and P ′2 that meet the
conditions (i) through (iv) above. We may thus assume that Y ′ contains u and v.

We shall show that P ′ is zigzag-free in D′. Assume the contrary. Then, since P
is zigzag-free in D, this implies that there either is an arc (xj−1, u) ∈ A(D′) or (xj, y) ∈
A(D′) for some vertex y ∈ Y ′. However, if (xj−1, u) ∈ A(D′), since v ∈ Y ′ then
(v, xj+1) ∈ A(D) and P would not be zigzag-free in D, a contradiction. Similarly, if
(xj, y) ∈ A(D′) for some vertex y ∈ Y ′, since (y, xj+1) ∈ A(D), then P would not be
zigzag-free in D, again a contradiction.

We shall now show that D′ is a (k− 1)-tight arc-spine digraph. Let S ′ ⊆ X ′ be an
arbitrary set of k−1 vertices; by Lemma 3 we know that j ≥ k−1. Let S = S ′∪{xj+1} be
a set of k vertices of D. Since D is k-tight, either (a) or (b) holds for S. If (a) holds for S
in D, then it is easy to see that (a) also holds for S ′ in D′. So suppose that (b) holds for S
in D. We do know that {u, v} ∈ Y ′, therefore, (u, xj+1) ∈ A(D′) and (v, xj+1) ∈ A(D′).
So, the only vertex in S not adjacent to u and v is some vertex of S ′ and (b) holds for S ′

in D′.

We have thus shown that D′ is a (k − 1)-tight arc-spine digraph and P ′ is zigzag-
free. By the induction hypothesis applied to D′ and P ′, there exist paths P ′1 and P ′2 in
D′ which satisfy conditions (i) through (iv). Assume, without loss of generality, that
ter(P ′1) = xj and ter(P ′2) = y′, for some y′ ∈ Y ′. Let P1 = P ′1 ◦ (xj, yj) and P2 =
P ′2◦(y′, xj+1)◦xj+1P be paths ofD. We claim that P1 and P2 meet conditions (i) through
(iv). Conditions (iii) and (iv) obviously hold. Condition (i) holds because P ′1 and P ′2 are
disjoint by induction hypothesis and neither vertex y nor any vertex of xj+1P are vertices
ofD′. Condition (ii) holds because |P ′1|+|P ′2| = j+k by induction hypothesis. Therefore

|P1|+ |P2| = |P ′1|+ |P ′2|+ |X| − j + 1 = |X|+ k + 1

and the proof is complete.

Theorem 1. Let D[X, Y ] be a arc-spine digraph. Then, πk(D) ≤ αk(D).

Proof. We may assume that D is k-tight, otherwise the result follows by Lemma 2. We
know that αk(D) ≥ |Y |+min{|X|, k−1}. Since D is k-tight, we have by definition that
|X| ≥ k and, therefore, that αk(D) ≥ |Y |+k−1. Now, suppose that λ(D) > |X|. Since
λ(D) > |X|, there exists a path P in D such that |P | = |X|+ 1. Let P = P ∪ {(v) : v /∈
V (P )}. Clearly, P is a path partition ofD and |P|k = min{|P |, k}+|Y |−1 = |Y |+k−1.
Therefore, πk(D) ≤ |P|k = |Y |+ k− 1 ≤ αk(D) and the result follows. Hence, we may
assume that λ(D) = |X|. Let P = (x1, x2, . . . , xl) be a Hamilton path in D[X]. Since
λ(D) = |X|, we have that P is a longest path in D; as such, it must be zigzag-free. By
Lemma 6, there exist disjoint paths P1 and P2 in D such that |P1| + |P2| = |X| + k + 1.
Note that |Pi| > k, for i = 1, 2, otherwise P3−i would be larger than |X|. Let P =
{P1, P2} ∪ {(y) : y /∈ V (P1) ∪ V (P2)}. It is easy to see that P is a path partition in D.
The k-norm of P is |P|k = min{|P1|, k} + min{|P2|, k} + |Y | − k − 1 = |Y | + k − 1.
So, πk(D) ≤ |Y |+ k − 1 and the result follows.



3. Conclusion
Sambinelli, Nunes da Silva and Lee adapted the technique of the proof of Linial’s Dual
Conjecture for split digraphs to prove Linial’s Conjecture for spine digraphs. In this paper
we were able to apply the same technique to a superclass of spine digraphs. The most im-
portant statement proved is Lemma 6, whose assertion and structure of the inductive proof
has similar elements to that of [Sambinelli et al. 2017, Lemma 3]. Even though spine and
arc-spine digraphs are very similar in structure, the proof of the base case for arc-spine
digraphs happens to be a lot more complex than the base case for spine digraphs. It is hard
to understand at this moment what does that represent. Intuition suggests that it might be
possible to adapt the structure of the proof presented here to deal with superclasses of
spine digraphs more complex in structure than arc-spine digraphs.
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