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Santo André – SP – Brazil

eduardo.falbel@usp.br

Abstract. Cycling is a potential tool to mitigate many of the problems faced by
urban populations today. Encouraging the use of bicycles as a legitimate mo-
bility tool, however, demands adequate knowledge of current mobility patterns,
such as locations of trip generation and attraction. Unfortunately, cities usu-
ally do not gather enough data to adequately understand cycling demand. We
propose models based on spatial econometrics and gradient boosted regression
trees which can be trained with data from cities with mature cycling cultures and
then applied to cities still in their cycling infancy to supply city officials with a
better estimate of potential future OD matrices. We perform a case study in the
Boston Metropolitan Area and show results comparing both types of models.

1. Introduction
Cycling’s low CO2-equivalent life-cycle emissions when compared to other forms of
transport [Brand et al. 2021] and its potential use for short trips [Wang and Zhou 2017],
thus replacing car use, present a strategy to combat climate change and help mitigate
traffic congestion in large cities. Due to these and other reasons, city officials have been
looking to encourage bike ridership and evidence shows that cycling sharing schemes can
play a significant role in increasing cycling rates [Félix et al. 2020].

Deciding where to build these interventions, however, is quite tricky, as potential
cycling demand is unknown. One piece of information that is particularly relevant is the
Origin-Destination (OD) matrix, the acquisition of which is an issue that has been at the
forefront of transport engineering for decades [Ortuzar and Willumsen 2011]. With exist-
ing methods, one usually needs some sample of trip/flow data from the region of interest
to estimate an OD matrix [Ortuzar and Willumsen 2011, Bera and Rao 2011]. However,
cities without an established cycling culture presumably do not have such data to begin
with and attempts to collect it would either be too costly [Ortuzar and Willumsen 2011]
or not yield enough information due to low ridership.

We propose models that can be trained on a region with a mature cycling culture-
and then be used to predict flows/estimate an OD matrix for a region of interest which
only has contextual data available, allowing transport planners to get the information they
need to make better decisions. Our main models are based on gradient boosted decision



trees (GBDT) and spatial econometric interaction models (SEIM); the former is a state-
of-the-art machine learning model which is widely used in both academia and industry,
while the latter can be considered to be an ‘upgrade’ to the standard gravity model, a sta-
ple of transportation research. This work builds on previous research done by our group
[Kon et al. 2021], which first analyzed the data we used and laid the groundwork for the
project. The contributions of this paper are twofold:

• This is the first bike flow prediction model tested on spatial out-of-sample regions
(meaning regions not present in the training data and completely disjoint from it),
and

• it is the first application of spatial econometric interaction models for bike-flow
modelling and spatial out-of-sample prediction.

The rest of the paper is organized as follows: in Section 2, we take a deeper
look into one of the main approaches used in this paper, spatial econometric interaction
models. In Section 3, we present a literature review focusing on analysis and prediction of
flows in bike-sharing systems and the use of spatial econometric interaction models. We
then move on to describe the methodology we used to carry out this research in Section
4, followed by the presentation of our results in Section 5. We discuss our results and
present our conclusions in Section 6.

This undergraduate research work was the result of a collaboration with the In-
stitute for Transport Planning and Systems at ETH Zurich. An extended version of this
article was accepted to the 103rd Transportation Research Board Annual Meeting and
presented on January 10th, 2024 in Washington D.C., USA.

2. Spatial Econometric Interaction Models
Spatial interaction models (SIMs) have been used extensively when modelling mo-
bility flows, usually as the trip distribution step in the traditional 4-step model
[Ortuzar and Willumsen 2011]. The most well-known of these is the gravity model, based
on Newton’s law of gravitation, specified by Equation 1. Tij denotes trips from region i
to region j, Oi and Dj are sets of variables measured at the origin and destination regions,
respectively, f(cij) is a function of the generalized trip costs, and α is a generic balancing
factor.

Tij = αOiDjf(cij) (1)

Generally, estimation of the gravity model is done with Maximum Likelihood
Estimation (MLE) on its log-linearized form (Equation 2).

log (Tij) = log (αOiDjf(cij))

= logα + logOi + logDj + log f(cij)
(2)

We can ‘rebrand’ this equation to make it look more like a regres-
sion specification for which one would use MLE, as shown in Equation 3
[LeSage and Thomas-Agnan 2014]. Now, α is the intercept and βi, i = 1, 2, 3 are the
coefficients we are trying to estimate.



yij = α + β1Oi + β2Dj + β3f(cij) + ε (3)

A major issue with this model, however, is that it assumes independence between
flows, a premise that has been shown not to hold [LeSage and Pace 2008]. Due to this
limitation, [LeSage and Pace 2008] have proposed a new class of SIMs named Spatial
Econometric Interaction Models (SEIMs), which attempt to address the issue of spatial
dependence between flows. One specification of these models, which we refer to as the
LAG model, is given by Equation 4.

y = ρoWoy + ρdWdy + ρwWwy + βdXd + βoXo + γg + α + ε (4)

One can see that it is structurally very similar to the ‘rebranded’ log-linear form
of the gravity model, except for the addition of the first three autoregressive terms in
the right-hand side of the equation (ρoWoy, ρdWdy, ρwWwy), composed of the dependent
variable y, a spatial coefficient ρ which we attempt to estimate, and a spatial weights
matrix Wi, i = d, o, w. The predictor we crafted, described in Section 4.3, is based on this
underlying model.

3. Related Work
The rise of bike-sharing systems has motivated many researchers to attempt to predict cy-
cling flows, usually for the purposes of system optimization [Jiang 2022]. Most of the lit-
erature focuses on the modelling of docked systems [Jiang 2022], in which there are pre-
determined, physical stations where users can retrieve and deposit bicycles. The goal then
is usually optimizing for the current system [Zhou and Huang 2018, Chai et al. 2018]
or for immediate-future improvements [Wang and Zhou 2017]. [Guidon et al. 2020] at-
tempted to extrapolate mobility patterns from one city to another by training a spatial
econometric model in Zurich and testing the model’s predictions in Bern. However, the
authors were only capable of modelling trip generation (i.e., demand) as opposed to the
complete flow (generation and attraction), meaning they could not take into account spa-
tial autocorrelation between flows and construct a full OD matrix from their prediction
data.

Only a few studies have applied spatial econometric interaction models to flows
associated with mobility/commuting. Most notably, [Ni et al. 2018] applied it to flows
abstracted from mobile phone data in Hangzhou, China; [Schatzmann et al. 2019] used a
simplified version of the model which did not include all three spatial weights matrices si-
multaneously on public transport commuting data in Switzerland; [Kerkman et al. 2017]
used a multilevel approach to model public transport flows in the Netherlands and used
a SEIM as the upper level model for one of these approaches; [Dargel 2021] modeled
home-to-work commuting flows in Paris with SEIMs. To the best of the authors’ knowl-
edge, none has tried using SEIMs to model cycling flows or has attempted to test the
predictive capabilities of these models on spatial-out-of-sample data.

4. Methodology
We begin this section by discussing our data and how it is structured, followed by the
chosen data split for training and testing. Finally, we discuss one of the models used
during this project in depth.



Figure 1. Flows belonging to the 1st quartile in terms of trip volume.

Cycling Infrastructure Ratio =
length(Cycling route ∩ Cycling infrastructure)

length(Cycling route)
(5)

4.1. Data sources and fusion

The base dataset we used pertains to trips made using the Boston Blue Bikes bike-sharing
system between April 2018 and March 2019. This service uses fixed stations for the
pick-up and drop-off of the bikes, the location of which can be seen in Figure 1.

The process for abstracting the cycling trips into flows is based on the use of a
regular grid of cells for trip aggregation, since it can be used with any type of cycling trip
data, be it from station-based or dockless BSSs or GPS data from tracking surveys. We
then assign each trip the start and end grid cells in which its start and end stations are
located, respectively, and aggregate trips with the same origin and destination to form our
flows. Figure 1 shows the most substantial flows during the time period specified above.
We also remove grid cells without stations in them to try and remove some of the implicit
bias in the dataset, as trips cannot start or end in these cells.

We then enrich that dataframe with the distance between cells, POI data collected
from Google and socioeconomic data from the US census to each cell. Since we are using
cells and not census tracts, we proportionally distribute each feature derived from the
census based on the area of the cell each census tract occupies. Finally, we incorporate
cycling infrastructure data by means of the ‘cycling infrastructure ratio’ (Equation 5).

4.2. Training and Testing

Unlike standard machine learning training and testing procedure, randomly splitting the
data and performing some k-fold cross validation is not feasible for accurately gauging



Figure 2. Training and testing split for the Boston metropolitan area

the models’ predictive capabilities. This is because we rely on the explicit spatial struc-
ture of the data to determine the neighbourhood structure, and thus, the spatial weights
matrices for the spatial econometric model. This means that we must manually and care-
fully split the dataset into regions that at least somewhat resemble each other (regarding
flow volumes and patterns) as well as maintain some cohesive spatial structure. Basing
ourselves on these principles, we chose the split in Figure 2, in which the yellow shaded
regions constitute the training set and the green shaded ones, the testing set.

After splitting the data, we trained the models with the yellow-shaded regions in
Figure 2 and tested with the green-shaded regions in Figure 2. It should be noted that
the training and testing sets are considered completely disjoint from each other (meaning
regions at the border of these sets do not have neighbors across the border). This is done
to simulate the case in which the model is trained with data from one city and tested on
data from a completely different city.

4.3. Predictors
In total, we tested 3 different predictors on the Boston bike-sharing system data for out-
of-sample prediction. They are:

• CatboostRegressor (CB)
• Aspatial predictor (A)
• LAG trend-corrected predictor (TC)

As can be seen from Equation 4, the LAG model specification cannot directly
be used for out-of-sample prediction, since it relies explicitly on the dependent vari-
able. At the time of writing, there were no dedicated out-of-sample predictors for spa-
tial econometric interaction models that we could use. Consequently, we implemented
our own out-of-sample predictor1, based on the models’ expected value, described in

1https://github.com/EduFalbel/seim



[LeSage and Thomas-Agnan 2014] (Equation 10). To arrive at that specification, we start
by condensing Equation 4 into Equation 6.

y = ρdWdy + ρoWoy + ρwWwy + δZ + ε, (6)

where δ =
[
βdβoγα

]
and Z =

[
XdXogιn2

]
, ιn2 is an n2 × 1 (the number of OD

pairs) vector of ones.

We then subtract both sides by the spatial lags of the dependent variable and factor
out the dependent variable y, resulting in Equation 7.

(I − ρdWd − ρoWo − ρwWw)y = δZ + ε. (7)

Now multiplying by the inverse of the spatial factor:

(I − ρdWd − ρoWo − ρwWw)
−1(I − ρdWd − ρoWo − ρwWw)y =

= (I − ρdWd − ρoWo − ρwWw)
−1(δZ + ε),

(8)

is finally equal to

y = (I − ρdWd − ρoWo − ρwWw)
−1(δZ + ε). (9)

We then craft our predictor as Equation 10, in accordance with
[LeSage and Thomas-Agnan 2014].

ŷ = (I − ρ̂dWd − ρ̂oWo − ρ̂wWw)
−1δ̂Z, (10)

Keeping with the convention set forth in [Goulard et al. 2017] and [Dargel 2021],
we will henceforth refer to Equation 10 above as the ‘trend-corrected’ predictor.

ŷ = β̂dXd + β̂oXo + γ̂g + α̂ + ε (11)

Unlike the LAG model, the aspatial model specification in Equation 11 can be
directly used for prediction (dependent variable is only present on the left-hand side of the
model equation), so the terms ’model’ and ’predictor’ will be used interchangeably when
referring to that specification. For the machine learning predictor, we decided on using a
gradient-boosted trees model, namely Catboost, as it comes with good defaults ‘out-of-
the-box’ [Bentéjac et al. 2020] and has demonstrated high performance in our research.

5. Results

We start by examining the Root Mean Squared Error (RMSE) and then dive into other
metrics we used to gauge the quality of the models’ predictive abilities, namely the pre-
dicted vs. observed flow quartiles and spatial dependency analysis.



Table 1. RMSE scores for the models’ In- and Out-of-sample predictions.

Model Out-of-sample
Aspatial 268.204
Catboost 255.014
Trend-corrected 229.366

5.1. Prediction accuracy

The first metric we used to compare the predictive power of the models is the Root Mean
Squared Error. Table 1 shows this metric for each model.

What is very interesting in Table 1 is that the SLA econometric model actually beat
the machine learning model when it came to the out-of-sample prediction. We believe this
is a valued contribution, since the latter models are directly interpretable as shown pre-
viously and, thus, provide more useful information to transport planners as opposed to
a black-box machine learning algorithm. Even though there have been advances in Ex-
plainable Machine Learning with the use of Shapley values [Lundberg and Lee 2017], the
SEI models allow for a much clearer interpretation of the influence of spatial interaction
effects on the cycling flows.

5.2. Trip quartiles

For this analysis we split the flows into quartiles based on the number of trips in each
flow, such that each quartile contains 25% of all trips. We then created tables of the
predicted versus observed flow quartiles for each of the models, which can be seen in
tables 2 to 4. The quartiles are numbered in descending order of trips, meaning quartile 0
has the most substantial flows and quartile 3 has the least substantial flows (a lot of which
are ‘null’/0 flows). The desired outcome for the tested models would be to maximize the
main diagonal, since that indicates correctly predicted flow quartiles, while minimizing
the upper-right and lower-left corners, which points to egregious errors. That is, when the
model predicted one of the least substantial flows to be one of the most substantial and
vice-versa.

We believe this analysis to be one of the most important we conducted, since it is
reasonable to assume that, when deciding where to build cycling infrastructure, transport
officials will focus on the handful of regions with the majority of trips.

Table 2. Aspatial model quartiles.

Predicted 0 1 2 3 All
Observed
0 4 9 13 11 37
1 2 8 37 29 76
2 4 9 56 105 174
3 2 6 86 2868 2962
All 12 32 192 3013 3249

Table 3. Catboost quartiles

Predicted 0 1 2 3 All
Observed
0 6 14 12 5 37
1 4 13 33 26 76
2 5 11 65 93 174
3 1 13 108 2840 2962
All 16 51 218 2964 3249

We can observe that the trend-corrected predictor had the highest shares of cor-
rectly predicted tier 0, tier 1, and tier 2 flows (Table 4), while it was the Catboost followed



Table 4. Trend-corrected model quartiles.

Predicted 0 1 2 3 All
Observed
0 12 11 10 4 37
1 9 25 28 14 76
2 12 22 70 70 174
3 7 33 163 2759 2962
All 40 91 271 2847 3249

by the Aspatial predictors that had the lowest share of tier 3 flows incorrectly predicted as
tier 0 (tables 2 and 3, respectively).

5.3. Spatial dependence analysis
Another way to compare the quality of the models’ predictions is to measure the presence
of spatial dependence within their residuals. We do so by creating what are called Moran
scatterplots for the tests (Figure 3), where the residuals are plotted against their spatial
lag for each of the spatial weights matrices Wd,Wo,Ww. What we are then interested in
for each graph is the angle of the linear fit and, in essence, the flatter it is, the better the
model was able to account for the spatial dependence.

When examining the residuals of the test, all three of the models display similar
levels of spatial dependence, as can be seen by the comparably angled trendlines in Fig-
ure 3. This was unexpected since the catboost model was not designed with the intent of
dealing with spatial dependence, unlike the trend-corrected predictor, and even managed
to edged it out.

6. Discussion and Conclusions
The catboost and trend-corrected predictors had similar results for the analyses made;
in the quartile analysis, the trend-corrected fared better when it came to predicting the
quartiles of the most substantial flows, while the catboost was less error-prone on the
other end of the spectrum. The TC predictor came out on top in terms of RMSE by about
a 10% margin, but the catboost model proved to be best when it came to mitigating spatial
dependence within the model residuals. It is unclear why the trend-corrected predictor
fails to live up to the expectation of erradicating spatial dependence and, despite this poor
performance in this metric, still managed a decent one in all other analyses. It seems
that the choice for out-of-sample prediction is not ‘cut and dried’ and, at least for this
study, is dependent on whether one wants to correctly identify the highest number of most
substantial flows or minimize the number of incorrectly identified ones. For the former
goal, the trend-corrected predictor was better and for the latter, the catboost model.

We attempted to predict cycling flows in regions not present in the training set
to test whether cities with bountiful cycling data could be leveraged to help planners in
cities without such data availability. We found that both spatial econometric interaction
models as well as gradient boosted regression trees offer improvements over traditional
transport models such as the gravity model (represented by its log-linear version in this
study) for flow prediction and are accurate enough so as to provide useful information
about regions’ potential cycling flows. The OD matrix produced by these models can be



Figure 3. Moran scatter plot of residuals for out-of-sample prediction test.

used as is by planners or even serve as inputs for existing research which aims at aiding
cycling planning. This data can also be fed into an existing routing algorithm (Google,
Graphhopper, etc.) to compute the actual routes cyclists could take in these flows, thus
allowing for more precise interventions when it comes to building cycling infrastructure.

7. Code availability
To enable reproducibility, all the code used for this research is available at https:
//gitlab.com/interscity/bike-science and https://github.com/
EduFalbel/seim.
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