
A Branch-and-Cut-and-Price Algorithm for Cutting Stock
and Related Problems*

Renan F.F. da Silva1 , Rafael C.S. Schouery1

1Institute of Computing – University of Campinas (UNICAMP)
Campinas – SP – Brazil

{renan.silva@students.ic, rafael@ic}.unicamp.br

Abstract. In this project, we introduce a branch-and-cut-and-price framework
to solve the Cutting Stock Problems with strong relaxations using the Set Cov-
ering (Packing) Formulations, which are solved through column generation. We
propose an extended Ryan-Foster branching scheme tailored to non-binary mod-
els, a pricing algorithm that produces convergence in a few iterations, and a
variable selection technique based on branching history. These strategies are
combined with subset-row cuts and custom primal heuristics to create a frame-
work that overcomes the current state-of-the-art of Cutting Stock Problem, Skiv-
ing Stock Problem, and other related problems, being at least twice faster in the
first problem and at least 60% faster in the second one.

1. Introduction
Consider a factory that receives orders for paper rolls of different sizes from various cus-
tomers. To fulfill these orders, the factory cuts large rolls of paper. However, this cutting
process may result in waste material, thus the goal is to minimize this waste. This opti-
mization challenge is known as the Cutting Stock Problem (CSP), which is classified as
NP-hard, meaning there is no polynomial algorithm to solve it optimally unless P = NP.

Given its significant practical relevance in Industry and its inherent computational
complexity, the CSP has been extensively researched in the literature since the 1960s. In
recent decades, advancements in CSP algorithms have largely relied on Integer Program-
ming (IP), a technique capable of solving NP-hard problems within a reasonable runtime
in practice. Two prominent IP formulations are the Set Covering and Set Packing For-
mulations (SCF/SPF), which typically involve an exponential number of columns and are
tackled using branch-and-price frameworks.

This report presents a branch-and-cut-and-price framework to solve problems with
strong linear relaxations using SCF/SPF, and the preprint paper version of this work is
available online1. We select the CSP as the main focus, highlighting specific properties
that enhance the runtime of our algorithm for this problem. Additionally, we address
similar problems like Skiving Stock Problem (SSP), Identical Parallel Machines Schedul-
ing with Minimum Makespan problem (IPMS), Ordered Open-End Bin Packing Prob-
lem (OOEBPP), and Class-Constrained Bin Packing Problem (CCBPP). We overcome

*Supported by the São Paulo Research Foundation (FAPESP) grants #2015/11937-9; and the Brazil-
ian National Council For Scientific and Technological Development (CNPq) grants #311039/2020-0 and
#425340/2016-3.

1The preprint paper version: https://gitlab.com/renanfernandofranco/a-branch-a
nd-cut-and-price-algorithm-for-cutting-stock-and-related-problems

the state-of-the-art in all these studied problems. As presented later, our framework is
at least twice and 60% faster than other CSP and SSP algorithms, respectively. Com-
putational results for the last three problems are omitted from this report due to space
constraints.

Formally, in the CSP, we have an unlimited number of stock rolls with length
W ∈ Z+ and a set of items I = {1, . . . , n}, where each item i ∈ I have size wi ∈ Z+ and
a demand di ∈ Z+. The objective is to cut the minimum number of stock rolls to satisfy all
demands. A particular case of the CSP is the Bin Packing Problem (BPP), where di = 1
for all i ∈ I . The two main IP formulations for these problems are the SCF proposed by
Gilmore and Gomory [Gilmore and Gomory 1961] and the arc-flow formulation (AFF)
presented by Valério de Carvalho [Valério de Carvalho 1999].

In recent decades, many algorithms have been proposed for the
CSP [Delorme and Iori 2020, Pessoa et al. 2020, Wei et al. 2020, Lima et al. 2023].
They all efficiently solve the benchmark instances from the BPP li-
brary [Delorme et al. 2018], except for two instance classes named AI and ANI.
The only algorithm that successfully tackles these challenging classes is NF-F, proposed
by Lima et al. [Lima et al. 2023], which uses a fast pricing algorithm combined with a
sophisticated variable-fixing scheme for the AFF. This scheme reduces the formulation
size drastically, allowing it to be solved by General IP Solvers.

Our framework uses Subset Row Cuts [Jepsen et al. 2008], custom primal heuris-
tics, a strategy termed the splay operation to control the height of the branch-and-bound
tree, an extended Ryan-Foster scheme [Foster and Ryan 1976], and insights to achieve a
lean model and a column generation process with fast convergence, which is based on
multiple pattern generation.

The remainder of this report is organized as follows. Sections 2 and 3 present the
SCF for the CSP and an overview of our algorithm, respectively. Section 4 introduces
the splay operation and a branching scheme that extends the Ryan-Foster scheme. Our
pricing algorithm and a safe dual bound are introduced in Section 5. The cutting planes
are presented in Section 6, and the waste and reduced cost optimizations to obtain a lean
model are shown in Section 7. Moreover, we explain the implementation of two primal
heuristics in Section 8. In Section 9, we briefly introduce related problems and present
the computational experiments comparing our algorithm with other state-of-the-art algo-
rithms. Finally, Section 10 concludes and suggests possible directions for future research.

2. Preliminaries
We tackle the CSP using the SCF, as presented by Gilmore and Go-
mory [Gilmore and Gomory 1961], which is a formulation with a strong linear relaxation
for the CSP. Let p be a pattern, i.e., a subset of items such that

∑n
i=1 a

p
iwi ≤ W , where api

is the number of copies of item i in p. Thus, the Master Problem of SCF is described as:

(M) minimize
∑
p∈P

λp (1)

subject to
∑
p∈P

apiλp ≥ di, i = 1, . . . , n, (2)

λp ∈ Z+, ∀p ∈ P ., (3)

where, and for each p ∈ P , there is an integer variable λp, representing how many times
pattern p is used. The objective is to minimize the number of patterns used. As the linear
relaxation of this formulation can have an exponential number of patterns, it is commonly
solved by column generation using a Restricted Linear Master (RLM) Problem, which
works just with a subset of variables.

The formulation used for CSP, OOEBPP, and CCBPP is exactly the SCF pre-
sented above, while we employ the Set Packing Formulation for the SSP. For the IPMS,
we leverage the relationship between this problem and the CSP, solving the IPMS by
employing our CSP solver embedded in a binary search. Moreover, at the root node,
all pricing sub-problems required by the aforementioned formulations can be solved in
pseudo-polynomial time using dynamic programming.

3. Overview

Next, we present an overview of our framework, a branch-and-cut-and-price (B&C&P)
algorithm based on SCF. Our framework’s success hinges on primal heuristics, fast-
increasing lower-bound techniques, and a fast relaxation solver. We present the pseu-
docode of our framework in Algorithm 1.

The algorithm begins by computing the volume bound (⌈(
∑

i∈I diwi)/W ⌉). Then,
we set the root node as the current node, and each current node is solved by column
generation, using a multiple pattern generation approach with a diversification strategy
that converges in a few iterations.

In each node of the B&C&P, the RLM solution is strengthened using Subset-Row
Cuts. We use the custom heuristics Relax-and-Fix (RF) and its variation, proposed by us,
Constrained Relax-and-Fix (CRF), which are employed to tackle challenging instances
like the AI class, proving competitive with general heuristics like those in the commer-
cial solver Gurobi. Our B&C&P follows a depth-first order, prioritizing the left branch,
with an adaptive branching scheme based on previous choices and enhanced with conflict
propagation to break symmetries.

Algorithm 1: Our framework.
1 Compute volume bound
2 Run the initial heuristic to obtain the initial incumbent and columns
3 current node← root node
4 while solution is not optimal do
5 Run CRF heuristic if its counter is reached
6 Run RF heuristic if its counter is reached
7 current node← left child from the current node
8 while current node can be pruned by bound do
9 if it is possible to remove nodes using splay operation then

10 Remove nodes using the splay operation
11 else if there is an unexplored right node then
12 current node← deepest unexplored right node
13 else
14 break

A pruning strategy called the “splay operation” is applied to eliminate potentially
unfruitful nodes, thereby increasing efficiency. The algorithm halts upon detecting an
optimal solution, which may occur early if the initial heuristic finds an optimal solution
matching the volume bound. A lean restricted model, incorporating waste limitations and
reduced costs, further accelerates computation, which is particularly beneficial for solving
the class of instances ANI.

4. Branching Scheme
Branch-and-Bound (B&B) algorithms require a branching scheme, which is used to divide
the search space, allowing the enumeration of all possibilities. Non-binary problems are
typically addressed through branching on variables, which often leads to highly asymmet-
ric branches. To mitigate this issue, we propose an extension of the Ryan-Foster scheme,
previously employed solely for binary problems. Moreover, we also introduce the splay
operation, which is a technique used to remove unfruitful nodes in the B&B tree.

4.1. Extended Ryan-Foster Scheme

The Ryan-Foster Scheme is a branching strategy for binary problems, i.e., that ones with
unitary demands. Given an optimal solution λ of RLM, let δij be the affinity between
items i and j, where δij =

∑
p∈P:{i,j}∈p a

p
i a

p
jλp, where apj = apj if i ̸= j, and apj = apj − 1

otherwise. For binary problems, Vance et al. [Vance et al. 1994] show a property that says
that if λ is fractional, then there is an item pair (i, j) with δij /∈ Z. Then we can branch
in this decision, fixing that items i and j are in the same pattern on the left branch and
different patterns on the right branch.

In our work, we extend this scheme to non-binary problems. Firstly, even though
the previous property is not true in general, it holds for all considered instances. There-
fore, given (i, j) with δij /∈ Z, we branch as follows. The left branch assumes that at least
one more pair of items i and j are together, i.e., the item demands of i and j decrease by
one, and the demand of item k increases by one, where wk = wi+wj . In contrast, the right
branch assumes that any pair of items i and j are not together, adding a conflict between
i and j. This conflict includes possible copies of i and j generated in the left branches
of descendants of this node. The correctness of this branching scheme is supported by a
lemma regarding conflict propagation, which we present in our paper.

Lastly, there may be multiple pairs of items we can branch; thus, we also propose
a technique of selection based on the history of choices. Sometimes, we choose a pair of
items (i, j) where neither left nor right branches can produce a solution better than the
incumbent solution. Observe that (i, j) is a good candidate to improve the lower bound.
So, our selection strategy is based on keeping all pairs of items with this property found
in the previous branches on a priority list and branching in the best-ranked pair in this list.

4.2. Splay Operation

We explore the B&B Tree by performing a depth-first search (DFS). Sometimes, the in-
cumbent solution is already optimal, and we just need to increase the lower bound to
prove its optimality. A way to do it quickly is by finding good candidates (i, j) to branch,
as mentioned in the previous section. But, in some cases, we perform a sequence of left
branches before finding a good candidate (i, j). One question that arises is that perhaps

(i, j) could prune both children even if it is processed before the left branches, which
would avoid all the right branches required by these nodes to improve the lower bound.

With this in mind, we propose a strategy called splay operation to control the
height of the B&B tree and prioritize these good candidates. This strategy is always used
when we find a good candidate (i, j) to branch, and it consists of checking if we can move
up (i, j) in the B&B tree by removing a non-empty sequence S of left branches. A detail
is that S cannot induce negative item demands in any node of the resulting tree. If it is
possible to find S with these properties, then we perform this operation and reprocess the
node (i, j). Otherwise, we proceed to the next unexplored node.

5. Column Generation
As our branching scheme adds conflicts to items, the pricing problem is the Knapsack
Problem with Conflicts. Consider that the set of items I is a vector with di copies of each
item i, where I is indexed from 1 to N = |I|, and v(p) be the value of pattern p, that
is, v(p) =

∑n
i=1 a

p
iπi. The aim is to find a pattern p with the smallest reduced cost cp =

1 − v(p). One lower bound for this is given by the classic Dynamic Programming (DP)
for the Knapsack Problem, described by the following recurrence:

f(i, r) =

1, if i = 0.

f(i− 1, r) if i ≥ 1 and r < wI[i].

min(f(i− 1, r), f(i− 1, r − wI[i])− πI[i]) if i ≥ 1 and r ≥ wI[i],

(4)

where i is the current item, and r is the wasted capacity in the pattern. The recurrence can
be computed in O(W

∑
i∈I di). If f(N,W) ≥ 0, then π is dual feasible and, therefore,

dual optimal. Otherwise, the result is inconclusive since we ignore the conflicts.

To arrive at a conclusive decision, we employ a branch-and-bound approach over
the DP table, starting at f(N,W), and constructing a partial pattern p, initially set as ∅. If
the pattern with the smallest reduced cost yields a negative cost, we return it. Otherwise,
π is optimal. However, returning just one pattern produces a slow convergence, so we
use an enumeration over the DP table that returns a set of patterns with negative reduced
costs. The key idea to improve convergence looks to be the diversification of items. This
strategy has already been used by Lima et al. [Lima et al. 2023], which finds, for each
item i, the pattern with the smallest reduced cost that contains i.

We opted, instead, to focus on generating patterns using large items and a degree
of diversification, based on the intuition that the slow convergence is due to the hardness
of finding good patterns with these items. For this, we partition I into sets I1 (items
without conflicts) and I2 (the remaining items), which are sorted in a non-decreasing
order of size and concatenated in the presented order. We note that |I2| is often small, and
if we are in a state (i, r) with a depth greater than |I2|, then f(i, r) is the exact solution
for the unprocessed suffix and no branching is needed (since the set of items I1 does not
have conflicts). Therefore, with this ordering, the bottleneck of finding any pattern with
negative reduced cost is to compute the dynamic programming table.

Thus, our strategy is to perform an enumeration beginning at f(N,W), exploring
all possible paths that can produce patterns with a negative reduced cost and storing the
found patterns in a pool B. To add diversification, we explore a path only if each item

i ∈ p (the partial pattern) appears fewer than ζ times in B, where ζ is a constant. However,
even with the last constraint, we could explore many paths. With this in mind, we also
stop when B ̸= ∅ and the number of recursive calls NR is greater than a constant NR

max.

Additionally, linear programming solvers typically employ floating-point preci-
sion and a tolerance parameter ϵ. Consequently, an infeasible solution is deemed feasi-
ble by the solver if each pattern exhibits a reduced cost cp greater than −ϵ. Thus, col-
umn generation is halted upon this occurrence. In the preprint version of our paper, we
illustrate how to convert such an infeasible dual solution into a feasible one in a nu-
merically safe way, utilizing fixed-point precision and a technique presented by Lima et
al. [Lima et al. 2023]. Finally, we show in our paper that the minimum tolerance ϵ permit-
ted by commercial solvers proves inadequate for solving all instances studied. We propose
a scaling method that preserves algorithmic correctness while reducing this tolerance.

6. Cutting Planes
In this work, we employ the weak Subset-Row (SR) Cuts of size 3. These cuts consist of
inequalities in the form

∑
p∈P

⌊
1
2

∑
i∈S a

p
i

⌋
λp ≤

⌊∑
i∈S bi
2

⌋
, where S is a subset of three

items with unitary demand. Derived from less-than inequalities of the Set Partition For-
mulation, these cuts can be added to SCF while retaining at least one optimal integer
solution. Moreover, these cuts and their generalizations have seen widespread use in re-
cent decades [Pessoa et al. 2020, Wei et al. 2020], especially in vehicle routing problems.

Given that the SR separation problem was proven NP-hard by Jepsen et
al. [Jepsen et al. 2008], our separation algorithm relies on enumeration. Additionally,
these cuts are not robust, i.e., they alter the pricing structure. However, this is not prob-
lematic, as even after adding cutting planes, the branch-and-bound strategy of our pric-
ing algorithm remains effective. We observe that cutting planes can weaken the lower
bound (4) more than adding conflicts. Hence, we prioritize processing items belonging to
the cuts followed by those that do not belong but have conflicts.

7. Model Optimization
In the branch-and-price algorithm, it is essential to keep the RLM as small as possible
since it needs re-optimization several times. Here, we introduce two strategies aimed at
achieving this objective.

Waste Optimization: This strategy, utilized by Lima et al. [Lima et al. 2023], ensures
that any improvement solution utilizes patterns with waste at most (z(λinc) − 1) ·W −∑

i∈I diwi, where z(λinc) denotes the incumbent solution value. Consequently, we gener-
ate and retain in the RLM only those patterns satisfying this constraint.

Model Cleaning by Reduced Cost: Reduced Cost Variable Fixing (RCVF) is
a technique widely employed in literature, particularly effective in arc-flow mod-
els [Delorme and Iori 2020, Lima et al. 2023]. Let π be a feasible dual solution and λZ be
a feasible integer solution. Irnich et al. [Irnich et al. 2010] demonstrated that any pattern
p such that z(π) + cp > z(λZ)− 1 (where cp represents the reduced cost of p in π) cannot
belong to a primal integer solution with a value less than λZ. While prior works in the

literature apply this strategy to fix variables to zero in the root node, we extend it to any
B&B node, ensuring that a variable fixed in a node remains valid only in its subtrees.
Given that the master model lacks a polynomial size, instead of fixing these variables
to zero, we simply remove these patterns from RLM, resulting in a leaner model that
re-optimizes faster. This strategy serves as a pre-routine, alongside Waste Optimization,
executed before optimizing any B&B node.

8. Primal Heuristics
Previous works have already employed custom heuristics for CSP in the literature, such
as the heuristics Sequential Value Correction [Belov and Scheithauer 2006] and Limited
Discrepancy Search [Pessoa et al. 2020, Wei et al. 2020]. However, these heuristics are
not competitive with the current state-of-the-art for the problem [Lima et al. 2023]. Thus,
we present below two heuristics called Relax-and-Fix and Constrained Relax-and-Fix.

8.1. Relax-and-Fix Heuristic

The Relax-and-Fix (RF) Heuristic [Belvaux and Wolsey 2000] is a diving heuristic that
finds an integer solution using an interactive process that relaxes and fixes variables. In
each step, it solves the relaxed model optimally and selects a percentage of variables
F ⊆ P and fixes their values to an integer value. Moreover, as the gap between the lower
bound π and the incumbent solution λinc is usually very tight, we propose a fixing strategy
that is not too aggressive in order to achieve good results.

First, we consider that our RLM is a relaxation of a binary model. Thus, given a
(fractional) solution λ ≥ 0, we split each variable λp > 0 into |⌊λp⌋| patterns with value
λ
′
p = 1 and one pattern with value λ

′
p = λp − ⌊λp⌋. After selecting F , instead of fixing

these variables by adding constraints, we remove them from RLM and add them to an
initially empty partial solution S, adjusting the demands as necessary.

In each iteration, we generate patterns to solve RLM optimally and check if there
are unfixed variables equal to 1. If so, we take F equal to these variables. Otherwise,
we build F incrementally. Let g = (z(λinc) − 1) − z(π) be the gap of an improvement
solution. We iterate over variables p ∈ λ

′
in non-increasing order of value, adding p to F

only if λ
′
p > 0.5, (1 − λ

′
p) ≤ g, and the number of over-covered items does not increase

if p is added to S. If we add p to F , we do g ← g − (1 − λ
′
p), and we always accept the

first pattern to avoid an infinite loop. We repeat this process until S becomes a feasible
solution. This heuristic runs every ten nodes.

8.2. Constrained Relax-and-Fix Heuristic

A heuristic that consistently employs a linear relaxation solution as a starting point, such
as the RF, may prove ineffective when dealing with polyhedrons containing many frac-
tional vertices with many fractional variables. In such instances, the need to fix numerous
variables arises, increasing drastically the chance of making wrong choices. Therefore,
we propose an enhanced version of the RF heuristic. Among all runs of the RF, let Sinc

be the largest set of fixed variables such that the resulting relaxation allows improving the
incumbent solution. The Constrained Relax-and-Fix (CRF) Heuristic involves executing
the RF while adding the following constraint:

∑
p∈Sinc

λp ≥ |Sinc| − k, where k is a small
integer. We temporarily remove all conflicts and unmerge all items to run this heuristic.

9. Computational Experiments
Next, we compare our framework with the state-of-the-art algorithms for the problems
CSP and SSP. All results were obtained with a computer with processor Intel® Xeon®

CPU E5–2630 v4 @ 2.20GHz with 64 GB of RAM, operational system Ubuntu 22.04.1
LTS (64 bits), and using the language C++17 with compiler GCC 11.3.0. We use the
general solver Gurobi 9.5.2 executed in a single thread to solve the linear relaxation and
use the time limit presented in the captions. In the next tables, the columns “total” and
“opt” are the number of instances and the number of solved instances, respectively. The
columns “time”, “cols”, and “cuts” give the averages of time (in seconds), generated
columns, and generated cuts between all instances in the instance class, respectively.

9.1. Cutting Stock Problem

Table 1 presents a comparison of our algorithm with the state-of-the-art CSP algorithms
NF-F [Lima et al. 2023], VRP Solver [Pessoa et al. 2020] and EXM [Wei et al. 2020],
utilizing instances from the BPP Lib [Delorme et al. 2018]. Our algorithm demonstrates
superior performance across all instances, excelling in both the number of instances
solved and execution time. Particularly, it is at least two times faster than NF-F, in addition
to solving 10 and 5 additional instances in AI and ANI classes, respectively. Moreover,
our algorithm generates fewer patterns than EXM, indicating not only convergence in
fewer iterations but also a more stable column generation process.

Table 1. Comparison with other algorithms for the CSP (time limit of 1h).

EXM VRP
Solver NF-F Our

Class Total Opt Time Cols Opt Time Opt Time Opt Time Cols Cuts
AI 202 50 50 4.2 2965.4 50 52.3 50 2.0 50 0.4 975.9 10.0
AI 403 50 46 398.1 9538.8 47 491.4 50 25.2 50 5.9 2516.9 21.9
AI 601 50 27 1759.6 16858.3 35 1454.1 49 192.4 50 84.0 4699.4 55.9
AI 802 50 15 2766.3 20008.1 28 2804.7 46 566.5 49 129.9 6628.5 62.4

AI 1003 50 2 3546.1 23664.5 - - 36 1577.1 42 737.7 9357.6 110.7
ANI 201 50 50 13.9 3521.8 50 16.7 50 3.0 50 0.4 1005.8 7.6
ANI 402 50 47 436.2 9523.6 50 96.0 50 24.9 50 2.7 2396.2 9.1
ANI 600 50 0 3602.7 22213.7 3 3512.5 50 140.7 50 13.6 4078.2 18.1
ANI 801 50 0 3605.9 22188.8 0 3600.0 49 393.2 50 88.3 6039.3 38.0

ANI 1002 50 0 3637.7 23596.6 - - 43 1302.5 47 460.5 8762.2 87.7
Falkenauer T 80 80 1.9 1087.7 80 16.0 80 0.3 80 0.09 511.4 1.0
Falkenauer U 80 80 3.8 1353.6 - - 80 0.1 80 0.02 127.7 0.0

Hard 28 28 41.5 1909.8 28 17.0 28 23.6 28 11.8 861.8 31.4
Random 3840 3840 6.2 494.7 - - 3840 0.9 3840 0.06 250.4 0.2
Scholl 1210 1210 5.0 572.0 - - 1210 1.4 1210 0.05 130.2 1.9

Schwerin 200 200 0.3 429.9 - - 200 0.2 200 0.03 150.5 0.5
Waescher 17 17 8.7 1979.3 - - 17 161.2 17 0.2 387.4 2.5

9.2. Skiving Stock Problem

In the Skiving Stock Problem (SSP), we are given an integer W and a set of items I =
{1, . . . , n}, where each item i ∈ I has a frequency fi ∈ Z+, and a size wi ∈ Z+, where
wi < W . The objective is concatenating items from I to build the maximum number of
stock rolls with a size of at least W , utilizing at most fi of each item I . The SSP can be
formulated using the Set Packing Formulation, and we can adapt all properties previously
presented for the CSP to this problem. However, we did not implement the cutting planes
and the CRF heuristic because our algorithm easily solved the studied benchmarks.

For the computational experiments, we used the benchmarks A1, A2,
A3, and B [Martinovic et al. 2020], and the benchmarks GI, FalkenauerU/T, Hard,
Scholl, Schwerin, Waescher from BPP Lib, which were extended by Korbacher
et al. [Korbacher et al. 2023] generating new instances for GI class with 750
and 1000 items of different sizes. We compare our algorithm with state-of-
the-art algorithms MDISS [Martinovic et al. 2020], NF-F [Lima et al. 2023], and
KIMS [Korbacher et al. 2023], all of which utilize models based on AFF.

Table 2 showcases average times and the number of instances optimally solved for
each algorithm. Our algorithm outperforms all previous algorithms, being between 60%
up to dozens of times faster. Additionally, it is the first time that one algorithm solves all
instances of classes A2 and A3.

Table 2. Comparison with other algorithms for the SSP (time limit of 1h).

MDISS NF-F KIMS Our
Class Total Opt Time Opt Time Opt Time Opt Time Cols

A1 1260 1260 0.1 1260 0.1 – – 1260 0.009 43.9
A2 1050 1011 250.9 1024 148.7 1023 137.3 1050 1.1 970.7
A3 600 – – – – 575 171.2 600 1.2 567.1
B 160 126 970.7 160 61.4 160 38.7 160 2.7 1596.7

GI 125 80 40 1802.1 – – 80 19.4 80 12.1 416.9
GI 250 80 40 1854.0 – – 80 109.6 80 26.1 1076.2
GI 500 80 2 3584.2 – – 79 596.9 80 68.4 2719.6
GI 750 40 – – – – 39 664.2 40 183.9 5529.8
GI 1000 40 – – – – 38 1570.3 39 346.0 8571.5

FalkenauerT 80 80 0.9 – – – – 80 0.5 1771.7
FalkenauerU 80 80 0.1 – – – – 80 0.03 171.2
Hard 28 28 3.0 – – – – 28 0.3 854.1
Scholl 1210 1210 8.8 – – – – 1210 0.2 256.5
Schwerin 200 200 0.2 – – – – 200 0.07 168.1
Waescher 17 17 253.3 – – – – 17 0.002 4.4

10. Conclusions

This study presents a framework for solving problems using SCF / SPF with strong re-
laxations. We demonstrate how to achieve convergence in column generation within a
few iterations for the problems we investigate. This leads to significant performance im-
provements compared to other state-of-the-art algorithms, particularly in the case of SSP.
Our primal heuristics are highly effective, often solving many instances at the root node
or exploring only a few nodes. Additionally, we exploit the symmetry of the CSP and
implement strategies to shrink the model, allowing us to successfully solve challenging
instance classes such as AI and ANI.

In future research, these insights could yield promising results for addressing other
problems that involve SCF / SPF, strong relaxations, and pseudo-polynomial pricing al-
gorithms. Furthermore, the success of our algorithm in handling AI and ANI instances is
strongly tied to the proximity of the relaxation polyhedron to the convex hull of integer
solutions. Thus, instances lacking this property could serve as challenging benchmarks.

References
Belov, G. and Scheithauer, G. (2006). A branch-and-cut-and-price algorithm for one-

dimensional stock cutting and two-dimensional two-stage cutting. European Journal
of Operational Research, 171(1):85–106.

Belvaux, G. and Wolsey, L. A. (2000). bc — prod: A specialized branch-and-cut system
for lot-sizing problems. Management Science, 46(5):724–738.

Delorme, M. and Iori, M. (2020). Enhanced pseudo-polynomial formulations for bin
packing and cutting stock problems. INFORMS Journal on Computing, 32(1):101–
119.

Delorme, M., Iori, M., and Martello, S. (2018). BPPLIB: a library for bin packing and
cutting stock problems. Optimization Letters, 12(2):235–250.

Foster, B. A. and Ryan, D. M. (1976). An integer programming approach to the vehicle
scheduling problem. Operational Research Quarterly (1970-1977), 27(2):367–384.

Gilmore, P. C. and Gomory, R. E. (1961). A linear programming approach to the cutting-
stock problem. Operations Research, 9(6):849–859.

Irnich, S., Desaulniers, G., Desrosiers, J., and Hadjar, A. (2010). Path-reduced costs
for eliminating arcs in routing and scheduling. INFORMS Journal on Computing,
22(2):297–313.

Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-row inequali-
ties applied to the vehicle-routing problem with time windows. Operations Research,
56(2):497–511.

Korbacher, L., Irnich, S., Martinovic, J., and Strasdat, N. (2023). Solving the skiving
stock problem by a combination of stabilized column generation and the reflect arc-
flow model. Discrete Applied Mathematics, 334:145–162.

Lima, V. L. d., Iori, M., and Miyazawa, F. K. (2023). Exact solution of network flow
models with strong relaxations. Mathematical Programming, 197:813–846.

Martinovic, J., Delorme, M., Iori, M., Scheithauer, G., and Strasdat, N. (2020). Improved
flow-based formulations for the skiving stock problem. Computers and Operations
Research, 113:104770.

Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2020). A generic exact solver for
vehicle routing and related problems. Mathematical Programming, 183(1):483–523.

Valério de Carvalho, J. M. (1999). Exact solution of bin-packing problems using column
generation and branch-and-bound. Annals of Operations Research, 86:629–659.

Vance, P. H., Barnhart, C., Johnson, E. L., and Nemhauser, G. L. (1994). Solving binary
cutting stock problems by column generation and branch-and-bound. Computational
Optimization and Applications, 3(2):111–130.

Wei, L., Luo, Z., Baldacci, R., and Lim, A. (2020). A new branch-and-price-and-cut algo-
rithm for one-dimensional bin-packing problems. INFORMS Journal on Computing,
32(2):428–443.

