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Resumo. As doenças neurodegenerativas (DNDs) causam, entre outros sintomas, instabilidade da marcha, possuem
natureza incurável e apresentam um longo e difícil processo de diagnóstico. Por isso, diversos estudos investigam a marcha
por meio de modelos de inteligência artificial como uma alternativa para auxiliar no diagnóstico dessas doenças. Este
trabalho apresenta os principais resultados obtidos durante a iniciação científica com um método inovador de detecção de
DNDs utilizando um Encoder-Only Transformer associado a análise de marcha em uma tarefa de multi-classificação. Os
resultados alcançam valores altos de acurácia e indicam uma alternativa promissora de identificação de DNDs.

Abstract. Neurodegenerative diseases (NDDs) cause, among other symptoms, gait instability, have an incurable nature,
and present a long and challenging diagnostic process. For this reason, several studies have investigated gait using artificial
intelligence models as an alternative to assist in the diagnosis of these diseases. This study presents the main results
obtained during an undergraduate research project using an innovative method for detecting NDDs, using an Encoder-Only
Transformer combined with gait analysis in a multi-class classification task. The results achieve high accuracy values and
indicate a promising alternative for NDD identification.
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1 Introdução
As doenças neurodegenerativas (DNDs), tais como Esclerose
Lateral Amiotrófica (ELA), Doença de Parkinson (DP) e Do-
ença de Huntington (DH), afetam diretamente o sistema ner-
voso e causam, inclusive, movimentos involuntários, fraqueza
dos músculos e marcha instável [Maragakis and Rothstein,
2006]. Não há cura para as DNDs [Heemels, 2016] e, por
falta de testes definitivos da doença [Erkkinen et al., 2018], o
diagnóstico delas é feito por um acompanhamento da progres-
são dos sintomas ao longo do tempo [Mayeux, 2003]. Isso
resulta em reconhecimento tardio das doenças, retardo no
início do tratamento e agravamento dos sintomas.

A análise de marcha é um atrativo método alternativo
para auxiliar no diagnóstico precoce de DNDs, já que altera-
ções na caminhada ocorrem dentre os primeiros sintomas e
se manifesta de maneiras diferentes em cada DND [Hausdorff
et al., 2000]. Na literatura, o estudo da marcha é comumente
encontrado em conjunto com modelos de aprendizado de má-
quina clássicos [Rao et al., 2025] ou profundo, como Gated
Recurrent Unit (GRU) [Zhao et al., 2018], Redes Neurais
Convolucionais (CNN) [Erdaş et al., 2023; Erdaş and Sü-
mer, 2024] e combinações de Long Short-Term Memory com
CNN [Erdaş et al., 2021; Amooei et al., 2023].

Enquanto esses trabalhos se baseiam em arquiteturas tra-

dicionais de aprendizado de máquina clássico ou profundo, es-
tudos recentes demonstram o potencial dos modelos baseados
em transformers para análise de dados sequencias [Agarwal
et al., 2020]. O notável avanço refere-se à capacidade do
Transformer [Vaswani et al., 2017] em processar e capturar
relações contextuais entre os elementos sequenciais, além de
“aprender” as dependências à longo prazo utilizando principal-
mente mecanismos de atenção. Isso é computacionalmente
vantajoso, já que o modelo não percorre ou itera sobre os da-
dos, como fazem as redes neurais convolucionais (CNNs), as
redes neurais recorrentes (RNNs), as redes Gated Recurrent
Unit (GRUs) e as redes Long Short-Term Memory (LSTMs).

Apesar dessa inovação em análises de séries temporais
com transformer, apenas alguns trabalhos implementam esse
modelo no domínio de doenças neurodegenerativas e focam
somente na Doença de Parkinson. Nguyen et al. [2022] abor-
daram o diagnóstico de Parkinson como uma tarefa de clas-
sificação binária, enquanto Sun and Zhang [2022] e Naimi
et al. [2023] abordaram a detecção da severidade da doença
de Parkinson como uma tarefa de classificação multi-classe.

Nesse sentido, o principal objetivo deste trabalho de
iniciação científica foi investigar métodos e técnicas de apren-
dizado profundo para auxiliar no diagnóstico de DNDs. Neste
documento, apresentam-se os principais resultados, que con-
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sistem na proposta de um novo método para identificação de
DH, DP, ELA e pacientes de controle (CO) em uma tarefa
de multi-classificação. O método utiliza análise de marcha
associada a um Encoder-Only Transformer, arquitetura trans-
former baseada somente em codificador.

O restante deste artigo está organizado da seguinte forma:
a Seção 2 descreve sobre os trabalhos relacionados; a Seção 3
detalha sobre a base matemática que fundamenta o modelo
transformer; a Seção 4 apresenta a metodologia proposta,
detalhando a base de dados, o pré-processamento dos da-
dos, o modelo Encoder-Only Transformer implementado e a
forma de avaliação dos resultados; a Seção 5 discute sobre
os resultados obtidos; por fim, a Seção 6 discorre sobre as
conclusões.

2 Trabalhos Relacionados
Em relação à tarefa de classificação multi-classe para identifi-
car Esclerose Lateral Amiotrófica (ELA), Doença de Parkin-
son (DP), Doença de Huntington (DH) e grupo de controle
(CO), diversos estudos investigaram métodos de aprendizado
profundo.

Zhao et al. [2018] desenvolveram um modelo GRU de
duas camadas para analisar os atributos da dinâmica da mar-
cha, que foram divididos em janelas de comprimento fixo
de 20 ciclos completos da marcha, e relataram uma acurácia
média de 95,35%. Ning et al. [2018] propuseram uma combi-
nação de uma CNN unidimensional e camadas LSTM para
analisar os sinais obtidos da marcha segmentados em janelas
de 2 segundos com sobreposição de 50%, o que resultou em
99,50% de acurácia.

Erdaş et al. [2021] apresentaram uma abordagem que
converte os atributos da dinâmica de marcha em QR-code,
que são então analisados por um modelo que integra as abor-
dagens de CNN e LSTM, alcançando 89,44% de acurácia.
Fraiwan and Hassanin [2021] abordaram a classificação multi-
classe com o modelo AdaBoost para analisar características
estatísticas temporais simples – raiz quadrada média (RMS),
variância, curtose e assimetria —- extraídas manualmente dos
sinais brutos de marcha, resultando em 99,17% de acurácia.
Amooei et al. [2023] desenvolveram um método de classi-
ficação utilizando uma combinação de CNN, transformada
wavelet e LSTM para analisar os sinais de marcha divididos
em janelas deslizantes com 50% de sobreposição e trans-
formados em espectrogramas RGB, apontando 95,37% de
acurácia.

Erdaş et al. [2023] compararam métodos de aprendizado
de máquina e aprendizado profundo para a tarefa multi-classe,
sendo o melhor resultado de 68,11% utilizando CNN unidi-
mensional sobre os atributos da dinâmica de marcha. Faisal
et al. [2023] propuseram uma arquitetura de rede de aprendi-
zado profundo chamada NDDNet, para processar simultane-
amente o sinal bruto obtidio a partir da marcha, as fases da
marcha e as características extraídas desses sinais, obtendo
um resultado geral de 83,00% de acurácia. Por fim, Erdaş and
Sümer [2024] simplificaram sua abordagem anterior baseada
em QR-code, utilizando apenas uma arquitetura de redes neu-
rais convolucionais (CNN) como classificador, o que resultou
em uma acurácia de 84,65%.

3 Fundamentação Teórica
3.1 Mecanismo de Atenção
Os mecanismos de atenção são técnicas utilizadas para apri-
morar a capacidade de um modelo em focar nas partes mais
relevantes dos dados de entrada, dado um contexto específico.
Esses mecanismos baseiam-se em três componentes princi-
pais: query, que representa a informação que o modelo está
buscando; key, que corresponde à a informação armazenada
em cada elemento de entrada; e value, que contém os dados
reais associados a cada elemento de entrada. Com esses com-
ponentes, calcula-se a similaridade entre todos os elementos
de entrada, independentemente de sua posição na sequência e,
como resultado, atribui-se dinamicamente pesos às diferentes
partes da entrada, o que representa sua importância para a
saída atual.

Matematicamente, dada uma sequência de entrada de
n elementos, representada por X = (x1, x2, . . . , xn), com
xi ∈ Rdk , onde dk é a dimensão de cada elemento, os meca-
nismos de atenção podem ser expressos pela Equação (Eq.) 1.
As matrizes Q, K e V representam queries, keys e values,
com dimensões dk, dk e dv, respectivamente. O produto
interno QKT calcula a similaridade entre os elementos de
entrada, e o fator de escala 1/

√
dk ajuda a estabilizar o cál-

culo para valores grandes de dk. Os valores resultantes são
normalizados usando a função softmax (Eq. 2) para calcular
os pesos finais de atenção na combinação dos valores.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (1)

softmax(xi) =
exi∑n
j=1 e

xj
. (2)

3.2 Transformer
Introduzida por Vaswani et al. [2017], a arquitetura geral do
transformer, como mostrada na Figura1, é composta por pi-
lhas de uma estrutura encoder-decoder e algumas funções
adicionais, como embeddings, codificação posicional e soft-
max.

O encoder (codificador) consiste em uma pilha de n ca-
madas idênticas, cada uma contendo duas subcamadas. A
primeira subcamada é um mecanismo de atenção (Multi-Head
Attention) e a segunda é uma rede totalmente conectada Feed-
Forward. Conexões residuais seguidas de camadas de norma-
lização (Layer Norm) são aplicadas entre esses componentes.
Para suportar as conexões residuais, todos as camadas do mo-
delo, incluindo as camadas de embedding, produzem vetores
de saída com dimensão dmodel.

O decoder (decodificador) consiste em uma pilha de n
camadas idênticas, cada uma com três subcamadas. A pri-
meira subcamada é um mecanismo de atenção com máscara
(Masked Multi-Head Attention) que impede determinadas
posições de verificarem posições subsequentes. A segunda
subcamada consiste em uma atenção multi-cabeças (Multi-
Head Attention) que considera a saída da pilha de encoder,
enquanto a terceira subcamada é uma subcamada de alimen-
tação direta (FeedForward). Essa máscara na primeira sub-
camada, combinada com o deslocamento dos embeddings
de saída em uma posição a direita, garante que as previsões
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Figura 1. Arquitetura Transformer.

para uma posição (i) dependam apenas das saídas conhecidas
em posições anteriores (< i). Similar ao encoder, conexões
residuais seguidas de camadas de normalização (Layer Norm)
são aplicadas entre esses componentes.

As subcamadas de Multi-Head Attention, conforme mos-
trado nas Eq. 3 e Eq. 4, concatenam os resultados da execução
de h funções de atenção em paralelo, usando queries, keys
e values projetados linearmente (com projeções aprendidas
diferentes) para dimensões dk, dk e dv , respectivamente, onde
dk = dv = (dmodel/h).

AttentionMH(Q,K, V ) = concat(head1, ..., headh)W
O,
(3)

headi = Attention(QWQ
i ,KWK

i , V WV
i ), (4)

onde WO ∈ Rhdv×dmodel , WQ
i ∈ Rdmodel×dk , WK

i ∈
Rdmodel×dk e WV

i ∈ Rdmodel×dv são as matrizes de parâ-
metros para as projeções.

As subcamadas de FeedForward, representadas pela
Eq. 5, são compostas por duas transformações lineares com a
função de ativação ReLU (Eq. 6) entre elas, e são aplicadas
idêntica e independentemente a cada posição da sequência.
Ao introduzir não linearidade e aplicar expansão e compres-
são dimensional, a FeedForward permite que o transformer
aprenda relações mais complexas, obtenha representações
mais abstratas e foque em transformações locais.

FeedForward(x) = ReLU(xW1 + b1)W2 + b2. (5)

ReLU(x) = max(0, x). (6)

As camadas de codificação posicional agregam (somam
aos embeddings) informações sobre a posição relativa ou
absoluta dos elementos na sequência, permitindo que o mo-
delo utilize a informação de ordem da sequência, mesmo sem
apresentar qualquer convolução ou recorrência. Por fim, as
camadas embedding são usadas para converter os dados de
entrada e saída em vetores de dimensão dmodel, e a função
softmax é utilizada para converter a saída do decoder em
probabilidades de saída.

4 Metodologia
A Figura 2 apresenta de modo geral a metodologia discutida
neste trabalho. As seções seguintes detalham cada uma das
etapas analisadas.

4.1 Base de Dados
A base de dados pública Gait in Neurodegenerative Disease
Database (GaitNDD), fornecida por Hausdorff et al. [1997,
2000] e disponível no sítio PhysioNet1 foi utilizada no pre-
sente trabalho. A base contém dados de até 5 minutos da
marcha de 20 indivíduos diagnosticados com Doença de Hun-
tington, 15 com Doença de Parkinson, 13 com Esclerose
Lateral Amiotrófica e 16 indivíduos saudáveis de controle,
totalizando 64 indivíduos.

Esses sinais de marcha foram coletados com uma
frequência de 300 Hz de maneira não invasiva, por meio
de sensores sensitivos de força [Hausdorff et al., 1995] aco-
plados a ambos os pés (esquerdo e direito) dos participantes.
Com isso, foi solicitado a cada voluntário que caminhasse
durante 5 minutos, sem apoio e em ritmo autodeterminado,
em um corredor de 77 m de comprimento. Isso resultou em
duas séries temporais (uma para cada pé) de 90 mil pontos
de dados (300 Hz × 5 × 60 segundos).

4.2 Pré-processamento
A fim de mitigar os efeitos de inicialização reportados pelos
autores da base de dados [Hausdorff et al., 1997, 2000], os
dados coletados nos primeiros 20 segundos de cada série
temporal foram descartados. Em seguida, os valores faltantes
(NaN values) foram tratados, sendo substituídos pelo próximo
valor válido na série e, ainda, qualquer valor NaN restante foi
substituído pelo valor válido anterior.

Posteriormente, utilizou-se uma técnica de janelamento,
que segmenta os sinais em janelas deslizantes de 10 segundos
com passo (step) de 1 segundo para maximizar a quantidade
de dados provenientes de um mesmo participante. Os valo-
res das janelas foram normalizados para valores entre 0 e
3,5 [Hausdorff et al., 1995]. Assim, cada um dos 64 pacientes
passa a ser representado por dois conjuntos de 271 janelas,
cada uma com 3.000 pontos de dados. Portanto, os dados da

1https://physionet.org/content/gaitndd/1.0.0

https://physionet.org/content/gaitndd/1.0.0
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Figura 2. Fluxograma da metodologia proposta.

rede transformer são representados por um vetor tridimensio-
nal (64×271, 3000, 2).

4.3 Classificação
Para realizar a tarefa de multi-classificação, foi utilizada uma
arquitetura transformer baseada apenas em codificador, no-
meado Encoder-Only Transformer. O modelo projeta linear-
mente a dimensão de entrada 2 (representando os sinais de
marcha obtidos dos dois pés) em um espaço de embedding
de dmodel = 64.

Essa projeção é aplicada para capturar o significado dos
elementos em um espaço de maior dimensão e para supor-
tar todas as conexões residuais do transformer. Em seguida,
aplica-se aos dados uma codificação posicional (positional
encoding), que alterna entre funções seno e cosseno de di-
ferentes frequências para fornecer informações posicionais
exclusivas para cada elemento na sequência de entrada, de-
talhada pelas Equações (Eq.) 7 e 8. Esse valores posicionais
são incorporados aos embeddings de entrada para garantir
que o modelo possa utilizá-la.

PE(pos, i) =

{
sen(pos× divterm(i)), se i é par.
cos(pos× divterm(i)), se i é ímpar.

(7)

divterm(i) = exp

(
−i× ln 10.000

dmodel

)
. (8)

Os dados incorporados e codificados são subsequente-
mente processados por uma pilha de n = 2 camadas do codi-
ficador. Dentro de cada uma dessas camadas, a subcamada
de multi-head self-attention opera com h = 4 cabeças de
atenção, e a subcamada feedforward possui dimensionalidade
de 2.048. O dropout, configurado para 0,1, é aplicado após o
mecanismo de atenção e em cada etapa da feedforward para
mitigar o overfitting.

Após o codificador, a representação da sequência é redu-
zida a um único vetor por meio de uma operação de média
(mean pooling) ao longo da dimensão temporal, condensando
as informações temporais. Por fim, a representação reduzida
passa por uma camada de normalização seguida por uma ca-
mada linear, resultando nos logits para a tarefa de classificação
de quatro classes.

O treinamento foi realizado com 50 épocas, com entropia
cruzada para a função de perda e Adam para a função do
otimizador, com uma taxa de aprendizado de 0,001.

4.4 Avaliação
A validação cruzada com 10 folds (10-Fold Cross-Validation)
foi utilizada para avaliar o desempenho do modelo. Para
uma avaliação numérica, utilizou-se a acurácia (Eq. 9), que
indica a taxa de classificações corretas considerando todas
as amostras e folds, enquanto a matriz de confusão final, que
sumariza as matrizes de confusão de cada fold, foi utilizada
para uma avaliação visual. O código para classificação e
avaliação foi desenvolvido em Python 3.12.3, utilizando as
bibliotecas PyTorch e Scikit-Learn.

Acurácia (Acc.) =
predições corretas
todas as predições

. (9)

5 Resultados e Discussão
O modelo Encoder-Only Transformer proposto alcançou uma
acurácia média final de 99,47% na tarefa de classificação
multi-classe para identificar os indivíduos como pertencentes
a uma das quatro classes – Esclerose Lateral Amiotrófica
(ELA), Doença de Parkinson (DP), Doença de Huntington
(DH) ou controle (CO). Essa alta acurácia destaca a eficácia
da abordagem baseada em transformers na distinção entre
diferentes doenças neurodegenerativas com base em dados
de marcha.

Para uma análise mais detalhada dos resultados da multi-
classificação, uma matriz de confusão foi gerada para cada
fold. A Tabela 1 apresenta a matriz de confusão final para os
10 folds, obtida pela soma das matrizes individuais de cada
fold e normalizada para cada classe. Essa matriz agregada
exibe uma forte diagonal principal, indicando que o modelo
classifica corretamente a maioria dos indivíduos em suas
respectivas categorias, com mínimas classificações incorretas.

A Tabela 2 apresenta uma comparação com outros estu-
dos na literatura que classificam doenças neurodegenerativas
em tarefas de multi-classificação usando a base de dados
GaitNDD. Os resultados mostram que o modelo Encoder-
Only Transformer apresenta ótimo desempenho para classifi-
cação multi-classe de doenças neurodegenerativas. Compa-
rado aos métodos existentes na literatura, o modelo apresen-
tado neste artigo obteve um desempenho similar ao modelo
de CNN + LSTM de Ning et al. [2018] e superior aos méto-
dos de deep learning tradicionais. Além disso, é importante
enfatizar que o presente estudo também apresenta resultados
mais robustos, considerando o uso da validação cruzada de
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Tabela 1. Matriz de confusão que representa a acurácia de cada classe.

Classe Predita

Esclerose Lateral
Amiotrófica (ELA)

Doença de
Huntington (DH)

Doença de
Parkinson (DP)

Controle (CO)
Cl

as
se

Re
al

ELA 99,35% 0,37% 0,28% 0,00%

DH 0,09% 99,48% 0,24% 0,18%

DP 0,34% 0,15% 99,34% 0,17%

CO 0,05% 0,09% 0,18% 99,68%

10 folds, o que proporciona uma avaliação mais confiável do
desempenho do modelo quando comparado com o método
mais comum, mas menos rigoroso, de hold-out, adotado pela
maioria dos trabalhos relacionados.

Esses achados ressaltam a importância da inovação na
computação aplicada à saúde referente ao uso de transfor-
mers. A alta eficácia e competitividade dessa abordagem
na distinção entre diferentes doenças neurodegenerativas por
meio da análise de marcha evidenciam seu potencial como
uma alternativa superior aos modelos tradicionais de apren-
dizado profundo. Além disso, essa inovação pode permitir
uma identificação de padrões sutis da doença, possibilitando
diagnóstico precoce, intervenções e tratamentos antecipados,
retardo na progressão da doença e, consequentemente, me-
lhora na qualidade de vida dos pacientes.

Tabela 2. Comparação das acurácias dos métodos apresentados na
literatura para uma multi-classificação das doenças neurodegenerati-
vas.

Trabalho Modelo Acurácia

Zhao et al. [2018] GRU 95,35%

Ning et al. [2018] CNN + LSTM 99,50%

Erdaş et al. [2021] CNN + LSTM 89,44%

Fraiwan and Hassanin [2021] Adaboost 99,17%

Amooei et al. [2023] CNN + LSTM e
Transformada Wavelet 95,37%

Erdaş et al. [2023] 1d CNN 68,11%

Faisal et al. [2023] NDDNet 83,00%

Erdaş and Sümer [2024] CNN 84,65%

Este trabalho Encoder-Only
Transformer 99,47%

Gated Recurrent Unit (GRU), Rede Neural Convolucional (CNN),
Long Short-Term Memory (LSTM)

6 Conclusão
Este trabalho propôs um nova abordagem para a detecção
doenças neurodegenerativas utilizando o Encoder-Only Trans-
former, um modelo de arquitetura baseada em transformer.
Para atingir esse objetivo, foram analisadas séries temporais
obtidas dos pés esquerdo e direito de indivíduos diagnostica-
dos com Esclerose Lateral Amiotrófica, Doença de Parkinson,
Doença de Huntington e de indivíduos de controle, durante
uma caminhada de 5 minutos sem apoio. Os sinais obtidos

de cada pé foram segmentados em janelas menores e proces-
sados pelo modelo transformer para realizar uma tarefa de
multi-classificação em quatro categorias (DH, DP, ELA, CO).

O método proposto obteve uma acurácia de 99,47%,
evidenciando desempenho superior em relação a modelos
tradicionais de aprendizado profundo presentes na literatura.
Esses resultados indicam que o uso da arquitetura transformer,
em conjunto com a análise dos dados de marcha, pode favore-
cer o diagnóstico automático de doenças neurodegenerativas.
Dessa forma, a abordagem tem potencial para viabilizar a
identificação precoce da condição, permitindo o início anteci-
pado do tratamento, o que pode contribuir para desacelerar a
progressão da doença e promover uma melhor qualidade de
vida ao paciente.

Como sugestão de trabalhos futuros, propõe-se o refina-
mento das estratégias de segmentação dos dados para evitar
possíveis viéses. Tal medida poderá viabilizar o desenvolvi-
mento de modelos mais precisos e eficientes para o apoio ao
diagnóstico de doenças neurodegenerativas. Além dos resulta-
dos apresentados neste documento, um artigo relacionado ao
uso de redes transformer para classificação de doenças neuro-
degenerativas foi aceito para publicação em uma conferência
internacional [Bucci et al., 2025]. Resultados preliminares
e colaborações em trabalhos relacionados ao diagnóstico de
DNDs foram publicados em uma revista [Silva et al., 2024],
conferência nacional [Chagas et al., 2024a] e conferências
locais [Bucci et al., 2024; Chagas et al., 2024b].
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