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Resumo. No Brasil, milhões de pessoas enfrentam barreiras diárias para manter sua independência devido a limitações
motoras. Embora a Visão Computacional e a Inteligência Artificial (IA) tenham avançado o campo da tecnologia assistiva,
a maioria das soluções disponíveis no mercado é de alto custo, inacessível e carece de padronização para adaptação
individualizada. Diante deste cenário, este trabalho propõe o desenvolvimento e a avaliação de um Dispositivo Assistivo
Flexível (DAF) de baixo custo, utilizando Edge AI e Visão Computacional. O DAF visa promover a autonomia de indivíduos
com severas limitações motoras, permitindo o controle de dispositivos externos através da detecção e interpretação de
gestos ou expressões faciais. O grande diferencial metodológico reside na arquitetura flexível, que permite a customização
individualizada por meio de fine-tuning remoto. O cuidador utiliza o DAF (baseado na placa Sipeed MAix Bit/Maixduino)
para capturar imagens automaticamente rotuladas. Em seguida, essas imagens são enviadas a uma Plataforma Web para
que o servidor realize o fine-tuning do modelo pré-treinado (MobileNet 2.5). Os novos pesos são então devolvidos por
e-mail para serem atualizados no dispositivo. Em comparação com tecnologias existentes, o DAF demonstrou grandes
diferenciais, sendo uma solução não-invasiva, de baixo custo e que não exige um host (computador auxiliar), facilitando
sua modularização e transporte. O sistema apresentou um tempo de resposta satisfatório (1 a 2 segundos), propício para
uso prático. O trabalho atende, assim, à necessidade de dispositivos flexíveis, acessíveis e adaptáveis às necessidades
específicas de cada usuário.

Abstract. In Brazil, millions of people face daily barriers to maintaining their independence due to motor limitations.
Although Computer Vision and Artificial Intelligence (AI) have advanced the field of assistive technology, most solutions
available on the market are high-cost, inaccessible, and lack standardization for individualized adaptation. Given this
scenario, this work proposes the development and evaluation of a low-cost Flexible Assistive Device (DAF), utilizing Edge
AI and Computer Vision. The DAF aims to promote the autonomy of individuals with severe motor limitations, allowing
for the control of external devices through the detection and interpretation of gestures or facial expressions. The major
methodological differential lies in the flexible architecture, which enables individualized customization through remote
fine-tuning. The caregiver uses the DAF (based on the Sipeed MAix Bit/Maixduino board) to capture automatically labeled
images. Subsequently, these images are sent to a Web Platform for a server to perform the fine-tuning of the pre-trained
model (MobileNet 2.5). The new weights are then returned via email to be updated on the device. Compared to existing
technologies, the DAF demonstrated significant advantages, being a non-invasive solution, low-cost, and one that does not
require a host (auxiliary computer), facilitating its modularity and transport. The system presented a satisfactory response
time (1 to 2 seconds), suitable for practical use. The work thus addresses the need for flexible, accessible, and adaptable
devices for the specific needs of each user.
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1 Introdução
Em 2022, cerca de 14,4 milhões de brasileiros possuíam al-
gum tipo de deficiência. Esse número corresponde a 7,3% da
população acima de dois anos de idade no Brasil. Apesar de
não haver um número exato de pessoas com deficiências mo-
toras paralisantes, percebe-se que 4% da população geral (7,9
milhões de pessoas) possuíam alguma dificuldade permanente
para andar ou subir degraus, ou dificuldade permanente em
pegar pequenos objetos ou abrir e fechar tampas de garrafas
[Instituto Brasileiro de Geografia e Estatística, 2022]. Em-
bora esses números englobem uma gama de dificuldades, as

pessoas que se encaixam nesse espectro, principalmente nos
graus mais severos, enfrentam barreiras diárias para manter
sua independência.

O desenvolvimento de tecnologias assistivas tem desem-
penhado um papel crucial na melhoria da qualidade de vida
de pessoas com deficiências motoras e cognitivas. Com o
avanço da Inteligência Artificial (IA) e da Visão Computacio-
nal, novas soluções vêm sendo exploradas para permitir maior
autonomia e comunicação para esses indivíduos. Tecnologias
como rastreamento ocular, sensores mioelétricos e disposi-
tivos de interação assistida têm sido aplicadas para facilitar
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atividades diárias e promover a inclusão social de pessoas
com limitações motoras severas.

No entanto, apesar dos avanços tecnológicos, muitos dos
dispositivos assistivos disponíveis no mercado são de alto
custo e apresentam barreiras de acessibilidade para grande
parte da população que deles necessita [Ariza and Pearce,
2022]. Agravando este cenário, a falta de padronização e
a necessidade de adaptação individualizada e customizada
dificultam a ampla adoção dessas tecnologias, além de enca-
recer ainda mais o processo. Isso evidencia a necessidade de
dispositivos flexíveis, acessíveis e adaptáveis às necessidades
específicas de cada usuário, promovendo maior independên-
cia e integração social [Naves et al., 2012].

Diante desse cenário, este trabalho propõe o desenvol-
vimento e a avaliação de um dispositivo assistivo flexível
baseado em Edge AI e Visão Computacional, voltado para
promover a autonomia de indivíduos com severas limitações
motoras, permitindo sua interação com sistemas computa-
cionais e ambientes físicos de forma eficiente, intuitiva e
acessível.

Os objetivos específicos incluem:

• Desenvolver uma solução de baixo custo utilizando hard-
ware e software de código aberto, buscando acessibili-
dade e reprodutibilidade;

• Implementar algoritmos de Visão Computacional e IA
embarcada para a detecção e interpretação de gestos ou
expressões faciais, a fim de controlar dispositivos através
desses gestos;

• Criar uma plataforma web simples e intuitiva para rece-
ber imagens a fim de realizar fine-tuning no modelo e
retornar os pesos atualizados;

• Avaliar a eficácia da solução por meio de testes experi-
mentais controlados, considerando métricas como tempo
de resposta, precisão na detecção e facilidade de uso;

• Comparar o desempenho e a aplicabilidade da solução
proposta com tecnologias assistivas existentes descritas
na literatura, com foco em flexibilidade, custo e adapta-
bilidade a diferentes perfis de usuário.

2 Trabalhos Relacionados
É notável que, nos últimos anos, o interesse pelo desenvolvi-
mento de tecnologias assistivas tem aumentado, produzindo
diversas abordagens, métodos e resultados diferentes. Alguns
dos trabalhos na literatura focam no movimento ocular. O
trabalho de [Wang et al., 2018] apresenta um sistema robótico
que utiliza rastreamento ocular tridimensional para permitir
que pacientes com quadriplegia consigam interagir com obje-
tos ao seu redor, como pode ser visto em Fig. 1. O projeto
combina reconhecimento de objetos e planejamento de traje-
tória para possibilitar uma interação intuitiva. Além disso, a
solução obteve uma ótima acurácia nos testes iniciais. Con-
tudo, o sistema contém um alto custo de produção, utilizando
itens como óculos de rastreamento ocular, Microsoft Kinect
e braço robótico.

Outro trabalho que utiliza o movimento ocular como foco
de estudo é o de [Pandey et al., 2018]. O sistema apresentado
se utiliza tanto de movimentos da íris quanto de movimentos
da pálpebra para produzir um método de comunicação para
pacientes com paralisia. O projeto também apresentou uma

Figura 1. Sistema proposto por [Wang et al., 2018].

Figura 2. Usuário utilizando os sensores mioelétricos de [Naves et al., 2012]

boa acurácia e, ao contrário do trabalho anterior, utiliza itens
de baixo custo, como uma webcam, sem necessidade de dis-
positivos especializados. Porém, essa solução necessita de
um host, isto é, um computador, que deverá executar o código
conectado a uma webcam, dificultando sua modularização.

No campo da visão computacional aplicada à mobilidade,
[Rabhi et al., 2018] desenvolveram uma Interface Homem-
Máquina (HMI) para controlar uma cadeira de rodas elétrica
através da detecção de expressões faciais. O sistema utiliza a
câmera de um smartphone acoplada à cadeira e processa as
imagens utilizando redes neurais e a biblioteca OpenCV em
uma Raspberry Pi, alcançando uma acurácia de 98,6% nos
testes realizados. Embora a solução demonstre alta precisão
na interpretação de comandos faciais, os autores ressaltaram
a necessidade de incluir uma câmera traseira para detecção de
obstáculos, visando garantir a segurança do usuário durante a
navegação.

Alguns outros artigos utilizam sensores vestíveis, a fim
de detectar movimentos ou sinais mioelétricos. Na solução
proposta por [Naves et al., 2012], utilizam-se sensores que
captam movimentos musculares no rosto, a fim de transcrever
esses sinais em palavras e serem usados na comunicação. O
trabalho necessita de um host para que o usuário consiga
digitar usando o dispositivo, como pode ser visto em Fig.
2. O sistema teve um bom desempenho no escopo proposto,
contudo, ele se utiliza de uma solução sutilmente invasiva,
por conta da necessidade do contato dos detectores de sinais
com o rosto do usuário.

Mais um artigo que segue uma linha semelhante é o de
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Figura 3. Dispositivos utilizados no trabalho de [Liu et al., 2020]

[Liu et al., 2020]. O objetivo do trabalho é, utilizando sen-
sores vestíveis como anel inteligente e smartwatch (Fig. 3),
rastrear gestos dos dedos e traduzir sinais da Língua de Sinais
Americana. Para isso, o sistema utiliza principalmente os
acelerômetros dos dispositivos para que, através de modelos
probabilísticos, seja possível inferir gestos a partir dos dados
coletados. De forma geral, o projeto proposto obteve um bom
desempenho, conseguindo detectar bem as palavras expressas.
Entretanto, assim como alguns outros trabalhos, esse também
sofre pelo alto custo de produção e, como o trabalho apresen-
tado no parágrafo acima, a utilização de sensores no corpo
pode ser desconfortável e invasiva.

Focando na acessibilidade financeira e na filosofia de
hardware livre, [González-Cely et al., 2022] propuseram um
protótipo de cadeira de rodas controlada pelos movimentos da
cabeça, com um custo total de produção em torno de US$267.
O sistema interpreta a posição, velocidade e orientação da
cabeça do usuário para gerar comandos de movimentação,
utilizando algoritmos desenvolvidos em Python e MATLAB,
e disponibiliza todos os arquivos de projeto em repositórios
abertos para replicação. Testado com 10 usuários e apresen-
tando um tempo de reação de 100 ms, o trabalho destaca-se
por reduzir significativamente as barreiras de custo, embora
dependa de uma calibração precisa para diferentes perfis de
uso.

Através desse levantamento, produziu-se a Tabela 1, a
fim de comparar diretamente a tecnologia utilizada nos artigos,
assim como o usuário a ser assistido e a aplicação do sistema
desenvolvido.

3 Metodologia
3.1 Descrição da Arquitetura
Os diagramas ilustrados pelas Fig. 4 e Fig. 5 apresentam a
arquitetura e os casos de uso propostos para atingir os obje-
tivos definidos neste trabalho, buscando definir o hardware
necessário e também os modos de interação disponíveis aos
usuários e aos cuidadores.

No diagrama de arquitetura do sistema, é possível notar
o seguinte fluxo:

1. As imagens são capturadas pelo cuidador do usuário
utilizando a câmera do dispositivo assistivo flexível, e já
são automaticamente rotuladas enquanto são capturadas.
No trabalho atual, são aceitas imagens de boca, mãos e
olhos, com a pretensão de expansão para outras regiões

Figura 4. Diagrama de Arquitetura do Sistema

em trabalhos futuros;
2. Essas imagens são enviadas para uma aplicação web

(removendo o cartão SD do dispositivo, conectando ao
computador e realizando o upload dessas imagens no
site);

3. Depois de enviadas, as imagens irão para um servidor
de treinamento, para se realizar fine-tuning no modelo
já treinado utilizando essas novas imagens;

4. Após a conclusão desse processo, os novos pesos do
modelo são devolvidos ao cuidador por e-mail;

5. O cuidador baixa esses novos pesos e coloca-os no cartão
SD do dispositivo;

6. O dispositivo está pronto para ser usado. Neste estágio,
atua o módulo de comando — a interface de hardware
e software responsável por traduzir a inferência do mo-
delo em uma ação física. Ao detectar o gesto ou região
alvo, este módulo envia sinais elétricos (via GPIO, re-
lés ou comunicação sem fio) para efetivar a ativação ou
desativação do dispositivo externo controlado.

Figura 5. Diagrama de Casos de Uso
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Título Tecnologia Usada Usuário Assistido Aplicação
Free-View, 3D Gaze-Guided,
Assistive Robotic System for
Activities of Daily Living
[Wang et al., 2018]

Rastreamento ocular
3D, reconhecimento
de objetos, câmera
RGB-D

Pessoas com quadriplegia
(ex.: ELA, paralisia cere-
bral)

Controle de braço ro-
bótico para atividades
diárias

Alternative Communication
System for People with Severe
Motor Disabilities Using
Myoelectric Signal Control
[Naves et al., 2012]

Eletromiografia
(EMG), interfaces
homem-computador

Pessoas com deficiência
motora severa (ex.: ELA,
tetraplegia)

Comunicação assis-
tiva

A facial expression controlled
wheelchair for people with di-
sabilities [Rabhi et al., 2018]

Câmera de
Smartphone, Rasp-
berry Pi, OpenCV,
Redes Neurais

Pessoas com deficiências
motoras severas (que ne-
cessitam de cadeira de ro-
das)

Controle de navega-
ção de cadeira de ro-
das através do reco-
nhecimento de expres-
sões faciais/emoções

Assistance for Paralyzed Pati-
ent Using Eye Motion Detec-
tion [Pandey et al., 2018]

Visão computacional,
OpenCV, detecção de
movimento ocular

Pacientes com paralisia se-
vera (ex.: ELA)

Comunicação as-
sistiva baseada em
rastreamento ocular

Application Informed Motion
Signal Processing for Finger
Motion Tracking Using Weara-
ble Sensors [Liu et al., 2020]

Sensores vestíveis
(IMU), modelo pro-
babilístico (Bayesian
Inference)

Pessoas surdas ou com de-
ficiência na comunicação
verbal

Tradução de gestos
em linguagem de si-
nais para comunica-
ção digital

Wheelchair prototype control-
led by position, speed and ori-
entation using head movement
[González-Cely et al., 2022]

Hardware Open-
Source (custo re-
duzido), Python,
MATLAB, Sensores
de movimento

Pessoas com limitações
motoras que preservam o
controle da cabeça

Controle de cadeira
de rodas baseado na
orientação, veloci-
dade e posição da
cabeça do usuário

Tabela 1. Comparação entre os artigos analisados

Já nos casos de uso, percebe-se que existem três agentes
(Usuário, Cuidador e Servidor) e dois ambientes (DAF e
Aplicação Web), que são detalhados da seguinte forma:

• DAF (Dispositivo Assistivo Flexível): ambiente respon-
sável pela parte prática de uso do dispositivo, isto é, toda
a parte de captura de imagens, detecção de movimentos,
acionamento de dispositivos, etc;

– Usuário: usuário final que será beneficiado pela
solução, aciona o dispositivo através dos seus mo-
vimentos e envia um comando para ativar/desativar
outro dispositivo.

– Cuidador: intermediador entre o usuário final e
as questões técnicas do projeto, é responsável por,
nesse ambiente DAF, capturar as imagens do usuá-
rio e atualizar os pesos do modelo.

• Aplicação Web: ambiente onde as imagens são enviadas
para realização de fine-tuning e atualização dos pesos do
modelo;

– Cuidador: nesse ambiente, é responsável por enviar
as imagens salvas e obter os pesos atualizados do
modelo.

– Servidor: encarregado de receber as imagens, re-
alizar fine-tuning e retornar os pesos do modelo
atualizados.

3.2 Comparação Entre Plataformas
É possível perceber que, de acordo com os artigos analisa-
dos nesse trabalho, existem divergências de plataformas entre
as tecnologias existentes, ou seja, cada sistema utiliza uma

plataforma diferente. Alguns trabalhos utilizam dispositivos
móveis vestíveis, outros utilizam hosts com auxílio de web-
cams ou sensores, dentre outras tecnologias. Nesse trabalho,
o foco é a modularização da solução, para que o sistema possa
ser instalado em qualquer lugar, além da redução de custos,
não-invasão e simplicidade de utilização, como sugere [Ariza
and Pearce, 2022]. Por esse motivo, optou-se pela utilização
de algum dispositivo de borda — equipamento capaz de rea-
lizar o processamento computacional localmente, próximo à
fonte de captura, sem depender de servidores externos — para
que a solução tenha um baixo custo, seja modular, flexível e
de simples utilização.

A Tabela 2 apresenta um comparativo técnico entre as
plataformas Wio Lite AI, Sipeed MAix Bit/Maixduino, Dev
Board Mini (Coral) e Intel Neural Compute Stick 2, conside-
rando critérios essenciais para aplicações em tecnologia assis-
tiva com visão computacional embarcada. A plataforma Wio
Lite AI, baseada no microcontrolador STM32H725, destaca-
se por sua boa conectividade (Wi-Fi e Bluetooth integrados),
suporte a IDEs como STM32CubeIDE e disponibilidade de
memória externa. No entanto, a ausência de um acelerador
dedicado para IA limita seu desempenho em tarefas de infe-
rência de redes neurais convolucionais.

Por outro lado, a Sipeed MAix Bit/Maixduino possui
um co-processador KPU (Kendryte Processing Unit) para
execução eficiente de CNNs, como Tiny-YOLO e Mobile-
Net, diretamente no dispositivo. Essa característica tem sido
explorada com sucesso em aplicações assistivas, como de-
monstrado por [Torres-Sánchez et al., 2020], que utilizaram a
MAix Go (com o mesmo chip Kendryte K210) para detecção
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Figura 6. Placa utilizada na solução

de uso correto de máscaras em tempo real com desempenho
médio de 13 FPS, evidenciando a viabilidade dessa plata-
forma para sistemas de visão embarcada com baixa latência e
sem dependência da nuvem.

Expandindo a análise, a plataforma Dev Board Mini (Go-
ogle Coral) incorpora o acelerador Edge TPU, com capacidade
de até 4 TOPS, otimizando a execução de modelos Tensor-
Flow Lite quantizados. Estudos como o de [Rosero-Montalvo
et al., 2024] evidenciam que, ao utilizar EfficientNet-B0 com
quantização, o Coral foi capaz de manter a acurácia do modelo
original com uma redução de até 4× no tempo de inferência e
consumo energético, reforçando seu potencial para aplicações
assistivas com restrições energéticas. De maneira similar, a
Intel Neural Compute Stick 2, equipada com o VPU Myriad
X, mostrou-se a plataforma mais versátil na comparação feita
por [Rafal et al., 2023], sendo capaz de executar uma am-
pla gama de modelos, incluindo MobileNet, EfficientNet e
VGG16, mesmo com entradas de alta resolução. Apesar de
demandar conexão com um host, seu desempenho robusto e
compatibilidade com múltiplos frameworks (via OpenVINO)
tornam-no um forte candidato para cenários em que há um
computador auxiliar.

No entanto, ao considerar a arquitetura proposta para
este projeto, onde o treinamento ocorre em um servidor ex-
terno e os modelos atualizados são posteriormente transfe-
ridos para execução local no dispositivo, a plataforma mais
adequada deve conciliar autonomia computacional, suporte a
IA embarcada e baixo custo. Neste contexto, a Sipeed MAix
Bit/Maixduino (destacada em cinza na Tabela 2) oferece a
melhor relação entre custo-benefício e desempenho em tempo
real para tarefas de visão computacional assistiva. Sua arqui-
tetura otimizada para inferência local, suporte a bibliotecas
leves (como MaixPy) e integração com câmeras compatíveis
a tornam ideal para o dispositivo de coleta embarcado que
compõe o sistema proposto.

3.3 Captura de Imagens e Treinamento do
Modelo

Durante essa etapa, foram capturadas imagens de três partes
do corpo do autor (boca, mão e olho) e cada uma dessas partes
teve duas posições diferentes de captura: mão aberta, mão
fechada, boca para a esquerda, boca para a direita, olho para
cima e olho em qualquer outra posição. A escolha dessas
posições do corpo para captura ocorreu em virtude de essas
regiões geralmente serem as últimas regiões em que o mo-
vimento é paralisado, em função de doenças degenerativas
paralisantes, de acordo com [Domellöf, 2019].

As imagens foram capturadas em ambientes diferentes,
com condições de iluminação distintas, a fim de gerar uma
grande variabilidade nos dados, para que o modelo seja ca-

Figura 7. Exemplos de imagens capturadas de cada classe

paz de generalizar melhor suas classificações. Além disso,
para facilitar o processo de captura de imagens, tanto no de-
senvolvimento do trabalho quanto na utilização por usuários,
foi desenvolvido um sistema de rotulação automática, isto é,
quando o processo de captura de imagem é inicializado, é
apresentado um quadrado no centro do LCD mostrando que
a região de interesse deve estar dentro desse delimitador. Em
cada imagem capturada a legenda se altera de ”Ativar” para
”Desativar” para que o cuidador e o usuário saibam qual po-
sição que estão capturando será responsável por ativar outro
dispositivo e qual será responsável por desativá-lo. Na Fig. 7,
são mostradas variações de imagens capturadas.

Ao final do processo de captura de imagens, obteve-se
um total de 1451 imagens, sendo parte delas capturadas e
parte delas geradas utilizando data augmentation, através da
biblioteca Augmentor em Python. Após isso, as imagens
foram separadas em treino e validação, numa proporção de
80-20.

Para o treinamento, utilizou-se um framework focado em
modelos para IA de borda, chamado aXeleRate, para facilitar
o processo de treino e conversão dos pesos. Dentre os mo-
delos disponíveis no framework que poderiam ser utilizados
na placa (MobileNet 2.5, MobileNet 5.0 e SqueezeNet), o
modelo que apresentou uma melhor precisão média (mAP)
foi o MobileNet 2.5 e, por conta disso, foi o modelo escolhido
para a versão final do sistema.

A supervisão do método ocorre durante a etapa de coleta
de dados guiada. O sistema exibe na tela qual classe será cap-
turada (ex: ’Mão Aberta’), e assume-se que todas as imagens
coletadas nesse intervalo pertencem a essa classe (rotulação
automática via inferência do estado da UI). A validação do
acerto ou erro durante o uso real (inferência) é feita empirica-
mente pela observação da execução correta do comando pelo
dispositivo externo.

3.4 Geração do Site e Servidor
Além do modelo de aprendizado de máquina, também foi
gerado um site (Fig. 8), para que o usuário final possa enviar
imagens, a fim de realizar fine-tuning no modelo treinado
utilizando as novas imagens capturadas pelo usuário. O site
conta com a funcionalidade de receber as imagens e o e-mail

https://github.com/mdbloice/Augmentor
https://github.com/AIWintermuteAI/aXeleRate
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Critério Wio Lite AI Sipeed MAix Bit /
Maixduino

Dev Board Mini
(Coral)

Intel Neural Com-
pute Stick 2

Arquitetura STM32H725
(Cortex-M7, 550
MHz)

Kendryte K210
(RISC-V dual-core,
400–600 MHz)

Edge TPU (Google)
+ Cortex-M4F (Mi-
crocontroller)

Myriad X VPU (In-
tel) via USB

Acelerador de IA Não possui (execu-
ção via CPU)

Possui KPU (Ken-
dryte Processing
Unit) dedicado para
CNNs

TPU dedicado (até 4
TOPS)

VPU dedicado (My-
riad X, até 1 TOPS)

Suporte a câmera Interface DCMI
para câmeras
OV2640, OV5640

Interface DVP,
compatível com
OV2640, OV7740,
etc.

Suporte a câmera
via MIPI CSI (ex:
Raspberry Pi Ca-
mera)

Necessita câmera
USB ou entrada via
host

Suporte a display Conector FPC para
LCD RGB565 /
RGB888

Display SPI TFT
de 2.4” incluído
(320x240 px)

Suporte via
GPIO/MIPI (ne-
cessário adicionar
display externo)

Não aplicável (aco-
plado a host com dis-
play)

Memória RAM 8 MB de PSRAM
externa

8 MB de SRAM in-
terna

8 MB SRAM + me-
mória externa via
eMMC ou SD

Depende do host
(RAM interna
mínima)

Armazenamento
Flash

16 MB SPI NOR
Flash

Armazenamento ex-
terno via cartão mi-
croSD

eMMC 8 GB embu-
tido (modelo base)

Depende do host
(sem armazena-
mento local)

Conectividade Wi-Fi dual band +
Bluetooth 5.1 inte-
grados

Wi-Fi e Bluetooth
via módulo ESP32
separado

Wi-Fi dual band +
Bluetooth integra-
dos (via módulo)

Sem conectividade
nativa (depende do
host)

Facilidade de de-
senvolvimento

STM32CubeIDE,
TensorFlow Lite
Micro

MaixPy (Mi-
croPython), Maix-
Tool, Arduino IDE

Python (PyCoral),
C++ com suporte a
TensorFlow Lite

Python + Open-
VINO, su-
porte a Tensor-
Flow/Caffe/ONNX

Suporte a IA em-
barcada

Limitado, sem uni-
dade dedicada

Otimizado para mo-
delos leves como
Tiny-YOLO e Mobi-
leNet

Alto desempenho
com modelos
TFLite quantizados

Alta compatibili-
dade com modelos
convertidos para
OpenVINO

Custo estimado Baixo (US$30) Baixo (US$30) Alto (US$100) Alto (US$150 +
host)

Tabela 2. Comparativo entre as plataformas Wio Lite AI, Sipeed MAix Bit/Maixduino, Dev Board Mini e Intel Neural Compute Stick 2 para
aplicações em tecnologia assistiva com visão computacional
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Figura 8. Página inicial do site

Classe Maior precisão no treinamento
Aberta 0.79

Fechada 0.90
Cima 0.59
Outro 0.86
Direita 0.96

Esquerda 0.78
Tabela 3. Melhores valores de precisão para cada classe

da pessoa, armazenar essas informações e, quando o fine-
tuning for concluído, o usuário receberá um e-mail contendo
os pesos atualizados do modelo. O site serve apenas como
representação da escalabilidade dessa solução e, por conta
disso, está sendo hospedado localmente.

4 Discussões e Resultados
O desempenho do modelo foi heterogêneo: classes como
”Direita” alcançaram precisão de até 96%, enquanto classes
como ”Cima” apresentaram resultados inferiores, limitando-
se a 59%, conforme detalhado na Tabela 3.

Nas classes mais distinguíveis entre si, como as de mão
(Aberta e Fechada) e boca (Direita e Esquerda), o modelo
obteve ótimos resultados, identificando adequadamente as
particularidades de cada gesto. Por outro lado, o desempenho
nas classes de olho foi prejudicado pela sutileza das diferenças
visuais. A baixa performance na classe ”Olho Cima” (0,59)
é atribuída principalmente à resolução espacial da entrada
(224x224) e às limitações do sensor. A distinção entre ”Olho
Cima” e ”Outro” depende da visualização de poucos pixels
da esclera inferior; o contraste reduzido da câmera OV2640
tende a degradar as bordas da íris nessas condições, levando a
arquitetura MobileNet a confundir a rotação vertical do olho.

Ressalta-se que este estudo avaliou a precisão frame-a-
frame do classificador. Trabalhos futuros devem avaliar a
”Taxa de Sucesso da Tarefa”, medindo quantas tentativas o
usuário necessita para efetivar um comando físico, métrica
que captura melhor a experiência de uso real do que a acurácia
isolada do modelo.

Além da precisão, a qualidade da solução foi avaliada
considerando o tempo de resposta e a facilidade de uso. O

tempo médio obtido, de 1 a 2 segundos, mostrou-se satis-
fatório e coerente com a literatura de Tecnologia Assistiva.
Segundo [Miller, 1968], respostas de até 2 segundos são acei-
táveis para manter o fluxo de conversação homem-máquina.
Adicionalmente, em interfaces controladas pelo olhar, tempos
de fixação (dwell time) próximos a 1000ms são frequente-
mente deliberados para mitigar o ”Problema do Toque de
Midas” — a ativação acidental de dispositivos [Majaranta
and Räihä, 2002] —, priorizando a segurança da ação sobre
a velocidade instantânea. Por fim, o dispositivo demonstrou
boa facilidade de uso, apresentando processos simples de ins-
talação, captura de imagens, atualização de pesos e realização
das detecções.

Comparando essa solução com outras citadas no traba-
lho, é possível perceber que seus grandes diferenciais são:
uma tecnologia não-invasiva, isto é, nenhuma parte do dispo-
sitivo necessita ficar em contato com o usuário; possui um
baixo custo de produção, podendo ser replicado por qualquer
pessoa com uma placa do mesmo modelo; não precisa de um
dispositivo host, facilitando sua modularização e transporte;
atende diferentes tipos de usuários, sendo um dispositivo fle-
xível que pode detectar diferentes partes do corpo (além de
boca, mão e olho), bastando apenas capturar novas imagens
e realizar o treinamento. O único ponto negativo da solução
notado é a baixa precisão da classe de olho, que pode com-
prometer seu bom funcionamento, necessitando a captura de
mais imagens e novas configurações de treino para melhorar
o desempenho dessa classe.

5 Conclusão
De forma geral, o trabalho proposto cumpre seus objetivos
iniciais, de gerar uma solução de baixo custo, acessível e
reprodutível; utilizar Visão Computacional e IA embarcada
para a detecção e interpretação de gestos ou expressões faciais;
criar uma plataforma web para realização de fine-tuning no
modelo; avaliar o desempenho da solução de acordo com
métricas pré-definidas; e comparar com outras tecnologias
assistivas existentes na literatura.

Para trabalhos futuros, deve-se focar no aumento da quan-
tidade de imagens utilizadas, assim como em sua variabili-
dade, para remover vieses e aumentar a precisão da detecção
de classes semelhantes. Também é recomendado hospedar o
site em algum provedor, para que a solução possa efetivamente
ser utilizada por diversos usuários, assim como automatizar o
processo de recebimento de imagens, fine-tuning do modelo
e devolução dos pesos atualizados, diminuindo o trabalho
humano e melhorando o tempo de resposta para o usuário.
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