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Resumo. A seguranca de contratos inteligentes € um problema na blockchain Ethereum e todas as outras baseadas em
EVM como a Hyperledger Besu, por exemplo. Este trabalho apresenta uma andlise empirica da capacidade de detec¢ao de
vulnerabilidades em smart contracts Ethereum, com foco na evolugéo e eficcia das ferramentas utilizadas pelo conjunto de
ferramentas SmartBugs. Em um primeiro experimento, foram executadas em 215 contratos reais coletados do Etherscan,
revelando que 98% dos alertas gerados pelas ferramentas foram classificados como “outros”, o que indica que a taxonomia
DASP Top 10 encontra-se desatualizada frente ao cendrio atual de desenvolvimento. Em outros experimentos, avaliamos a
taxa de detecgdo real sobre uma base de contratos propositalmente vulnerdveis, utilizando as versdes 2.0.10 e 2.0.15 do
SmartBugs. Além das ferramentas originais, foram incorporados novos analisadores estdticos e dindmicos, foi adotada uma
metodologia mais refinada de validacdo, baseada na localizagdo exata da vulnerabilidade no cédigo-fonte, e ndo apenas
na correspondéncia nominal do tipo de falha. Os resultados mostram que, apesar da evolucdo entre as versdes, ainda
existem discrepancias significativas entre as ferramentas que compdem o conjunto SmartBugs, com algumas apresentando
melhorias substanciais na precisdo enquanto outras mantém desempenho abaixo do esperado. Os achados indicam que a
classificagdo de vulnerabilidades utilizada nos estudos iniciais ndo reflete o estado atual do ecossistema, e que a auséncia
de padroniza¢ao na validacio dos achados ainda compromete andlises comparativas.

Abstract. The security of smart contracts is a recurring issue not only in the Ethereum blockchain but also in other
EVM-based networks such as Hyperledger Besu. This work presents an empirical analysis of the vulnerability detection
capabilities of smart contract analysis tools, focusing on the evolution and effectiveness of the tools integrated into the
SmartBugs framework. In the first experiment, 215 real contract samples collected from Etherscan were analyzed, revealing
that 98% of the alerts generated by the tools were classified as “other”, which indicates that the DASP Top 10 taxonomy,
used in previous studies, is outdated when compared to the current development landscape. In other experiments, we
evaluated the actual detection rate on a dataset of intentionally vulnerable contracts, using versions 2.0.10 and 2.0.15 of
SmartBugs. In addition to the original tools, new static and dynamic analyzers were incorporated, and a more refined
validation methodology was adopted, based on the exact location of the vulnerability in the source code, rather than solely
on nominal matching of the vulnerability type. The results show that, despite the evolution between versions, significant
discrepancies still exist among the tools included in SmartBugs, with some showing substantial improvements in precision
while others maintain performance below expectations. The findings indicate that the vulnerability classification used in
the initial studies no longer reflects the current state of the ecosystem, and that the lack of standardization in the validation
process still compromises comparative analyses.
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1 Introducao

A plataforma Ethereum popularizou o uso de contratos
inteligentes (smart contracts) como uma forma descentrali-
zada e autonoma de executar l6gica computacional na block-
chain. Aplicacdes como exchanges descentralizadas (DEX3s),
jogos, tokens e protocolos de finangas descentralizadas (DeFi)
sao hoje amplamente construidas sobre esses contratos, que
movimentam bilhoes de ddlares diariamente. Entretanto, a
complexidade e a imutabilidade dos smart contracts tornam a
seguranga um fator critico: uma vulnerabilidade explorada
pode levar a perda irreversivel de fundos, como evidenciado
por ataques histéricos como o DAO Hack (2016) Mehar et al.
[2017].

Diante desse cendrio, a comunidade de seguranga tem se

mobilizado para desenvolver ferramentas capazes de detectar
automaticamente vulnerabilidades em contratos inteligentes,
utilizando técnicas de analise estatica, simbdlica e dindmica
Salzer and Di Angelo [2019] Pinna et al. [2019]. O ecos-
sistema de ferramentas inclui solu¢des como Slither Feist
et al. [2019], Mythril Mueller [2018], Manticore Mossberg
et al. [2019] e Oyent JJ and Singh [2024], cada uma com
abordagens e niveis de precisdo distintos. Uma lista completa
das ferramentas de andlise automatizada configuradas no fra-
mework SmartBugs e utilizadas neste estudo, juntamente com
suas versdes especificas, serd apresentada na Secdo 3.1. Em
paralelo, frameworks como o SmartBugs surgiram para facili-
tar a execugdo comparativa dessas ferramentas, padronizando
a avaliacdo de seus resultados.
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Apesar dos avancos nas técnicas de andlise automati-
zada, ainda hd lacunas na literatura no que diz respeito a
evolucdo histérica da seguranca em contratos inteligentes. A
maioria dos estudos se concentra em andlises pontuais ou
avaliacdes de ferramentas sobre conjuntos fixos de contratos.
Ha pouca investiga¢@o sobre como essas ferramentas evoluem
com o tempo — tanto em termos de cobertura de vulnerabili-
dades quanto em mudancas na prépria taxonomia das falhas
reconhecidas pela comunidade. Além disso, atualizacdes
de ferramentas, inclusdo de novos analisadores e corregdes
em parsers podem alterar significativamente os resultados
de experimentos anteriores, o que raramente € discutido nos
estudos disponiveis.

Este artigo apresenta uma andlise baseada em trés expe-
rimentos distintos, ambos concebidos para permitir uma com-
paracdo com os resultados de um estudo conduzido em 2020
utilizando o framework SmartBugs Durieux et al. [2020b]. No
primeiro experimento, analisamos um novo conjunto de con-
tratos inteligentes recentemente verificados na rede Ethereum,
coletados diretamente da plataforma Etherscan. A compara-
¢do com os achados de 2020 permite avaliar mudangas nas
ocorréncias das vulnerabilidades detectadas e inferir tendén-
cias evolutivas no desenvolvimento de contratos.

No segundo experimento, executamos novamente as fer-
ramentas sobre o conjunto de contratos curado usado no es-
tudo de 2020. Essa comparagao visa avaliar a eficdcia atual
das ferramentas frente a casos conhecido. Um resultado ines-
perado surgiu nesse segundo experimento: uma versao mais
atual 2.0.10 do SmartBugs apresentou uma queda signifi-
cativa na taxa de detec¢@o de vulnerabilidades, reduzindo de
48 vulnerabilidades identificadas para apenas 28. Entretanto,
ao aplicarmos uma metodologia prépria de reclassificagdo
baseada na localizag@o das vulnerabilidades nos parses gera-
dos, essa mesma versao passou a detectar 67 vulnerabilidades,
revelando que parte das falhas de identificag@o estava relacio-
nada ndo a capacidade das ferramentas, mas as heuristicas de
agregacdo e rotulagem adotadas pelo framework.

No terceiro experimento, estendemos a andlise para o
conjunto completo de 142 contratos curados disponiveis, indo
além dos 69 contratos originais do estudo de 2020. Este
experimento inclui, além da taxa de detec¢@o, o registro de
falso positivos (FP) e falso negativos (FN), elementos essen-
cias para uma avaliacdo mais realista da utilidade pratica das
ferramentas.

As proximas secdes estdo organizadas da seguinte forma.
A Secdo 2 apresenta os fundamentos tedricos necessarios
para contextualizar o estudo, incluindo tipos de vulnerabilida-
des, abordagens de andlise e o funcionamento do framework
SmartBugs. A Secdo 3 descreve a metodologia adotada e os
trés experimentos conduzidos. A Secdo 4 retine os resulta-
dos obtidos, organizados conforme cada experimento. Por
fim, a Se¢do 5 apresenta as conclusdes, limitagdes e possiveis
direcdes para trabalhos futuros.

2 Fundamentagao Teorica

24 Smart Contracts na Ethereum

Smart contracts sdo programas executados de forma de-
terministica por todos os nés da blockchain Ethereum. Escri-
tos majoritariamente na linguagem Solidity, esses contratos
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sao compilados para bytecode da Ethereum Virtual Machine
(EVM) Wood et al. [2014] e implantados em enderegos espe-
cificos da rede. Uma vez implantado, o c6digo é imutavel, e
sua execugdo é governada pelas regras do consenso da rede.

A légica dos contratos pode incluir operagdes financeiras,
controle de acesso, armazenamento de dados e interacdes com
outros contratos. Como consequéncia, vulnerabilidades no
cddigo podem ser exploradas de forma irreversivel. Diferente
de sistemas tradicionais, ndo é possivel aplicar corre¢des
ap6s a descoberta de uma vulnerabilidade, o que intensifica a
necessidade de métodos preventivos de andlise.

2.2 Padroes ERC de Contratos na Ethereum

No ecossistema Ethereum, os padrées ERC (Ethereum
Request for Comments) sdo especificacdes técnicas propostas
pela comunidade para padronizar comportamentos e interfa-
ces de contratos inteligentes. Esses padrdes sao submetidos
e discutidos publicamente através do processo de Ethereum
Improvement Proposals (EIPs) e sua adocdo visa garantir
interoperabilidade, previsibilidade e maior seguranc¢a na im-
plementacdo de funcionalidades comuns.

Os padrdes mais populares incluem o ERC20 Chen
et al. [2020], utilizado para representar tokens fungiveis, e
o ERC721 Casale-Brunet er al. [2021], voltado para tokens
ndo fungiveis (NFTs). A aderéncia a esses padrdes facilita a
integracdo de contratos com carteiras, exchanges e ferramen-
tas do ecossistema, além de reduzir a probabilidade de erros
de implementacio.

Entretanto, a conformidade com um padrao ERC ndo
garante, por si s0, a auséncia de vulnerabilidades. Implemen-
tacdes mal feitas ou modificacdes ndo padronizadas ainda
podem introduzir falhas criticas, como problemas de controle
de acesso, chamadas inseguras e erros aritméticos.

2.3 Tipos de Vulnerabilidades

Diversas classes de vulnerabilidades tém sido documen-
tadas na literatura e observadas em ataques reais Atzei et al.
[2017]. Uma das taxonomias mais influentes para categoriza-
las € a Decentralized Application Security Project (DASP)
Top 10 NCC Group [2018], proposta em 2018, que organiza
as vulnerabilidades mais recorrentes em contratos inteligentes
Ethereum. Seguem as categorias incluidas nessa classifica-
cdo.

* Reentrancia (Reentrancy): possibilidade de chamadas
recursivas a uma fungdo antes da atualizacdo completa
do estado interno do contrato, como no caso do DAO
Hack.

¢ Controle de Acesso (Access Control): falhas na defi-
ni¢do ou implementac¢do de mecanismos de controle de
acesso, permitindo que usudrios ndo autorizados execu-
tem fung¢des criticas.

¢ Aritmética (Arithmetic): erros relacionados a opera-
¢oes aritméticas, como overflows, underflows ou divisdes
por zero, especialmente em versdes antigas de Solidity.

¢ Chamadas nao verificadas (Unchecked Low Calls):
auséncia de verificacdo do retorno de chamadas de baixo
nivel (call, delegatecall, send), o que pode masca-
rar falhas de execucao.

* Negacao de servico (Denial of service): padroes de
c6digo que podem tornar fungdes inutilizaveis, seja por
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consumo excessivo de gds ou l6gica mal planejada.

* Execucao antecipada de transacoes (Front Running):
exploracdo de informacdes publicas sobre transacdes
pendentes para se antecipar a operacoes criticas.

* Manipulac¢io temporal (Time Manipulation): depen-
déncia de varidveis temporais parcialmente controladas
pelos mineradores, como block. timestamp, pode ser
explorada para manipular a 16gica de contratos.

* Endereco truncado (Short addresses): falhas na vali-
dacdo do tamanho de enderecos em chamadas de fungdo,
truncando valores passados via paradmetros.

¢ Aleatoriedade Fraca (Bad Randomness): uso de fon-
tes de aleatoriedade previsiveis ou manipuldveis, que
podem ser exploradas por participantes da rede para ob-
ter vantagem em decisdes criticas do contrato.

Ainda hd uma categoria adicional: a dos Unknown Unknowns
que, na pratica, funciona como um repositério conceitual
para todas as demais vulnerabilidades, mostrando os limites
das abordagens atuais de categorizacdo e andlise. Mesmo
assim, essa taxonomia foi utilizada neste estudo como base
para a categorizagdo dos achados de vulnerabilidades, com
0 objetivo de permitir uma comparagdo padronizada com
trabalhos anteriores.

2.4 Analises Automatizadas

A deteccdo precoce de vulnerabilidades em contratos in-
teligentes € essencial para garantir a seguranca de aplicagcdes
descentralizadas. Nesse contexto, ferramentas de andlise au-
tomatizada tém desempenhado um papel central, permitindo
a inspecdo sistemadtica de contratos sem intervencao humana
direta. Essas ferramentas se diferenciam principalmente pela
abordagem adotada, que influencia diretamente sua cobertura,
desempenho e suscetibilidade a falsos positivos ou negativos.

2.4 Anadlise Estatica

A andlise estdtica consiste na inspe¢do do cédigo-fonte
de um programa sem sua execugdo, visando identificar vulne-
rabilidades, violacdes de boas préticas e potenciais compor-
tamentos inesperados. No contexto de contratos inteligentes,
essa abordagem € particularmente relevante devido a natureza
imutdvel dos contratos apds sua implantagdo, tornando a de-
teccdo precoce de falhas critica para a seguranca dos sistemas
baseados em blockchain Grishchenko et al. [2018].

Ferramentas de andlise estdtica aplicadas a contratos in-
teligentes operam, em geral, sobre uma linguagem de progra-
macdo (como Solidity) ou diretamente sobre a representacao
intermedidria do contrato (bytecode EVM). Elas buscam pa-
drdes de vulnerabilidades conhecidas, tais como problemas de
aritmética, reentrincia, manipulag¢do temporal, entre outros.

Dentre as diversas ferramentas de andlise estitica desen-
volvidas para o ecossistema Ethereum, destacam-se Slither
Feist et al. [2019] e Mythril Mueller [2018]. A escolha dessas
ferramentas neste trabalho deve-se ao fato de serem ampla-
mente reconhecidas na literatura e na pratica da inddstria,
além de oferecerem suporte continuo a atualizacdes do com-
pilador Solidity e uma ampla cobertura de padrdes de vulne-
rabilidades.

O Slither € uma ferramenta baseada em andlise seman-
tica do cédigo-fonte em Solidity, oferecendo uma variedade
de detectores especializados para diferentes categorias de
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problemas, além de permitir extensibilidade com regras cus-
tomizadas. J4 o Mythril combina técnicas de andlise estitica
e simbdlica, analisando o bytecode dos contratos inteligentes
para detectar vulnerabilidades mais complexas no fluxo de
execucdo. Ambas as ferramentas sdo referéncias consolidadas
na drea e t€m sido utilizadas em auditorias reais de projetos
de alto impacto Kushwaha ez al. [2022].

2.4.2 Analise Dinamica

A andlise dindmica de contratos inteligentes consiste em
observar o comportamento dos contratos durante sua execugao
real ou simulada Eshghie er al. [2021] a fim de identificar
vulnerabilidades ou comportamentos inesperados que podem
ndo ser visiveis apenas com a andlise estdtica. Diferentemente
dessa andlise, que examina o cédigo-fonte ou o bytecode
sem executa-lo, a andlise dindmica envolve a interacdo ativa
com o contrato, enviando transa¢des, modificando estados e
monitorando a resposta do sistema em tempo real.

Essa abordagem permite detectar vulnerabilidades que
dependem de condigdes especificas de execucdo, como pro-
blemas de consumo excessivo de gés, ataques de reentrncia,
falhas de controle de acesso, e problemas de sincronia em
interagdes multi-contrato. Ferramentas como o Echidna Gri-
eco et al. [2020] e o Manticore Mossberg et al. [2019] sao
amplamente utilizadas nesse contexto. O Echidna realiza tes-
tes baseados em fuzzing direcionado: gera automaticamente
milhares de inputs para contratos inteligentes em busca de
violacdes de propriedades de seguranca definidas pelo de-
senvolvedor. J4 o Manticore combina fuzzing com execugao
simbdlica para explorar profundamente diferentes caminhos
possiveis de execugdo de um contrato, oferecendo uma andlise
ainda mais abrangente.

Uma vantagem da andlise dindmica € a capacidade de
encontrar vulnerabilidades complexas que surgem apenas em
cendrios de execugdo especificos. No entanto, essa abordagem
também apresenta desafios, como a dificuldade em garantir
cobertura completa dos estados do contrato e a possibilidade
de falsos negativos — vulnerabilidades que existem, mas ndo
foram exploradas durante os testes.

A combinag¢do de andlise dinAmica com técnicas estati-
cas e formais é considerada uma pratica recomendada para
prover uma cobertura mais completa na identificagdo de vul-
nerabilidades em contratos inteligentes.

2.4.3 Analise Simbolica e Formal

¢ Anadlise simbélica consiste em explorar os diferentes
caminhos de execu¢do de um programa utilizando va-
ridveis simbdlicas em vez de valores concretos Wang
et al. [2023]. Em vez de executar o cédigo com entradas
especificas, a ferramenta modela todas as possibilidades
de execugdo simultaneamente, o que permite identificar
vulnerabilidades relacionadas a estados raros ou a com-
binagdes de entradas especificas. Essa técnica é capaz
de encontrar erros dificeis de serem detectados por mé-
todos puramente sintaticos, como a execucdo indevida
de fungdes criticas em condi¢des especificas.

* Verificacao formal, por outro lado, envolve a criagdo
de modelos matemadticos dos contratos inteligentes e a
aplicagdo de técnicas de 16gica formal para provar que
determinadas propriedades sempre serdo verdadeiras (ou
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detectar casos onde essas propriedades possam falhar).
A verifica¢do formal € considerada o padrdo-ouro de con-
fiabilidade, especialmente para contratos de alto valor,
embora seu alto custo computacional e a necessidade de
modelagem precisa representem desafios praticos.

Ferramentas como o Mythril aplicam andlise simbdlica
para percorrer as possiveis execug¢des do bytecode dos contra-
tos inteligentes, buscando vulnerabilidades complexas, como
ataques de reentrincia e problemas de integer overflow. Ja
plataformas como VeriSol Wang et al. [2020] e Certora Prover
Bennour et al. [2024] focam na verificag@o formal, permitindo
que desenvolvedores especifiquem invariantes que seus con-
tratos devem obedecer, as quais sdo entdo matematicamente
verificadas contra o cédigo.

Embora promissoras, essas técnicas de verificagao for-
mal enfrentam limita¢des significativas na prética, como ex-
plosdo do espago de estados, necessidade de expertise em
especificacdo formal e integracdo limitada com pipelines de
desenvolvimento dgeis. Ainda assim, avangos recentes bus-
cam tornar essas abordagens mais acessiveis para o desenvol-
vimento seguro de contratos inteligentes em escala.

Ferramentas hibridas t€ém ganhado destaque por com-
binar multiplas técnicas. Um exemplo é o Mythril, que une
andlise simbdlica com heuristicas estéticas, buscando um equi-
librio entre precisdo e desempenho. Além disso, a evolucio
do ecossistema tem incentivado a integragdo de linters, anali-
sadores de fluxo de controle e frameworks de teste baseados
em fuzzing.

2.5 O Framework SmartBugs

O SmartBugs Ferreira et al. [2020] € um framework de
codigo aberto desenvolvido para padronizar a execugdo de
multiplas ferramentas de andlise sobre conjuntos de contratos
inteligentes. Seu principal objetivo é permitir experimentos
replicdveis e compardaveis, fornecendo uma infraestrutura con-
trolada que abstrai detalhes da configuracdo e execugao das
ferramentas, garantindo consisténcia nos resultados.

O framework suporta a execucao em lote de analisadores
estaticos, simbdlicos e dindmicos, incluindo solu¢des popu-
lares como Slither, Mythril, Manticore, Oyente e Securify,
além de ferramentas mais recentes incorporadas ao longo do
tempo, como Oyente+, Securify2 e CPG Contract Checker
(CCC). Cada ferramenta € executada em contéineres isolados
via Docker, assegurando que erros em um analisador nao afe-
tem os demais e permitindo que multiplas versdes de cada
ferramenta sejam avaliadas simultaneamente.

Para lidar com a heterogeneidade das saidas geradas por
cada analisador, o SmartBugs incorpora parsers especificos
por ferramenta, responsaveis por extrair e normalizar os aler-
tas detectados. Apds essa etapa, um parser unificador agrega
os resultados em um formato padronizado, permitindo que
diferentes ferramentas sejam comparadas sob uma mesma
estrutura de dados.

Além disso, o SmartBugs oferece conjuntos de tes-
tes com contratos vulnerdaveis documentados, como o
dataset SmartBugs-Wild Durieux et al. [2020b] e o
SmartBugs-Curated, com contratos cuidadosamente sele-
cionados para cobrir diferentes classes de vulnerabilidades.
Cada contrato inclui anota¢des sobre linhas vulnerdveis, pos-
sibilitando a avaliacdo de métricas como taxa de deteccado de
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verdadeiros positivos, falsos positivos e falsos negativos. Essa
estrutura permite tanto a comparagao direta entre ferramentas
quanto a andlise da evolugdo da detec¢do ao longo do tempo,
como feito neste estudo ao comparar versdes 2.0.10 e 2.0.15
do framework.

O SmartBugs também facilita a padronizacio dos re-
sultados por meio de saidas estruturadas em JSON ou CSV,
integraveis a scripts de processamento que consolidam vul-
nerabilidades detectadas por contrato e por ferramenta. Isso
permite andlises estatisticas detalhadas, mapeamento para
taxonomias como a DASP Top 10 e comparagdo com achados
histéricos, viabilizando pesquisas longitudinais sobre segu-
ranca em contratos inteligentes.

Apesar de suas vantagens, o SmartBugs apresenta limita-
¢oes. A execucdo de algumas ferramentas pode depender de
versdes especificas de compiladores ou bibliotecas externas, e
certas vulnerabilidades modernas, especialmente de natureza
econdmica ou envolvendo intera¢des entre multiplos contra-
tos, podem nio ser detectadas. Além disso, a classificagdo de
vulnerabilidades baseada apenas em nomes ou padrdes estati-
cos limita a identificagdo de falhas contextuais, o que motivou
a adaptacdo metodoldgica realizada neste estudo para andlise
baseada na posicao das vulnerabilidades dentro do cédigo.

Ao combinar isolamento, reprodutibilidade e suporte a
multiplas ferramentas, o SmartBugs se estabelece como uma
infraestrutura essencial para avaliacdo rigorosa da eficicia de
analisadores de contratos inteligentes, sendo amplamente uti-
lizado em pesquisas académicas e benchmarks de seguranca.

2.6 Métricas de Avaliagao: Precisao, Recall

e F1-Score

A simples contagem de vulnerabilidades detectadas nao
¢ suficiente para avaliar a eficicia de uma ferramenta de ané-
lise. Uma ferramenta que reporta muitas vulnerabilidades
pode, ao mesmo tempo, introduzir um grande volume de fal-
sos positivos (FP), o que a tornaria impraticdvel do ponto de
vista operacional. Por outro lado, uma ferramenta extrema-
mente conservadora pode apresentar poucos falsos positivos,
mas ao custo de deixar passar vulnerabilidades reais (FN), o
que compromete diretamente a seguranga do contrato. Para
capturar esse trade-off entre detec¢do e ruido, foram adotadas
trés métricas cldssicas da literatura de avaliacdo de sistemas
de deteccdo: Precisdo, Recall e FI-Score.

Precisao mede a proporcao de alertas corretos em rela-
¢do ao total de alertas emitidos pela ferramenta. Ela é definida
como:

e
VP+FP

Uma precisdo alta indica que a ferramenta gera poucos
alarmes incorretos, reduzindo o esfor¢o analitico do auditor
ao filtrar resultados irrelevantes.

Recall (também chamado de cobertura ou sensitivity)
representa a capacidade da ferramenta de detectar de fato as
vulnerabilidades presentes no contrato:

Precisdo =

VP
VP+ FN

Um valor elevado de recall significa que a ferramenta é
capaz de cobrir uma parcela significativa das vulnerabilidades

Recall =
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reais, ainda que a custa de ruido.

No contexto de seguranca, hd um dilema cldssico: ferra-
mentas com alto recall tendem a gerar muitos falsos positivos,
enquanto ferramentas com alta precisdo podem deixar passar
vulnerabilidades criticas. Para conciliar essas duas perspec-
tivas, utiliza-se o F1-Score, que € a média harmonica entre
precisdo e recall:

Fl-Score — 2 - Precfls~ao - Recall
Precisdo + Recall

A escolha do F1-Score como métrica agregadora se jus-
tifica especialmente neste estudo, pois ndo hd interesse em
privilegiar exclusivamente a reduc¢do de falsos positivos ou a
maximizagao de detec¢do. O objetivo € capturar o equilibrio
operacional entre usabilidade prética (baixa taxa de ruido)
e eficdcia real de deteccdo. A inclusdo dessas métricas, au-
sentes em estudos anteriores, permite uma compara¢ao mais
direta entre ferramentas e fornece um ponto de referéncia
replicdvel para andlises futuras.

3 Metodologia

Para investigar o estado atual da seguranca automatizada
de contratos inteligentes na Ethereum, foram conduzidos trés
experimentos independentes, com objetivos e conjuntos de
dados distintos, mas utilizando a mesma infraestrutura de
execucdo baseada no framework SmartBugs

34 Ferramentas Utilizadas

Ambas as andlises foram conduzidas utilizando a infra-
estrutura do SmartBugs versdo 2.0.10, configurado com
as seguintes ferramentas de andlise: Honeybadger (com-
mit ff30c9a); Maian (commit 4bab09a); Manticore (versao
0.3.7); Mythril (versdo 0.24.7); Osiris (commit dlecc37);
Oyente (commit 480e725); Securify (versdo 1); Slither (ver-
$20 0.10.4); Smartcheck (versao 1); Confuzzius (versao 0.0.1);
Conkas (commit 4e0f256); Semgrep (commit c3a9f40); Sfuzz
(commit 48934c0); Solhint (versdo 3.3.8)!. Essas ferramentas
foram executadas em ambiente Linux, utilizando contéine-
res Docker fornecidos pelo préprio SmartBugs para garantir
reprodutibilidade e isolamento.

Durante o desenvolvimento deste trabalho, o SmartBugs
passou por uma série de atualizacdes, evoluindo da versdo
2.0.10, utilizada na execucdo inicial do segundo experi-
mento, até a versao 2.0.15. Essa nova versdo incorporou
trés ferramentas adicionais (Oyente+, Securify2 e CPG Con-
tract Checker (CCC)) e introduziu atualizagdes relevantes em
ferramentas j4 existentes, como Slither, Mythril, Semgrep e
Solhint. Além disso, diversos bugs, especialmente relaciona-
dos ao parser e ao processo de normalizacao dos relatérios,
foram corrigidos. Para avaliar o impacto dessas mudangas
na capacidade de deteccdo, o segundo experimento foi repli-
cado com a versdo mais recente do framework, permitindo
uma andlise comparativa entre os resultados obtidos nas duas
versoes.

1 As cinco dltimas ferramentas listadas — Confuzzius, Conkas, Semgrep,
Sfuzz e Solhint — ndo faziam parte do conjunto de ferramentas utilizado no
SmartBugs versdo 1.0.0 (2020).
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3.2 Experimento 1: Analise da Ocorréncias
de Vulnerabilidades

Este experimento teve como foco principal examinar a
ocorréncia das vulnerabilidades detectadas por ferramentas
automatizadas em contratos inteligentes implantados recen-
temente na rede Ethereum buscando identificar tendéncias,
recorréncias e possiveis mudancas no perfil das falhas ao
longo do tempo. Naturalmente, os padrdes observados depen-
dem do conjunto analisado e, portanto, diferentes amostras de
contratos podem produzir distribui¢des distintas de categorias
e frequéncias de vulnerabilidades

Foram selecionados inicialmente os 500 contratos inte-
ligentes mais recentemente verificados na Etherscan no dia
26 de abril de 2025 Esses contratos podem ser encontrados
nos artefatos que acompanham este artigo 2. Contratos ve-
rificados s@o aqueles cujo cédigo-fonte foi disponibilizado
publicamente e corresponde exatamente ao cddigo implan-
tado na blockchain, conferindo transparéncia e autenticidade
Etherscan [2025].

A obtencdo dos enderecos dos contratos foi realizada
por meio de uma técnica de extracdo automatizada da se¢do
Verified Contracts do Etherscan. Em seguida, para cada ende-
rego, utilizou-se a API publica da Etherscan para recuperar o
codigo-fonte.

Para esta andlise, foram considerados apenas contratos
em Solidity e de arquivo tinico. Contratos verificados compos-
tos por multiplos arquivos foram descartados para simplificar
0 processamento e evitar inconsisténcias no ambiente de com-
pilagdo. Apds a filtragem, o niimero de contratos inteligentes
foi reduzido para 215, os quais foram utilizados como base
para este experimento.

3.3 Experimento 2: Replicacao de Analise
em Contratos com Vulnerabilidades
Conhecidas
O segundo experimento teve como objetivo principal

replicar um estudo publicado em 2020 Durieux et al. [2020b],
utilizando os mesmos contratos com falhas conhecidas, mas
aplicando as versdes atualizadas das ferramentas disponiveis
no SmartBugs. Com isso, buscou-se avaliar a eficdcia atual
das ferramentas na detec¢do de vulnerabilidades ja documen-
tadas.

Foi utilizado o conjunto de contratos vulnerdveis conhe-
cido como smartBugs-curated Durieux ez al. [2020a], que
contém contratos com falhas intencionais e previamente cata-
logadas, cobrindo multiplas categorias da taxonomia DASP
Top 10.

Foram utilizadas as mesmas ferramentas do Experimento
1 (mais as cinco extras que estao no final da lista — Se¢do 3.1)
sobre os contratos vulnerdveis. Os achados de vulnerabilida-
des foram comparados com os relatérios originais de 2020
para cada categoria. A precisdo das ferramentas foi medida
em termos de taxa de acerto por tipo de vulnerabilidade.

Este experimento foi executado em duas etapas distintas:
inicialmente com a versdo 2.0.10 do SmartBugs, replicando
a configuragdo mais préxima possivel do estudo de 2020, e
posteriormente com a versdo 2.0. 15, que inclui novas fer-
ramentas, correcdes de parsing e atualiza¢des. Os achados

Zhttps://github.com/regras/smart_contract_sec
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foram comparados com os relatérios originais de 2020 para
cada categoria de vulnerabilidade, permitindo avaliar ndo ape-
nas a evolugdo da precisdo das ferramentas, mas também o
impacto das mudancas internas do framework. A precisdo
foi medida em termos de taxa de acerto por tipo de vulne-
rabilidade em ambas as versdes, possibilitando uma andlise
comparativa.

3.4 Extracao e Processamento dos
Resultados

Os resultados produzidos pelas ferramentas foram expor-
tados para arquivo CSV, onde cada linha contém informacdes
sobre a execugdo de cada contrato, incluindo:

e filename: identificador do contrato (caminho do ar-
quivo);

* toolid: ferramenta utilizada para a anélise;

* toolmode: modo de execugdo da ferramenta;

* parser_version: versdo do parser utilizado;

* runid: identificador Unico da execucao;

* start: tempo de inicio da execugao;

* duration: tempo de execucdo da andlise;

e exit_code: cdédigo de saida da execugdo (indicando
sucesso ou falha);

e findings: vulnerabilidades encontradas;

» infos: informagdes adicionais sobre a execugdo;

* errors: erros encontrados durante a execugao;

e fails: falhas no processo de andlise.

No Experimento 2, os resultados foram inicialmente pro-
cessados com scripts em Python para geracdo de estatisticas
descritivas, identificacdo de contratos com multiplas vulnera-
bilidades e agrupamento dos achados por tipo e frequéncia,
a partir das colunas findings. Nesta primeira etapa, foi
utilizada a tabela vulnerabilities_mapping do préprio
SmartBugs, que associa os alertas emitidos pelas ferramen-
tas aos rétulos de vulnerabilidade com base na nomenclatura
empregada no estudo de 2020.

Em um segundo processamento, conduzido de forma
independente, os mesmos resultados foram reinterpretados
utilizando uma estratégia de mapeamento alternativa, pro-
posta neste trabalho, que desconsidera o nome atribuido pela
ferramenta e utiliza como critério primdrio a posi¢ao da ocor-
réncia no cédigo-fonte. Essa abordagem permitiu reclassificar
achados que anteriormente eram descartados ou agrupados de
forma imprecisa, gerando uma visdo mais granular da cober-
tura real das ferramentas e revelando discrepancias relevantes
nos resultados produzidos pelo framework. Em casos como
o Slither, a auséncia de um mapeamento preciso para vulne-
rabilidades que detectavam, combinada com bugs no parser,
resultava em zero deteccdes ou classificagdes errdneas. A
metodologia alternativa, ao usar a localizacdo exata da falha
no cédigo (linha/coluna) como chave de correspondéncia, per-
mitiu resgatar vulnerabilidades que haviam sido corretamente
identificados pelas ferramentas, mas perdidos no processo de
agregacdo e rotulagem do framework.
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3.5 Experimento 3: Avaliacao Ampliada

com o Dataset Curado (142 Contratos)

e Inclusao de Falsos

Positivos/Negativos

Embora o Experimento 2 tenha reproduzido fielmente
a configuragdo do estudo original de 2020 com um conjunto
de 69 contratos curados, o ecossistema analisado evoluiu
significativamente nos dltimos anos. A base de contratos do
conjunto SmartBugs-Wild foi expandida para 142 amostras
com vulnerabilidades documentadas manualmente, o que abre
espaco para uma andlise mais abrangente e representativa do
estado atual das ferramentas de deteccao.

Com o objetivo de registrar uma linha de base atualizada
para futuras pesquisas, este terceiro experimento estende o
conjunto analisado para os 142 contratos curados disponiveis
em 2025. Diferente dos estudos anteriores, que se limitaram a
relatar apenas a taxa de deteccdo, aqui também sdo incluidas
estatisticas de Falsos Positivos (FP) e Falsos Negativos (FN),
elementos criticos para uma avaliacdo mais realista da utili-
dade pratica das ferramentas. Essa € uma lacuna ainda nao
preenchida na literatura, e o registro desses dados fornece um
ponto de comparacio valioso para trabalhos subsequentes.

Cada uma das ferramentas suportadas pelo SmartBugs
foi executada individualmente sobre o conjunto completo de
142 contratos. As vulnerabilidades reais foram previamente
rotuladas manualmente (totalizando 221 ocorréncias confir-
madas). Os achados das ferramentas foram entdo agregados
e unificados para eliminar duplica¢des internas, resultando
em 216 detecgdes automaticas unicas.

Esse experimento serd mantido como base referencial
para comparacdes futuras, servindo como linha de base esten-
dida além dos 69 contratos ja analisados pela literatura.

4 Resultados

42 Ocorréncia de Vulnerabilidades em

Contratos Recentes - Experimento 1

A Tabela 1 apresenta a distribui¢do percentual dos 215
contratos afetados pelas principais categorias de vulnerabi-
lidades, conforme definido pela taxonomia DASP Top 10.
E importante destacar que um mesmo contrato pode apre-
sentar multiplas vulnerabilidades, pertencentes a diferentes
categorias.

Tabela 1. Distribuicdo de contratos no Experimento 1 de acordo
com as categorias de vulnerabilidades DASP Top 10

Tipo de Vulnerabilidade

Contratos afetados (%)

Unknown Unknowns 100,0
Arithmetic 20,9
Denial of Service 17,2
Access Control 9,3
Unchecked Low Calls 8,4
Time Manipulation 4,6
Front Running 0,0
Short Address 0,0
Bad Randomness 0,0
Reentrancy 0,0

Destaca-se a inexisténcia de vulnerabilidades Front Run-
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ning, Short Address, Bad Randomness e Reentrancy no con-
junto analisado. Existem duas interpretacdes possiveis para
essa auséncia: (i) essas classes de vulnerabilidade podem ter
sido eliminadas por boas praticas e ferramentas de desenvol-
vimento modernas (como bibliotecas da OpenZeppelin e me-
lhorias no compilador Solidity) ou (ii) pode haver limitagdes
nos detectores atuais, que talvez ndo estejam mais sensiveis
as variantes dessas falhas como eram anteriormente. A defi-
ni¢do exata depende de uma andlise manual aprofundada dos
contratos, o que pode ser foco de um trabalho futuro.

O mapeamento dos achados para categorias padroniza-
das revelou uma limitacdo conceitual importante: aproxima-
damente 98% das vulnerabilidades apontadas nio se enqua-
draram diretamente nas categorias do DASP Top 10, adotadas
como base para o estudo. Essas vulnerabilidades, embora
validas e relevantes, foram classificadas como Unknown Unk-
nowns por ndo apresentarem correspondéncia clara com as
outras categorias definidas por esse modelo especifico. Esses
achados frequentemente englobam uma gama de problemas
que vao além das classicas falhas de exploragdo diretas da
taxonomia. Muitas dessas deteccdes sao mais por questdes
de padronizag@o e boas praticas de codificagdo. Porém, pode
haver erros de uso da linguagem Solidity ou até mesmo pro-
blemas na tentativa de melhorar a eficiéncia ou otimizar o
uso do gés, resultando em novas vulnerabilidades relevan-
tes, que ndo se enquadram perfeitamente nas categorias do
DASP. Exemplos incluem SOLIDITY_ERC20_APPROVE, que
sinaliza padrdes problematicos no uso da funcio approve de
tokens ERC20, e no_slippage_check, uma falha critica em
aplicacdes de financas descentralizadas (DeFi) que, se ndo
mitigada, pode levar a perdas financeiras significativas para o
usudrio devido a derrapagem de precos.

Assim, embora o DASP englobe categorias amplas, ele
ndo cobre diversas classes de vulnerabilidades hoje recorren-
tes no ecossistema, o que explica a discrepancia, assumindo
que as ferramentas néo estejam equivocadas e que o DASP
ndo esteja obsoleto.

Esse resultado evidencia uma desconexdo entre a taxono-
mia DASP Top 10 (formulada em 2018) e o panorama atual
de desenvolvimento de contratos inteligentes. Desde a popu-
larizag@o dos protocolos DeFi e o surgimento de ecossistemas
mais complexos como zkSync, Base, Arbitrum e solucdes
L2 otimizadas para rollups, novas classes de vulnerabilida-
des passaram a surgir associadas a liquidez, atualizacdes de
proxy, ordculos de preco e interacdes entre contratos — as-
pectos ndo contemplados no modelo original do DASP. Na
prética, a auséncia de uma taxonomia atualizada leva a uma
sub-representacdo dessas falhas emergentes nas andlises au-
tomatizadas, dificultando a criagdo de métricas comparaveis
entre ferramentas e periodos histéricos.

Diversos trabalhos recentes t€m discutido alternativas
de classificagdo. Uma linha de pesquisa busca alinhar as vul-
nerabilidades de smart contracts a terminologia da Common
Weakness Enumeration (CWE) Staderini et al. [2020], per-
mitindo interoperabilidade com bases de dados de seguranga
tradicionais, além de facilitar a ado¢@o dessa taxonomia por
ferramentas de auditoria ja consolidadas na engenharia de
software. Outra proposta € o uso de taxonomias especificas
para blockchain, como o Openscv Vidal et al. [2024], que
incorpora falhas de design e de 16gica econdmica, indo além
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de bugs puramente sintdticos ou de execucdo. Mais recen-
temente, surgem abordagens baseadas em Large Language
Models que, em vez de mapear achados para categorias fixas,
propdem classificagcdes dinamicas orientadas por similaridade
semantica entre vulnerabilidades documentadas, permitindo a
identificacdo de padrdes mesmo em casos nao previstos pelas
taxonomias tradicionais.

Dessa forma, os resultados apresentados nio apenas evi-
denciam o descompasso entre as ferramentas atuais e a taxo-
nomia original, mas também refor¢cam a necessidade de um
modelo mais adaptativo de classificacio — potencialmente
hibrido, combinando mapeamento para CWE, categorias eco-
ndmicas especificas de DeFi e mecanismos de agrupamento
automatizado assistidos por LLMs.

Além disso, a classificacdo obtida reflete especifica-
mente o uso da taxonomia DASP Top 10. Caso taxonomias
alternativas, como OWASP Smart Contract Top 10, fossem
aplicadas, a distribuicdo entre categorias seria diferente, em-
bora isso ndo altere o fato estrutural de que a maioria dos
alertas das ferramentas ndo se encaixa plenamente em mode-
los tradicionais de classificagdo.

4.2 Contratos com Vulnerabilidades

Conhecidas - Experimento 2

Ao todo, o conjunto SmartBugs-curated era original-
mente documentado com 115 vulnerabilidades previamente
catalogadas, distribuidas entre as diferentes categorias da ta-
xonomia DASP Top 10 utilizadas no estudo de 2020. No
entanto, durante a reproducao deste experimento, constata-
mos que a propria base de referéncia evoluiu ao longo dos
ultimos anos: novas vulnerabilidades foram oficialmente adi-
cionadas a anotacdo dos mesmos contratos, elevando o total
para 129 ocorréncias conhecidas.

Dessa forma, embora os contratos analisados permane-
¢am exatamente 0s mesmos, o conjunto de vulnerabilidades
de referéncia nio é mais estatico. A diferenca observada nos
resultados, portanto, ndo decorre de alteragdes no codigo-
fonte ou na natureza intrinseca das falhas, mas sim de dois
fatores distintos: (i) a evolugdo das ferramentas utilizadas e
(ii) a atualizacdo do mapeamento das vulnerabilidades reco-
nhecidas pela comunidade.

E importante destacar que o conjunto SmartBugs Cura-
ted foi construido especificamente para cobrir as categorias
classicas do DASP Top 10, incluindo exemplos intencionais
de cada classe. Essa natureza controlada explica a alta cor-
respondéncia entre as vulnerabilidades anotadas e o DASP,
em contraste com os contratos coletados no Experimento 1,
que refletem préticas e padrdes contemporaneos de desenvol-
vimento e ndo foram selecionados com base em taxonomias
tradicionais.

A Tabela 2 resume a evolucao na deteccio de vulnerabi-
lidades ao longo do tempo, considerando diferentes versdes
do SmartBugs e metodologias de processamento. Observa-se
que, embora os contratos analisados permane¢am os mesmos
do estudo original de 2020, o total de vulnerabilidades catalo-
gadas aumentou de 115 para 129, refletindo a atualizagdo da
base de referéncia e o refinamento continuo de vulnerabilida-
des pela comunidade.

Na execucdo com a versdo 2.0.10 do SmartBugs utili-
zando o mapeamento padrdo, a taxa de deteccio geral caiu de
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Tabela 2. Evolucdo na deteccio das vulnerabilidades entre 2020 e 2025

Categoria | Total | v1.0.0 | v2.0.10 | v2.0.10% | v2.0.15%
Access Control 24 5 3 9 22
Arithmetic 22 19 8 20 22
Bad Randomness 34 0 0 4 34
Denial of Service 14 0 3 8 14
Front Running 7 2 3 3 6
Other 5 0 3 2 4
Reentrancy 8 7 5 6 8
Short Addresses 1 0 0 1 1
Time Manipulation 5 3 3 5 5
Unchecked Low Calls 9 9 3 9 9
Total ‘ 129 ‘ 48 ‘ 28 67 125

* indica que foram utilizados critérios de mapeamento baseados na posi¢io da vulnerabilidade no cdédigo, e ndo apenas no nome atribuido pela ferramenta.

48 para 28 vulnerabilidades detectadas, evidenciando falhas
nas heuristicas internas do framework ou limitacdes de com-
patibilidade com padrdes antigos. Quando a mesma versao
foi processada com a metodologia de reclassificacdo baseada
na posi¢do das vulnerabilidades (v2.0.10%), o nimero de
deteccOes subiu para 67, mostrando que parte da perda de
acuréacia ndo se deve as ferramentas em si, mas ao modo como
os achados eram agregados e rotulados.

A versdo 2.0.15%, que incorpora corre¢des de parser,

novas ferramentas (Oyente+, Securify2 e CPG Contract
Checker) e atualizacdes nas ferramentas jd existentes, conse-
guiu identificar 125 das 129 vulnerabilidades, um aumento
significativo em relag@o as execugdes anteriores. Destaca-se,
por exemplo, a ferramenta Slither, que na versio 2.0.10 nio
detectou vulnerabilidades, mas na versao 2.0.15 identificou
94 delas, evidenciando melhorias concretas na cobertura de
andlise.
A comparacdo entre as versdes 2.0.10 e 2.0.15 na tabela
3 evidencia um comportamento assimétrico quanto a evolu-
¢do das ferramentas de andlise. Na versdo 2.0.10, apenas
quatro ferramentas (mythril, osiris, confuzzius e conkas) apre-
sentaram taxas de deteccdo superiores a 20%, com conkas
liderando com 34,88%. A maioria permaneceu com 0% de
cobertura, demonstrando baixa capacidade de identificagdo
frente as 129 vulnerabilidades reais presentes no conjunto
analisado.

Com a atualizacdo para a versdo 2.0.15, observa-se
uma mudanga expressiva, com ferramentas anteriormente ine-
ficazes apresentando desempenho significativamente superior.
Slither, que ndo detectava nenhuma vulnerabilidade na versao
anterior, passou a identificar 72,87% das falhas, emergindo
como a ferramenta com melhor desempenho isolado. Da
mesma forma, solhint, ccc e smartcheck exibiram resultados
relevantes.

Ferramentas como conkas, osiris € confuzzius mantive-
ram estabilidade entre as versoes, indicando maturidade ou
estagnacdo em sua capacidade de deteccdo. J4 mythril apre-
sentou ganho marginal, sugerindo evolu¢ao incremental. Em
contrapartida, ferramentas como maian, manticore e securify
permaneceram com 0% de detec¢do em ambas as versdes,
demonstrando que a atualizacdo do ambiente SmartBugs nao
implica, por si s6, melhorias uniformes.

Esses resultados reforcam que a eficicia das ferramentas

deve ser avaliada de forma individualizada e ndo apenas em
fun¢do da versdo do framework utilizado. A disparidade ob-
servada indica que a evolucdo do ecossistema de andlise estd
acontecendo de maneira desigual, com algumas ferramentas
avancando rapidamente enquanto outras permanecem com-
pletamente inoperantes frente as vulnerabilidades conhecidas.

Esses resultados reforcam que a evolucao das ferramen-
tas e o refinamento metodolégico tém impacto direto na acu-
rcia, sendo que a combinagdo de novas versdes e estratégias
de reclassificacdo € essencial para compreender corretamente
a eficdcia das andlises automatizadas.

4.3 Contratos com Vulnerabilidades
Conhecidas - Experimento 3

A Tabela 4 evidencia uma disparidade significativa entre
as estratégias adotadas pelos analisadores. Ferramentas como
Slither e Solhint apresentam altos valores de recall (0.810 e
0.733, respectivamente), indicando que conseguem sinalizar
a maior parte das vulnerabilidades reais — porém, a custa de
uma quantidade extremamente elevada de falsos positivos, o
que se reflete diretamente em suas baixas precisdes (0.093
e 0.022). Por outro lado, ferramentas como Confuzzius e
CCC exibem um equilibrio mais interessante entre deteccao
e ruido, com F1-scores de 0.381 e 0.412, sugerindo um com-
portamento mais alinhado a cendrios de uso pratico, onde a
triagem manual de alertas possui custo real.

Para este experimento, o conjunto ampliado de 142 con-
tratos contém 221 vulnerabilidades reais previamente anota-
das, nimero que serve como referéncia direta para o célculo
de VP, FP e FN apresentado na Tabela 4.

Um ponto importante é que estes resultados ndo pos-
suem referéncia direta na literatura anterior. Estudos como o
de Thomas et al. (2020) Durieux et al. [2020b] reportaram
apenas a cobertura bruta (VP), sem registrar explicitamente
FP e FN em escala unificada. Portanto, esta andlise representa
um primeiro esfor¢o sistematico de quantificacdo da relacio
sinal/ruido dessas ferramentas sob um mesmo conjunto cu-
rado e consolidado. A auséncia de uma linha histérica impede
comparacdes temporais, mas abre espaco para que futuros tra-
balhos utilizem esta tabela 4 como referéncia para monitorar
a maturidade das ferramentas de seguranga no contexto de
contratos inteligentes.
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Tabela 3. Comparagdo da taxa de cobertura de vulnerabilidades por ferramenta nas versodes 2.0.10 e 2.0.15

Ferramenta Real Detec. (2.0.10) Taxa (%) ‘ Detec. (2.0.15) Taxa (%) Variacao (%)
honeybadger 129 2 1.55 2 1.55 0.00
maian 129 0 0.00 0 0.00 0.00
manticor 129 0 0.00 0 0.00 0.00
mythril 129 38 29.46 39 30.23 +0.77
securify 129 0 0.00 0 0.00 0.00
slither 129 0 0.00 94 72.87 +72.87
smartcheck 129 0 0.00 42 32.56 +32.56
osiris 129 31 24.03 31 24.03 0.00
confuzzius 129 39 30.23 39 30.23 0.00
conkas 129 45 34.88 45 34.88 0.00
semgrep 129 0 0.00 21 16.28 +16.28
sfuzz 129 0 0.00 0 0.00 0.00
solhint 129 0 0.00 77 59.69 +59.69
ethlint 129 0 0.00 0 0.00 0.00
cce 129 0 0.00 72 55.81 +55.81
securify?2 129 0 0.00 0 0.00 0.00
oyente+ 129 0 0.00 24 18.60 +18.60

Tabela 4. Cobertura de deteccdo por ferramenta com métricas de
desempenho

Ferramenta VP FP FN

Precisio Recall F1

honeybadger 2 35 219 0.054 0.009 0.015
maian 0 0 221 - 0.000 -
manticore 0 0 221 - 0.000 -
mythril 86 463 135 0.157 0.389 0.223
securify 0 0 221 - 0.000 -
slither 179 1735 42 0.093  0.810 0.166
smartcheck 122 1352 99  0.083  0.552 0.145
osiris 96 420 125 0.186 0.434 0.260
confuzzius 113 259 108 0.304 0.511 0.381
conkas 127 705 94 0.152  0.575 0.241
semgrep 39 1009 182 0.037 0.176 0.062
sfuzz 0 0 221 - 0.000 -
solhint 162 7108 59 0.022  0.733 0.043
ethlint 0 0 221 - 0.000 -
cce 163 407 58 0285 0.737 0.412
securify2 0 0 221 - 0.000 -
oyente+ 78 234 143 0250 0352 0.293

Além da andlise por ferramenta, também foi realizada a
segmentacao dos achados por categoria de vulnerabilidade se-
guindo a taxonomia DASP Top 10, o que permite observar nao
apenas quantas vulnerabilidades foram detectadas, mas quais
tipos de vulnerabilidade recebem maior ou menor atengao
das ferramentas modernas. A distribuicdo estd apresentada
na Tabela 5:

A distribuicdo revela que Unchecked Low-Level Calls,
Reentrancy e Bad Randomness concentram a maior parte das
vulnerabilidades reais, o que estd em linha com incidentes
histéricos na Ethereum, como o ja consolidado DAO Hack
e diversas exploragdes envolvendo sorteios pseudoaleatérios
e envio inseguro de fundos. Em contraste, categorias como
Short Addresses e Other aparecem apenas de forma residual,
refor¢cando que algumas classes de falhas presentes em bench-
marks académicos possuem baixa representatividade pratica

Tabela 5. Distribuicdo de vulnerabilidades por categoria

Categoria Total Real Detectadas
Access Control 24 22
Arithmetic 23 23
Bad Randomness 34 34
Denial of Service 14 14
Front Running 7 6
Other 5 4
Reentrancy 31 30
Short Addresses 1 1
Time Manipulation 7

Unchecked Low-Level Calls 75 75
Total 221 216

no ecossistema real de contratos.

Vale destacar que a alta incidéncia de certas categorias
ndo implica necessariamente maior cobertura. Em especial,
vulnerabilidades como Front Running e Time Manipulation,
embora menos frequentes, apresentam um padrdo de sub-
detec¢do em diversas ferramentas, indicando que o desafio
nesses casos estd mais relacionado ao contexto de execugdo e
semantica de transac¢do do que a simples andlise sintdtica do
codigo.

5 Conclusao

Este estudo replicou e expandiu uma andlise histdrica da
segurancga de contratos inteligentes na rede Ethereum, conside-
rando a evolugdo do framework SmartBugs e das ferramentas
de andlise disponiveis entre 2020 e 2025. A execugdo de expe-
rimentos em duas versdes do SmartBugs, aliada a metodologia
de reclassifica¢do baseada na posicdo das vulnerabilidades,
permitiu revelar limitacdes e avancos nao perceptiveis em
andlises tradicionais baseadas apenas na nomenclatura dos
alertas.

Os resultados demonstram que, embora a versao mais
recente do SmartBugs (2.0.15%) tenha alcangado uma co-
bertura quase completa (125 de 129 vulnerabilidades detec-
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tadas), versdes anteriores apresentaram regressoes significa-
tivas. Além disso, a evolucdo do préprio conjunto de vul-
nerabilidades catalogadas, de 115 para 129, evidencia que
parte do desafio esta relacionado a classificag@o correta das
falhas. Outro resultado importante foi a observacdo de que
98% dos achados do Experimento 1 foram classificados como
“outros” refor¢a que a DASP Top 10 estd desatualizada e ndo
reflete integralmente o panorama atual de vulnerabilidades
em contratos inteligentes.

Este estudo evidencia ainda que métricas agregadas,
como numero médio de vulnerabilidades detectadas por con-
trato, podem mascarar problemas metodolégicos e limitacdes
de ferramentas. A andlise detalhada por versao, ferramenta e
categoria revelou diferencas significativas entre execugoes e
destacou o impacto das novas ferramentas e corregcdes imple-
mentadas.

Por fim, o Experimento 3 introduziu uma contribui¢do
inédita ao estabelecer uma linha de base estendida com 142
contratos curados, incluindo o registro explicito de falsos
positivos e falsos negativos por ferramenta. Essa etapa ndo
apenas amplia a validade externa dos resultados anteriores,
mas também cria um ponto de ancoragem para comparacdes
longitudinais futuras, permitindo que evolucdes do ecossis-
tema possam ser medidas com maior precisao e menos ambi-
guidade interpretativa.

Como trabalhos futuros, planeja-se:

¢ Inclusdo de ferramentas baseadas em Large Language
Models (LLMs) para ampliar a cobertura e precisdo na
identifica¢@o de vulnerabilidades;

» Expansdo da andlise para contratos multi-arquivo e novas
amostras mais recentes da rede Ethereum;

* Andlise mais profunda de casos de vulnerabilidades nio
detectadas por nenhuma ferramenta, buscando compre-
ender lacunas persistentes na andlise automatizada;

* Exploragdo da constru¢do de datasets mais robustos e
escaldveis para avaliacdo de ferramentas de andlise de
vulnerabilidades.

Tais medidas visam tornar os estudos de seguranga em
contratos inteligentes mais precisos, compardveis e relevantes
para o avango seguro da tecnologia blockchain, contribuindo
para uma avaliacdo longitudinal mais consistente das ferra-
mentas automatizadas.
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