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Resumo. A segurança de contratos inteligentes é um problema na blockchain Ethereum e todas as outras baseadas em
EVM como a Hyperledger Besu, por exemplo. Este trabalho apresenta uma análise empírica da capacidade de detecção de
vulnerabilidades em smart contracts Ethereum, com foco na evolução e eficácia das ferramentas utilizadas pelo conjunto de
ferramentas SmartBugs. Em um primeiro experimento, foram executadas em 215 contratos reais coletados do Etherscan,
revelando que 98% dos alertas gerados pelas ferramentas foram classificados como “outros”, o que indica que a taxonomia
DASP Top 10 encontra-se desatualizada frente ao cenário atual de desenvolvimento. Em outros experimentos, avaliamos a
taxa de detecção real sobre uma base de contratos propositalmente vulneráveis, utilizando as versões 2.0.10 e 2.0.15 do
SmartBugs. Além das ferramentas originais, foram incorporados novos analisadores estáticos e dinâmicos, foi adotada uma
metodologia mais refinada de validação, baseada na localização exata da vulnerabilidade no código-fonte, e não apenas
na correspondência nominal do tipo de falha. Os resultados mostram que, apesar da evolução entre as versões, ainda
existem discrepâncias significativas entre as ferramentas que compõem o conjunto SmartBugs, com algumas apresentando
melhorias substanciais na precisão enquanto outras mantêm desempenho abaixo do esperado. Os achados indicam que a
classificação de vulnerabilidades utilizada nos estudos iniciais não reflete o estado atual do ecossistema, e que a ausência
de padronização na validação dos achados ainda compromete análises comparativas.

Abstract. The security of smart contracts is a recurring issue not only in the Ethereum blockchain but also in other
EVM-based networks such as Hyperledger Besu. This work presents an empirical analysis of the vulnerability detection
capabilities of smart contract analysis tools, focusing on the evolution and effectiveness of the tools integrated into the
SmartBugs framework. In the first experiment, 215 real contract samples collected from Etherscan were analyzed, revealing
that 98% of the alerts generated by the tools were classified as “other”, which indicates that the DASP Top 10 taxonomy,
used in previous studies, is outdated when compared to the current development landscape. In other experiments, we
evaluated the actual detection rate on a dataset of intentionally vulnerable contracts, using versions 2.0.10 and 2.0.15 of
SmartBugs. In addition to the original tools, new static and dynamic analyzers were incorporated, and a more refined
validation methodology was adopted, based on the exact location of the vulnerability in the source code, rather than solely
on nominal matching of the vulnerability type. The results show that, despite the evolution between versions, significant
discrepancies still exist among the tools included in SmartBugs, with some showing substantial improvements in precision
while others maintain performance below expectations. The findings indicate that the vulnerability classification used in
the initial studies no longer reflects the current state of the ecosystem, and that the lack of standardization in the validation
process still compromises comparative analyses.
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1 Introdução
A plataforma Ethereum popularizou o uso de contratos

inteligentes (smart contracts) como uma forma descentrali-
zada e autônoma de executar lógica computacional na block-
chain. Aplicações como exchanges descentralizadas (DEXs),
jogos, tokens e protocolos de finanças descentralizadas (DeFi)
são hoje amplamente construídas sobre esses contratos, que
movimentam bilhões de dólares diariamente. Entretanto, a
complexidade e a imutabilidade dos smart contracts tornam a
segurança um fator crítico: uma vulnerabilidade explorada
pode levar à perda irreversível de fundos, como evidenciado
por ataques históricos como o DAO Hack (2016) Mehar et al.
[2017].

Diante desse cenário, a comunidade de segurança tem se

mobilizado para desenvolver ferramentas capazes de detectar
automaticamente vulnerabilidades em contratos inteligentes,
utilizando técnicas de análise estática, simbólica e dinâmica
Salzer and Di Angelo [2019] Pinna et al. [2019]. O ecos-
sistema de ferramentas inclui soluções como Slither Feist
et al. [2019], Mythril Mueller [2018], Manticore Mossberg
et al. [2019] e Oyent JJ and Singh [2024], cada uma com
abordagens e níveis de precisão distintos. Uma lista completa
das ferramentas de análise automatizada configuradas no fra-
mework SmartBugs e utilizadas neste estudo, juntamente com
suas versões específicas, será apresentada na Seção 3.1. Em
paralelo, frameworks como o SmartBugs surgiram para facili-
tar a execução comparativa dessas ferramentas, padronizando
a avaliação de seus resultados.
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Apesar dos avanços nas técnicas de análise automati-
zada, ainda há lacunas na literatura no que diz respeito à
evolução histórica da segurança em contratos inteligentes. A
maioria dos estudos se concentra em análises pontuais ou
avaliações de ferramentas sobre conjuntos fixos de contratos.
Há pouca investigação sobre como essas ferramentas evoluem
com o tempo — tanto em termos de cobertura de vulnerabili-
dades quanto em mudanças na própria taxonomia das falhas
reconhecidas pela comunidade. Além disso, atualizações
de ferramentas, inclusão de novos analisadores e correções
em parsers podem alterar significativamente os resultados
de experimentos anteriores, o que raramente é discutido nos
estudos disponíveis.

Este artigo apresenta uma análise baseada em três expe-
rimentos distintos, ambos concebidos para permitir uma com-
paração com os resultados de um estudo conduzido em 2020
utilizando o framework SmartBugs Durieux et al. [2020b]. No
primeiro experimento, analisamos um novo conjunto de con-
tratos inteligentes recentemente verificados na rede Ethereum,
coletados diretamente da plataforma Etherscan. A compara-
ção com os achados de 2020 permite avaliar mudanças nas
ocorrências das vulnerabilidades detectadas e inferir tendên-
cias evolutivas no desenvolvimento de contratos.

No segundo experimento, executamos novamente as fer-
ramentas sobre o conjunto de contratos curado usado no es-
tudo de 2020. Essa comparação visa avaliar a eficácia atual
das ferramentas frente a casos conhecido. Um resultado ines-
perado surgiu nesse segundo experimento: uma versão mais
atual 2.0.10 do SmartBugs apresentou uma queda signifi-
cativa na taxa de detecção de vulnerabilidades, reduzindo de
48 vulnerabilidades identificadas para apenas 28. Entretanto,
ao aplicarmos uma metodologia própria de reclassificação
baseada na localização das vulnerabilidades nos parses gera-
dos, essa mesma versão passou a detectar 67 vulnerabilidades,
revelando que parte das falhas de identificação estava relacio-
nada não à capacidade das ferramentas, mas às heurísticas de
agregação e rotulagem adotadas pelo framework.

No terceiro experimento, estendemos a análise para o
conjunto completo de 142 contratos curados disponíveis, indo
além dos 69 contratos originais do estudo de 2020. Este
experimento inclui, além da taxa de detecção, o registro de
falso positivos (FP) e falso negativos (FN), elementos essen-
cias para uma avaliação mais realista da utilidade prática das
ferramentas.

As próximas seções estão organizadas da seguinte forma.
A Seção 2 apresenta os fundamentos teóricos necessários
para contextualizar o estudo, incluindo tipos de vulnerabilida-
des, abordagens de análise e o funcionamento do framework
SmartBugs. A Seção 3 descreve a metodologia adotada e os
três experimentos conduzidos. A Seção 4 reúne os resulta-
dos obtidos, organizados conforme cada experimento. Por
fim, a Seção 5 apresenta as conclusões, limitações e possíveis
direções para trabalhos futuros.

2 Fundamentação Teórica
2.1 Smart Contracts na Ethereum

Smart contracts são programas executados de forma de-
terminística por todos os nós da blockchain Ethereum. Escri-
tos majoritariamente na linguagem Solidity, esses contratos

são compilados para bytecode da Ethereum Virtual Machine
(EVM) Wood et al. [2014] e implantados em endereços espe-
cíficos da rede. Uma vez implantado, o código é imutável, e
sua execução é governada pelas regras do consenso da rede.

A lógica dos contratos pode incluir operações financeiras,
controle de acesso, armazenamento de dados e interações com
outros contratos. Como consequência, vulnerabilidades no
código podem ser exploradas de forma irreversível. Diferente
de sistemas tradicionais, não é possível aplicar correções
após a descoberta de uma vulnerabilidade, o que intensifica a
necessidade de métodos preventivos de análise.

2.2 Padrões ERC de Contratos na Ethereum
No ecossistema Ethereum, os padrões ERC (Ethereum

Request for Comments) são especificações técnicas propostas
pela comunidade para padronizar comportamentos e interfa-
ces de contratos inteligentes. Esses padrões são submetidos
e discutidos publicamente através do processo de Ethereum
Improvement Proposals (EIPs) e sua adoção visa garantir
interoperabilidade, previsibilidade e maior segurança na im-
plementação de funcionalidades comuns.

Os padrões mais populares incluem o ERC20 Chen
et al. [2020], utilizado para representar tokens fungíveis, e
o ERC721 Casale-Brunet et al. [2021], voltado para tokens
não fungíveis (NFTs). A aderência a esses padrões facilita a
integração de contratos com carteiras, exchanges e ferramen-
tas do ecossistema, além de reduzir a probabilidade de erros
de implementação.

Entretanto, a conformidade com um padrão ERC não
garante, por si só, a ausência de vulnerabilidades. Implemen-
tações mal feitas ou modificações não padronizadas ainda
podem introduzir falhas críticas, como problemas de controle
de acesso, chamadas inseguras e erros aritméticos.

2.3 Tipos de Vulnerabilidades
Diversas classes de vulnerabilidades têm sido documen-

tadas na literatura e observadas em ataques reais Atzei et al.
[2017]. Uma das taxonomias mais influentes para categorizá-
las é a Decentralized Application Security Project (DASP)
Top 10 NCC Group [2018], proposta em 2018, que organiza
as vulnerabilidades mais recorrentes em contratos inteligentes
Ethereum. Seguem as categorias incluídas nessa classifica-
ção.

• Reentrância (Reentrancy): possibilidade de chamadas
recursivas a uma função antes da atualização completa
do estado interno do contrato, como no caso do DAO
Hack.

• Controle de Acesso (Access Control): falhas na defi-
nição ou implementação de mecanismos de controle de
acesso, permitindo que usuários não autorizados execu-
tem funções críticas.

• Aritmética (Arithmetic): erros relacionados a opera-
ções aritméticas, como overflows, underflows ou divisões
por zero, especialmente em versões antigas de Solidity.

• Chamadas não verificadas (Unchecked Low Calls):
ausência de verificação do retorno de chamadas de baixo
nível (call, delegatecall, send), o que pode masca-
rar falhas de execução.

• Negação de serviço (Denial of service): padrões de
código que podem tornar funções inutilizáveis, seja por
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consumo excessivo de gás ou lógica mal planejada.
• Execução antecipada de transações (Front Running):

exploração de informações públicas sobre transações
pendentes para se antecipar a operações críticas.

• Manipulação temporal (Time Manipulation): depen-
dência de variáveis temporais parcialmente controladas
pelos mineradores, como block.timestamp, pode ser
explorada para manipular a lógica de contratos.

• Endereço truncado (Short addresses): falhas na vali-
dação do tamanho de endereços em chamadas de função,
truncando valores passados via parâmetros.

• Aleatoriedade Fraca (Bad Randomness): uso de fon-
tes de aleatoriedade previsíveis ou manipuláveis, que
podem ser exploradas por participantes da rede para ob-
ter vantagem em decisões críticas do contrato.

Ainda há uma categoria adicional: a dos Unknown Unknowns
que, na prática, funciona como um repositório conceitual
para todas as demais vulnerabilidades, mostrando os limites
das abordagens atuais de categorização e análise. Mesmo
assim, essa taxonomia foi utilizada neste estudo como base
para a categorização dos achados de vulnerabilidades, com
o objetivo de permitir uma comparação padronizada com
trabalhos anteriores.

2.4 Análises Automatizadas
A detecção precoce de vulnerabilidades em contratos in-

teligentes é essencial para garantir a segurança de aplicações
descentralizadas. Nesse contexto, ferramentas de análise au-
tomatizada têm desempenhado um papel central, permitindo
a inspeção sistemática de contratos sem intervenção humana
direta. Essas ferramentas se diferenciam principalmente pela
abordagem adotada, que influencia diretamente sua cobertura,
desempenho e suscetibilidade a falsos positivos ou negativos.

2.4.1 Análise Estática
A análise estática consiste na inspeção do código-fonte

de um programa sem sua execução, visando identificar vulne-
rabilidades, violações de boas práticas e potenciais compor-
tamentos inesperados. No contexto de contratos inteligentes,
essa abordagem é particularmente relevante devido à natureza
imutável dos contratos após sua implantação, tornando a de-
tecção precoce de falhas crítica para a segurança dos sistemas
baseados em blockchain Grishchenko et al. [2018].

Ferramentas de análise estática aplicadas a contratos in-
teligentes operam, em geral, sobre uma linguagem de progra-
mação (como Solidity) ou diretamente sobre a representação
intermediária do contrato (bytecode EVM). Elas buscam pa-
drões de vulnerabilidades conhecidas, tais como problemas de
aritmética, reentrância, manipulação temporal, entre outros.

Dentre as diversas ferramentas de análise estática desen-
volvidas para o ecossistema Ethereum, destacam-se Slither
Feist et al. [2019] e Mythril Mueller [2018]. A escolha dessas
ferramentas neste trabalho deve-se ao fato de serem ampla-
mente reconhecidas na literatura e na prática da indústria,
além de oferecerem suporte contínuo a atualizações do com-
pilador Solidity e uma ampla cobertura de padrões de vulne-
rabilidades.

O Slither é uma ferramenta baseada em análise semân-
tica do código-fonte em Solidity, oferecendo uma variedade
de detectores especializados para diferentes categorias de

problemas, além de permitir extensibilidade com regras cus-
tomizadas. Já o Mythril combina técnicas de análise estática
e simbólica, analisando o bytecode dos contratos inteligentes
para detectar vulnerabilidades mais complexas no fluxo de
execução. Ambas as ferramentas são referências consolidadas
na área e têm sido utilizadas em auditorias reais de projetos
de alto impacto Kushwaha et al. [2022].

2.4.2 Análise Dinâmica
A análise dinâmica de contratos inteligentes consiste em

observar o comportamento dos contratos durante sua execução
real ou simulada Eshghie et al. [2021] a fim de identificar
vulnerabilidades ou comportamentos inesperados que podem
não ser visíveis apenas com a análise estática. Diferentemente
dessa análise, que examina o código-fonte ou o bytecode
sem executá-lo, a análise dinâmica envolve a interação ativa
com o contrato, enviando transações, modificando estados e
monitorando a resposta do sistema em tempo real.

Essa abordagem permite detectar vulnerabilidades que
dependem de condições específicas de execução, como pro-
blemas de consumo excessivo de gás, ataques de reentrância,
falhas de controle de acesso, e problemas de sincronia em
interações multi-contrato. Ferramentas como o Echidna Gri-
eco et al. [2020] e o Manticore Mossberg et al. [2019] são
amplamente utilizadas nesse contexto. O Echidna realiza tes-
tes baseados em fuzzing direcionado: gera automaticamente
milhares de inputs para contratos inteligentes em busca de
violações de propriedades de segurança definidas pelo de-
senvolvedor. Já o Manticore combina fuzzing com execução
simbólica para explorar profundamente diferentes caminhos
possíveis de execução de um contrato, oferecendo uma análise
ainda mais abrangente.

Uma vantagem da análise dinâmica é a capacidade de
encontrar vulnerabilidades complexas que surgem apenas em
cenários de execução específicos. No entanto, essa abordagem
também apresenta desafios, como a dificuldade em garantir
cobertura completa dos estados do contrato e a possibilidade
de falsos negativos — vulnerabilidades que existem, mas não
foram exploradas durante os testes.

A combinação de análise dinâmica com técnicas estáti-
cas e formais é considerada uma prática recomendada para
prover uma cobertura mais completa na identificação de vul-
nerabilidades em contratos inteligentes.

2.4.3 Análise Simbólica e Formal
• Análise simbólica consiste em explorar os diferentes

caminhos de execução de um programa utilizando va-
riáveis simbólicas em vez de valores concretos Wang
et al. [2023]. Em vez de executar o código com entradas
específicas, a ferramenta modela todas as possibilidades
de execução simultaneamente, o que permite identificar
vulnerabilidades relacionadas a estados raros ou a com-
binações de entradas específicas. Essa técnica é capaz
de encontrar erros difíceis de serem detectados por mé-
todos puramente sintáticos, como a execução indevida
de funções críticas em condições específicas.

• Verificação formal, por outro lado, envolve a criação
de modelos matemáticos dos contratos inteligentes e a
aplicação de técnicas de lógica formal para provar que
determinadas propriedades sempre serão verdadeiras (ou
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detectar casos onde essas propriedades possam falhar).
A verificação formal é considerada o padrão-ouro de con-
fiabilidade, especialmente para contratos de alto valor,
embora seu alto custo computacional e a necessidade de
modelagem precisa representem desafios práticos.

Ferramentas como o Mythril aplicam análise simbólica
para percorrer as possíveis execuções do bytecode dos contra-
tos inteligentes, buscando vulnerabilidades complexas, como
ataques de reentrância e problemas de integer overflow. Já
plataformas como VeriSol Wang et al. [2020] e Certora Prover
Bennour et al. [2024] focam na verificação formal, permitindo
que desenvolvedores especifiquem invariantes que seus con-
tratos devem obedecer, as quais são então matematicamente
verificadas contra o código.

Embora promissoras, essas técnicas de verificação for-
mal enfrentam limitações significativas na prática, como ex-
plosão do espaço de estados, necessidade de expertise em
especificação formal e integração limitada com pipelines de
desenvolvimento ágeis. Ainda assim, avanços recentes bus-
cam tornar essas abordagens mais acessíveis para o desenvol-
vimento seguro de contratos inteligentes em escala.

Ferramentas híbridas têm ganhado destaque por com-
binar múltiplas técnicas. Um exemplo é o Mythril, que une
análise simbólica com heurísticas estáticas, buscando um equi-
líbrio entre precisão e desempenho. Além disso, a evolução
do ecossistema tem incentivado a integração de linters, anali-
sadores de fluxo de controle e frameworks de teste baseados
em fuzzing.

2.5 O Framework SmartBugs
O SmartBugs Ferreira et al. [2020] é um framework de

código aberto desenvolvido para padronizar a execução de
múltiplas ferramentas de análise sobre conjuntos de contratos
inteligentes. Seu principal objetivo é permitir experimentos
replicáveis e comparáveis, fornecendo uma infraestrutura con-
trolada que abstrai detalhes da configuração e execução das
ferramentas, garantindo consistência nos resultados.

O framework suporta a execução em lote de analisadores
estáticos, simbólicos e dinâmicos, incluindo soluções popu-
lares como Slither, Mythril, Manticore, Oyente e Securify,
além de ferramentas mais recentes incorporadas ao longo do
tempo, como Oyente+, Securify2 e CPG Contract Checker
(CCC). Cada ferramenta é executada em contêineres isolados
via Docker, assegurando que erros em um analisador não afe-
tem os demais e permitindo que múltiplas versões de cada
ferramenta sejam avaliadas simultaneamente.

Para lidar com a heterogeneidade das saídas geradas por
cada analisador, o SmartBugs incorpora parsers específicos
por ferramenta, responsáveis por extrair e normalizar os aler-
tas detectados. Após essa etapa, um parser unificador agrega
os resultados em um formato padronizado, permitindo que
diferentes ferramentas sejam comparadas sob uma mesma
estrutura de dados.

Além disso, o SmartBugs oferece conjuntos de tes-
tes com contratos vulneráveis documentados, como o
dataset SmartBugs-Wild Durieux et al. [2020b] e o
SmartBugs-Curated, com contratos cuidadosamente sele-
cionados para cobrir diferentes classes de vulnerabilidades.
Cada contrato inclui anotações sobre linhas vulneráveis, pos-
sibilitando a avaliação de métricas como taxa de detecção de

verdadeiros positivos, falsos positivos e falsos negativos. Essa
estrutura permite tanto a comparação direta entre ferramentas
quanto a análise da evolução da detecção ao longo do tempo,
como feito neste estudo ao comparar versões 2.0.10 e 2.0.15
do framework.

O SmartBugs também facilita a padronização dos re-
sultados por meio de saídas estruturadas em JSON ou CSV,
integráveis a scripts de processamento que consolidam vul-
nerabilidades detectadas por contrato e por ferramenta. Isso
permite análises estatísticas detalhadas, mapeamento para
taxonomias como a DASP Top 10 e comparação com achados
históricos, viabilizando pesquisas longitudinais sobre segu-
rança em contratos inteligentes.

Apesar de suas vantagens, o SmartBugs apresenta limita-
ções. A execução de algumas ferramentas pode depender de
versões específicas de compiladores ou bibliotecas externas, e
certas vulnerabilidades modernas, especialmente de natureza
econômica ou envolvendo interações entre múltiplos contra-
tos, podem não ser detectadas. Além disso, a classificação de
vulnerabilidades baseada apenas em nomes ou padrões estáti-
cos limita a identificação de falhas contextuais, o que motivou
a adaptação metodológica realizada neste estudo para análise
baseada na posição das vulnerabilidades dentro do código.

Ao combinar isolamento, reprodutibilidade e suporte a
múltiplas ferramentas, o SmartBugs se estabelece como uma
infraestrutura essencial para avaliação rigorosa da eficácia de
analisadores de contratos inteligentes, sendo amplamente uti-
lizado em pesquisas acadêmicas e benchmarks de segurança.

2.6 Métricas de Avaliação: Precisão, Recall
e F1-Score
A simples contagem de vulnerabilidades detectadas não

é suficiente para avaliar a eficácia de uma ferramenta de aná-
lise. Uma ferramenta que reporta muitas vulnerabilidades
pode, ao mesmo tempo, introduzir um grande volume de fal-
sos positivos (FP), o que a tornaria impraticável do ponto de
vista operacional. Por outro lado, uma ferramenta extrema-
mente conservadora pode apresentar poucos falsos positivos,
mas ao custo de deixar passar vulnerabilidades reais (FN), o
que compromete diretamente a segurança do contrato. Para
capturar esse trade-off entre detecção e ruído, foram adotadas
três métricas clássicas da literatura de avaliação de sistemas
de detecção: Precisão, Recall e F1-Score.

Precisão mede a proporção de alertas corretos em rela-
ção ao total de alertas emitidos pela ferramenta. Ela é definida
como:

Precisão =
V P

V P + FP

Uma precisão alta indica que a ferramenta gera poucos
alarmes incorretos, reduzindo o esforço analítico do auditor
ao filtrar resultados irrelevantes.

Recall (também chamado de cobertura ou sensitivity)
representa a capacidade da ferramenta de detectar de fato as
vulnerabilidades presentes no contrato:

Recall =
V P

V P + FN

Um valor elevado de recall significa que a ferramenta é
capaz de cobrir uma parcela significativa das vulnerabilidades
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reais, ainda que à custa de ruído.
No contexto de segurança, há um dilema clássico: ferra-

mentas com alto recall tendem a gerar muitos falsos positivos,
enquanto ferramentas com alta precisão podem deixar passar
vulnerabilidades críticas. Para conciliar essas duas perspec-
tivas, utiliza-se o F1-Score, que é a média harmônica entre
precisão e recall:

F1-Score = 2 · Precisão · Recall
Precisão + Recall

A escolha do F1-Score como métrica agregadora se jus-
tifica especialmente neste estudo, pois não há interesse em
privilegiar exclusivamente a redução de falsos positivos ou a
maximização de detecção. O objetivo é capturar o equilíbrio
operacional entre usabilidade prática (baixa taxa de ruído)
e eficácia real de detecção. A inclusão dessas métricas, au-
sentes em estudos anteriores, permite uma comparação mais
direta entre ferramentas e fornece um ponto de referência
replicável para análises futuras.

3 Metodologia
Para investigar o estado atual da segurança automatizada

de contratos inteligentes na Ethereum, foram conduzidos três
experimentos independentes, com objetivos e conjuntos de
dados distintos, mas utilizando a mesma infraestrutura de
execução baseada no framework SmartBugs

3.1 Ferramentas Utilizadas
Ambas as análises foram conduzidas utilizando a infra-

estrutura do SmartBugs versão 2.0.10, configurado com
as seguintes ferramentas de análise: Honeybadger (com-
mit ff30c9a); Maian (commit 4bab09a); Manticore (versão
0.3.7); Mythril (versão 0.24.7); Osiris (commit d1ecc37);
Oyente (commit 480e725); Securify (versão 1); Slither (ver-
são 0.10.4); Smartcheck (versão 1); Confuzzius (versão 0.0.1);
Conkas (commit 4e0f256); Semgrep (commit c3a9f40); Sfuzz
(commit 48934c0); Solhint (versão 3.3.8)1. Essas ferramentas
foram executadas em ambiente Linux, utilizando contêine-
res Docker fornecidos pelo próprio SmartBugs para garantir
reprodutibilidade e isolamento.

Durante o desenvolvimento deste trabalho, o SmartBugs
passou por uma série de atualizações, evoluindo da versão
2.0.10, utilizada na execução inicial do segundo experi-
mento, até a versão 2.0.15. Essa nova versão incorporou
três ferramentas adicionais (Oyente+, Securify2 e CPG Con-
tract Checker (CCC)) e introduziu atualizações relevantes em
ferramentas já existentes, como Slither, Mythril, Semgrep e
Solhint. Além disso, diversos bugs, especialmente relaciona-
dos ao parser e ao processo de normalização dos relatórios,
foram corrigidos. Para avaliar o impacto dessas mudanças
na capacidade de detecção, o segundo experimento foi repli-
cado com a versão mais recente do framework, permitindo
uma análise comparativa entre os resultados obtidos nas duas
versões.

1As cinco últimas ferramentas listadas — Confuzzius, Conkas, Semgrep,
Sfuzz e Solhint — não faziam parte do conjunto de ferramentas utilizado no
SmartBugs versão 1.0.0 (2020).

3.2 Experimento 1: Análise da Ocorrências
de Vulnerabilidades
Este experimento teve como foco principal examinar a

ocorrência das vulnerabilidades detectadas por ferramentas
automatizadas em contratos inteligentes implantados recen-
temente na rede Ethereum buscando identificar tendências,
recorrências e possíveis mudanças no perfil das falhas ao
longo do tempo. Naturalmente, os padrões observados depen-
dem do conjunto analisado e, portanto, diferentes amostras de
contratos podem produzir distribuições distintas de categorias
e frequências de vulnerabilidades

Foram selecionados inicialmente os 500 contratos inte-
ligentes mais recentemente verificados na Etherscan no dia
26 de abril de 2025 Esses contratos podem ser encontrados
nos artefatos que acompanham este artigo 2. Contratos ve-
rificados são aqueles cujo código-fonte foi disponibilizado
publicamente e corresponde exatamente ao código implan-
tado na blockchain, conferindo transparência e autenticidade
Etherscan [2025].

A obtenção dos endereços dos contratos foi realizada
por meio de uma técnica de extração automatizada da seção
Verified Contracts do Etherscan. Em seguida, para cada ende-
reço, utilizou-se a API pública da Etherscan para recuperar o
código-fonte.

Para esta análise, foram considerados apenas contratos
em Solidity e de arquivo único. Contratos verificados compos-
tos por múltiplos arquivos foram descartados para simplificar
o processamento e evitar inconsistências no ambiente de com-
pilação. Após a filtragem, o número de contratos inteligentes
foi reduzido para 215, os quais foram utilizados como base
para este experimento.

3.3 Experimento 2: Replicação de Análise
em Contratos com Vulnerabilidades
Conhecidas
O segundo experimento teve como objetivo principal

replicar um estudo publicado em 2020 Durieux et al. [2020b],
utilizando os mesmos contratos com falhas conhecidas, mas
aplicando as versões atualizadas das ferramentas disponíveis
no SmartBugs. Com isso, buscou-se avaliar a eficácia atual
das ferramentas na detecção de vulnerabilidades já documen-
tadas.

Foi utilizado o conjunto de contratos vulneráveis conhe-
cido como smartBugs-curated Durieux et al. [2020a], que
contém contratos com falhas intencionais e previamente cata-
logadas, cobrindo múltiplas categorias da taxonomia DASP
Top 10.

Foram utilizadas as mesmas ferramentas do Experimento
1 (mais as cinco extras que estão no final da lista – Seção 3.1)
sobre os contratos vulneráveis. Os achados de vulnerabilida-
des foram comparados com os relatórios originais de 2020
para cada categoria. A precisão das ferramentas foi medida
em termos de taxa de acerto por tipo de vulnerabilidade.

Este experimento foi executado em duas etapas distintas:
inicialmente com a versão 2.0.10 do SmartBugs, replicando
a configuração mais próxima possível do estudo de 2020, e
posteriormente com a versão 2.0.15, que inclui novas fer-
ramentas, correções de parsing e atualizações. Os achados

2https://github.com/regras/smart_contract_sec

https://github.com/regras/smart_contract_sec
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foram comparados com os relatórios originais de 2020 para
cada categoria de vulnerabilidade, permitindo avaliar não ape-
nas a evolução da precisão das ferramentas, mas também o
impacto das mudanças internas do framework. A precisão
foi medida em termos de taxa de acerto por tipo de vulne-
rabilidade em ambas as versões, possibilitando uma análise
comparativa.

3.4 Extração e Processamento dos
Resultados
Os resultados produzidos pelas ferramentas foram expor-

tados para arquivo CSV, onde cada linha contém informações
sobre a execução de cada contrato, incluindo:

• filename: identificador do contrato (caminho do ar-
quivo);

• toolid: ferramenta utilizada para a análise;
• toolmode: modo de execução da ferramenta;
• parser_version: versão do parser utilizado;
• runid: identificador único da execução;
• start: tempo de início da execução;
• duration: tempo de execução da análise;
• exit_code: código de saída da execução (indicando

sucesso ou falha);
• findings: vulnerabilidades encontradas;
• infos: informações adicionais sobre a execução;
• errors: erros encontrados durante a execução;
• fails: falhas no processo de análise.

No Experimento 2, os resultados foram inicialmente pro-
cessados com scripts em Python para geração de estatísticas
descritivas, identificação de contratos com múltiplas vulnera-
bilidades e agrupamento dos achados por tipo e frequência,
a partir das colunas findings. Nesta primeira etapa, foi
utilizada a tabela vulnerabilities_mapping do próprio
SmartBugs, que associa os alertas emitidos pelas ferramen-
tas aos rótulos de vulnerabilidade com base na nomenclatura
empregada no estudo de 2020.

Em um segundo processamento, conduzido de forma
independente, os mesmos resultados foram reinterpretados
utilizando uma estratégia de mapeamento alternativa, pro-
posta neste trabalho, que desconsidera o nome atribuído pela
ferramenta e utiliza como critério primário a posição da ocor-
rência no código-fonte. Essa abordagem permitiu reclassificar
achados que anteriormente eram descartados ou agrupados de
forma imprecisa, gerando uma visão mais granular da cober-
tura real das ferramentas e revelando discrepâncias relevantes
nos resultados produzidos pelo framework. Em casos como
o Slither, a ausência de um mapeamento preciso para vulne-
rabilidades que detectavam, combinada com bugs no parser,
resultava em zero detecções ou classificações errôneas. A
metodologia alternativa, ao usar a localização exata da falha
no código (linha/coluna) como chave de correspondência, per-
mitiu resgatar vulnerabilidades que haviam sido corretamente
identificados pelas ferramentas, mas perdidos no processo de
agregação e rotulagem do framework.

3.5 Experimento 3: Avaliação Ampliada
com o Dataset Curado (142 Contratos)
e Inclusão de Falsos
Positivos/Negativos
Embora o Experimento 2 tenha reproduzido fielmente

a configuração do estudo original de 2020 com um conjunto
de 69 contratos curados, o ecossistema analisado evoluiu
significativamente nos últimos anos. A base de contratos do
conjunto SmartBugs-Wild foi expandida para 142 amostras
com vulnerabilidades documentadas manualmente, o que abre
espaço para uma análise mais abrangente e representativa do
estado atual das ferramentas de detecção.

Com o objetivo de registrar uma linha de base atualizada
para futuras pesquisas, este terceiro experimento estende o
conjunto analisado para os 142 contratos curados disponíveis
em 2025. Diferente dos estudos anteriores, que se limitaram a
relatar apenas a taxa de detecção, aqui também são incluídas
estatísticas de Falsos Positivos (FP) e Falsos Negativos (FN),
elementos críticos para uma avaliação mais realista da utili-
dade prática das ferramentas. Essa é uma lacuna ainda não
preenchida na literatura, e o registro desses dados fornece um
ponto de comparação valioso para trabalhos subsequentes.

Cada uma das ferramentas suportadas pelo SmartBugs
foi executada individualmente sobre o conjunto completo de
142 contratos. As vulnerabilidades reais foram previamente
rotuladas manualmente (totalizando 221 ocorrências confir-
madas). Os achados das ferramentas foram então agregados
e unificados para eliminar duplicações internas, resultando
em 216 detecções automáticas únicas.

Esse experimento será mantido como base referencial
para comparações futuras, servindo como linha de base esten-
dida além dos 69 contratos ja analisados pela literatura.

4 Resultados
4.1 Ocorrência de Vulnerabilidades em

Contratos Recentes - Experimento 1
A Tabela 1 apresenta a distribuição percentual dos 215

contratos afetados pelas principais categorias de vulnerabi-
lidades, conforme definido pela taxonomia DASP Top 10.
É importante destacar que um mesmo contrato pode apre-
sentar múltiplas vulnerabilidades, pertencentes a diferentes
categorias.

Tabela 1. Distribuição de contratos no Experimento 1 de acordo
com as categorias de vulnerabilidades DASP Top 10

Tipo de Vulnerabilidade Contratos afetados (%)
Unknown Unknowns 100,0
Arithmetic 20,9
Denial of Service 17,2
Access Control 9,3
Unchecked Low Calls 8,4
Time Manipulation 4,6
Front Running 0,0
Short Address 0,0
Bad Randomness 0,0
Reentrancy 0,0

Destaca-se a inexistência de vulnerabilidades Front Run-
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ning, Short Address, Bad Randomness e Reentrancy no con-
junto analisado. Existem duas interpretações possíveis para
essa ausência: (i) essas classes de vulnerabilidade podem ter
sido eliminadas por boas práticas e ferramentas de desenvol-
vimento modernas (como bibliotecas da OpenZeppelin e me-
lhorias no compilador Solidity) ou (ii) pode haver limitações
nos detectores atuais, que talvez não estejam mais sensíveis
às variantes dessas falhas como eram anteriormente. A defi-
nição exata depende de uma análise manual aprofundada dos
contratos, o que pode ser foco de um trabalho futuro.

O mapeamento dos achados para categorias padroniza-
das revelou uma limitação conceitual importante: aproxima-
damente 98% das vulnerabilidades apontadas não se enqua-
draram diretamente nas categorias do DASP Top 10, adotadas
como base para o estudo. Essas vulnerabilidades, embora
válidas e relevantes, foram classificadas como Unknown Unk-
nowns por não apresentarem correspondência clara com as
outras categorias definidas por esse modelo específico. Esses
achados frequentemente englobam uma gama de problemas
que vão além das clássicas falhas de exploração diretas da
taxonomia. Muitas dessas detecções são mais por questões
de padronização e boas práticas de codificação. Porém, pode
haver erros de uso da linguagem Solidity ou até mesmo pro-
blemas na tentativa de melhorar a eficiência ou otimizar o
uso do gás, resultando em novas vulnerabilidades relevan-
tes, que não se enquadram perfeitamente nas categorias do
DASP. Exemplos incluem SOLIDITY_ERC20_APPROVE, que
sinaliza padrões problemáticos no uso da função approve de
tokens ERC20, e no_slippage_check, uma falha crítica em
aplicações de finanças descentralizadas (DeFi) que, se não
mitigada, pode levar a perdas financeiras significativas para o
usuário devido à derrapagem de preços.

Assim, embora o DASP englobe categorias amplas, ele
não cobre diversas classes de vulnerabilidades hoje recorren-
tes no ecossistema, o que explica a discrepância, assumindo
que as ferramentas não estejam equivocadas e que o DASP
não esteja obsoleto.

Esse resultado evidencia uma desconexão entre a taxono-
mia DASP Top 10 (formulada em 2018) e o panorama atual
de desenvolvimento de contratos inteligentes. Desde a popu-
larização dos protocolos DeFi e o surgimento de ecossistemas
mais complexos como zkSync, Base, Arbitrum e soluções
L2 otimizadas para rollups, novas classes de vulnerabilida-
des passaram a surgir associadas a liquidez, atualizações de
proxy, oráculos de preço e interações entre contratos — as-
pectos não contemplados no modelo original do DASP. Na
prática, a ausência de uma taxonomia atualizada leva a uma
sub-representação dessas falhas emergentes nas análises au-
tomatizadas, dificultando a criação de métricas comparáveis
entre ferramentas e períodos históricos.

Diversos trabalhos recentes têm discutido alternativas
de classificação. Uma linha de pesquisa busca alinhar as vul-
nerabilidades de smart contracts à terminologia da Common
Weakness Enumeration (CWE) Staderini et al. [2020], per-
mitindo interoperabilidade com bases de dados de segurança
tradicionais, além de facilitar a adoção dessa taxonomia por
ferramentas de auditoria já consolidadas na engenharia de
software. Outra proposta é o uso de taxonomias específicas
para blockchain, como o Openscv Vidal et al. [2024], que
incorpora falhas de design e de lógica econômica, indo além

de bugs puramente sintáticos ou de execução. Mais recen-
temente, surgem abordagens baseadas em Large Language
Models que, em vez de mapear achados para categorias fixas,
propõem classificações dinâmicas orientadas por similaridade
semântica entre vulnerabilidades documentadas, permitindo a
identificação de padrões mesmo em casos não previstos pelas
taxonomias tradicionais.

Dessa forma, os resultados apresentados não apenas evi-
denciam o descompasso entre as ferramentas atuais e a taxo-
nomia original, mas também reforçam a necessidade de um
modelo mais adaptativo de classificação — potencialmente
híbrido, combinando mapeamento para CWE, categorias eco-
nômicas específicas de DeFi e mecanismos de agrupamento
automatizado assistidos por LLMs.

Além disso, a classificação obtida reflete especifica-
mente o uso da taxonomia DASP Top 10. Caso taxonomias
alternativas, como OWASP Smart Contract Top 10, fossem
aplicadas, a distribuição entre categorias seria diferente, em-
bora isso não altere o fato estrutural de que a maioria dos
alertas das ferramentas não se encaixa plenamente em mode-
los tradicionais de classificação.

4.2 Contratos com Vulnerabilidades
Conhecidas - Experimento 2
Ao todo, o conjunto SmartBugs-curated era original-

mente documentado com 115 vulnerabilidades previamente
catalogadas, distribuídas entre as diferentes categorias da ta-
xonomia DASP Top 10 utilizadas no estudo de 2020. No
entanto, durante a reprodução deste experimento, constata-
mos que a própria base de referência evoluiu ao longo dos
últimos anos: novas vulnerabilidades foram oficialmente adi-
cionadas à anotação dos mesmos contratos, elevando o total
para 129 ocorrências conhecidas.

Dessa forma, embora os contratos analisados permane-
çam exatamente os mesmos, o conjunto de vulnerabilidades
de referência não é mais estático. A diferença observada nos
resultados, portanto, não decorre de alterações no código-
fonte ou na natureza intrínseca das falhas, mas sim de dois
fatores distintos: (i) a evolução das ferramentas utilizadas e
(ii) a atualização do mapeamento das vulnerabilidades reco-
nhecidas pela comunidade.

É importante destacar que o conjunto SmartBugs Cura-
ted foi construído especificamente para cobrir as categorias
clássicas do DASP Top 10, incluindo exemplos intencionais
de cada classe. Essa natureza controlada explica a alta cor-
respondência entre as vulnerabilidades anotadas e o DASP,
em contraste com os contratos coletados no Experimento 1,
que refletem práticas e padrões contemporâneos de desenvol-
vimento e não foram selecionados com base em taxonomias
tradicionais.

A Tabela 2 resume a evolução na detecção de vulnerabi-
lidades ao longo do tempo, considerando diferentes versões
do SmartBugs e metodologias de processamento. Observa-se
que, embora os contratos analisados permaneçam os mesmos
do estudo original de 2020, o total de vulnerabilidades catalo-
gadas aumentou de 115 para 129, refletindo a atualização da
base de referência e o refinamento contínuo de vulnerabilida-
des pela comunidade.

Na execução com a versão 2.0.10 do SmartBugs utili-
zando o mapeamento padrão, a taxa de detecção geral caiu de
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Tabela 2. Evolução na detecção das vulnerabilidades entre 2020 e 2025

Categoria Total v1.0.0 v2.0.10 v2.0.10* v2.0.15*
Access Control 24 5 3 9 22
Arithmetic 22 19 8 20 22
Bad Randomness 34 0 0 4 34
Denial of Service 14 0 3 8 14
Front Running 7 2 3 3 6
Other 5 0 3 2 4
Reentrancy 8 7 5 6 8
Short Addresses 1 0 0 1 1
Time Manipulation 5 3 3 5 5
Unchecked Low Calls 9 9 3 9 9

Total 129 48 28 67 125
* indica que foram utilizados critérios de mapeamento baseados na posição da vulnerabilidade no código, e não apenas no nome atribuído pela ferramenta.

48 para 28 vulnerabilidades detectadas, evidenciando falhas
nas heurísticas internas do framework ou limitações de com-
patibilidade com padrões antigos. Quando a mesma versão
foi processada com a metodologia de reclassificação baseada
na posição das vulnerabilidades (v2.0.10*), o número de
detecções subiu para 67, mostrando que parte da perda de
acurácia não se deve às ferramentas em si, mas ao modo como
os achados eram agregados e rotulados.

A versão 2.0.15*, que incorpora correções de parser,
novas ferramentas (Oyente+, Securify2 e CPG Contract
Checker) e atualizações nas ferramentas já existentes, conse-
guiu identificar 125 das 129 vulnerabilidades, um aumento
significativo em relação às execuções anteriores. Destaca-se,
por exemplo, a ferramenta Slither, que na versão 2.0.10 não
detectou vulnerabilidades, mas na versão 2.0.15 identificou
94 delas, evidenciando melhorias concretas na cobertura de
análise.
A comparação entre as versões 2.0.10 e 2.0.15 na tabela
3 evidencia um comportamento assimétrico quanto à evolu-
ção das ferramentas de análise. Na versão 2.0.10, apenas
quatro ferramentas (mythril, osiris, confuzzius e conkas) apre-
sentaram taxas de detecção superiores a 20%, com conkas
liderando com 34,88%. A maioria permaneceu com 0% de
cobertura, demonstrando baixa capacidade de identificação
frente às 129 vulnerabilidades reais presentes no conjunto
analisado.

Com a atualização para a versão 2.0.15, observa-se
uma mudança expressiva, com ferramentas anteriormente ine-
ficazes apresentando desempenho significativamente superior.
Slither, que não detectava nenhuma vulnerabilidade na versão
anterior, passou a identificar 72,87% das falhas, emergindo
como a ferramenta com melhor desempenho isolado. Da
mesma forma, solhint, ccc e smartcheck exibiram resultados
relevantes.

Ferramentas como conkas, osiris e confuzzius mantive-
ram estabilidade entre as versões, indicando maturidade ou
estagnação em sua capacidade de detecção. Já mythril apre-
sentou ganho marginal, sugerindo evolução incremental. Em
contrapartida, ferramentas como maian, manticore e securify
permaneceram com 0% de detecção em ambas as versões,
demonstrando que a atualização do ambiente SmartBugs não
implica, por si só, melhorias uniformes.

Esses resultados reforçam que a eficácia das ferramentas

deve ser avaliada de forma individualizada e não apenas em
função da versão do framework utilizado. A disparidade ob-
servada indica que a evolução do ecossistema de análise está
acontecendo de maneira desigual, com algumas ferramentas
avançando rapidamente enquanto outras permanecem com-
pletamente inoperantes frente às vulnerabilidades conhecidas.

Esses resultados reforçam que a evolução das ferramen-
tas e o refinamento metodológico têm impacto direto na acu-
rácia, sendo que a combinação de novas versões e estratégias
de reclassificação é essencial para compreender corretamente
a eficácia das análises automatizadas.

4.3 Contratos com Vulnerabilidades
Conhecidas - Experimento 3
A Tabela 4 evidencia uma disparidade significativa entre

as estratégias adotadas pelos analisadores. Ferramentas como
Slither e Solhint apresentam altos valores de recall (0.810 e
0.733, respectivamente), indicando que conseguem sinalizar
a maior parte das vulnerabilidades reais — porém, à custa de
uma quantidade extremamente elevada de falsos positivos, o
que se reflete diretamente em suas baixas precisões (0.093
e 0.022). Por outro lado, ferramentas como Confuzzius e
CCC exibem um equilíbrio mais interessante entre detecção
e ruído, com F1-scores de 0.381 e 0.412, sugerindo um com-
portamento mais alinhado a cenários de uso prático, onde a
triagem manual de alertas possui custo real.

Para este experimento, o conjunto ampliado de 142 con-
tratos contém 221 vulnerabilidades reais previamente anota-
das, número que serve como referência direta para o cálculo
de VP, FP e FN apresentado na Tabela 4.

Um ponto importante é que estes resultados não pos-
suem referência direta na literatura anterior. Estudos como o
de Thomas et al. (2020) Durieux et al. [2020b] reportaram
apenas a cobertura bruta (VP), sem registrar explicitamente
FP e FN em escala unificada. Portanto, esta análise representa
um primeiro esforço sistemático de quantificação da relação
sinal/ruído dessas ferramentas sob um mesmo conjunto cu-
rado e consolidado. A ausência de uma linha histórica impede
comparações temporais, mas abre espaço para que futuros tra-
balhos utilizem esta tabela 4 como referência para monitorar
a maturidade das ferramentas de segurança no contexto de
contratos inteligentes.
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Tabela 3. Comparação da taxa de cobertura de vulnerabilidades por ferramenta nas versões 2.0.10 e 2.0.15

Ferramenta Real Detec. (2.0.10) Taxa (%) Detec. (2.0.15) Taxa (%) Variação (%)
honeybadger 129 2 1.55 2 1.55 0.00
maian 129 0 0.00 0 0.00 0.00
manticor 129 0 0.00 0 0.00 0.00
mythril 129 38 29.46 39 30.23 +0.77
securify 129 0 0.00 0 0.00 0.00
slither 129 0 0.00 94 72.87 +72.87
smartcheck 129 0 0.00 42 32.56 +32.56
osiris 129 31 24.03 31 24.03 0.00
confuzzius 129 39 30.23 39 30.23 0.00
conkas 129 45 34.88 45 34.88 0.00
semgrep 129 0 0.00 21 16.28 +16.28
sfuzz 129 0 0.00 0 0.00 0.00
solhint 129 0 0.00 77 59.69 +59.69
ethlint 129 0 0.00 0 0.00 0.00
ccc 129 0 0.00 72 55.81 +55.81
securify2 129 0 0.00 0 0.00 0.00
oyente+ 129 0 0.00 24 18.60 +18.60

Tabela 4. Cobertura de detecção por ferramenta com métricas de
desempenho

Ferramenta VP FP FN Precisão Recall F1
honeybadger 2 35 219 0.054 0.009 0.015
maian 0 0 221 – 0.000 –
manticore 0 0 221 – 0.000 –
mythril 86 463 135 0.157 0.389 0.223
securify 0 0 221 – 0.000 –
slither 179 1735 42 0.093 0.810 0.166
smartcheck 122 1352 99 0.083 0.552 0.145
osiris 96 420 125 0.186 0.434 0.260
confuzzius 113 259 108 0.304 0.511 0.381
conkas 127 705 94 0.152 0.575 0.241
semgrep 39 1009 182 0.037 0.176 0.062
sfuzz 0 0 221 – 0.000 –
solhint 162 7108 59 0.022 0.733 0.043
ethlint 0 0 221 – 0.000 –
ccc 163 407 58 0.285 0.737 0.412
securify2 0 0 221 – 0.000 –
oyente+ 78 234 143 0.250 0.352 0.293

Além da análise por ferramenta, também foi realizada a
segmentação dos achados por categoria de vulnerabilidade se-
guindo a taxonomia DASP Top 10, o que permite observar não
apenas quantas vulnerabilidades foram detectadas, mas quais
tipos de vulnerabilidade recebem maior ou menor atenção
das ferramentas modernas. A distribuição está apresentada
na Tabela 5:

A distribuição revela que Unchecked Low-Level Calls,
Reentrancy e Bad Randomness concentram a maior parte das
vulnerabilidades reais, o que está em linha com incidentes
históricos na Ethereum, como o já consolidado DAO Hack
e diversas explorações envolvendo sorteios pseudoaleatórios
e envio inseguro de fundos. Em contraste, categorias como
Short Addresses e Other aparecem apenas de forma residual,
reforçando que algumas classes de falhas presentes em bench-
marks acadêmicos possuem baixa representatividade prática

Tabela 5. Distribuição de vulnerabilidades por categoria

Categoria Total Real Detectadas
Access Control 24 22
Arithmetic 23 23
Bad Randomness 34 34
Denial of Service 14 14
Front Running 7 6
Other 5 4
Reentrancy 31 30
Short Addresses 1 1
Time Manipulation 7 7
Unchecked Low-Level Calls 75 75

Total 221 216

no ecossistema real de contratos.
Vale destacar que a alta incidência de certas categorias

não implica necessariamente maior cobertura. Em especial,
vulnerabilidades como Front Running e Time Manipulation,
embora menos frequentes, apresentam um padrão de sub-
detecção em diversas ferramentas, indicando que o desafio
nesses casos está mais relacionado ao contexto de execução e
semântica de transação do que à simples análise sintática do
código.

5 Conclusão
Este estudo replicou e expandiu uma análise histórica da

segurança de contratos inteligentes na rede Ethereum, conside-
rando a evolução do framework SmartBugs e das ferramentas
de análise disponíveis entre 2020 e 2025. A execução de expe-
rimentos em duas versões do SmartBugs, aliada à metodologia
de reclassificação baseada na posição das vulnerabilidades,
permitiu revelar limitações e avanços não perceptíveis em
análises tradicionais baseadas apenas na nomenclatura dos
alertas.

Os resultados demonstram que, embora a versão mais
recente do SmartBugs (2.0.15*) tenha alcançado uma co-
bertura quase completa (125 de 129 vulnerabilidades detec-
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tadas), versões anteriores apresentaram regressões significa-
tivas. Além disso, a evolução do próprio conjunto de vul-
nerabilidades catalogadas, de 115 para 129, evidencia que
parte do desafio está relacionado à classificação correta das
falhas. Outro resultado importante foi a observação de que
98% dos achados do Experimento 1 foram classificados como
“outros” reforça que a DASP Top 10 está desatualizada e não
reflete integralmente o panorama atual de vulnerabilidades
em contratos inteligentes.

Este estudo evidencia ainda que métricas agregadas,
como número médio de vulnerabilidades detectadas por con-
trato, podem mascarar problemas metodológicos e limitações
de ferramentas. A análise detalhada por versão, ferramenta e
categoria revelou diferenças significativas entre execuções e
destacou o impacto das novas ferramentas e correções imple-
mentadas.

Por fim, o Experimento 3 introduziu uma contribuição
inédita ao estabelecer uma linha de base estendida com 142
contratos curados, incluindo o registro explícito de falsos
positivos e falsos negativos por ferramenta. Essa etapa não
apenas amplia a validade externa dos resultados anteriores,
mas também cria um ponto de ancoragem para comparações
longitudinais futuras, permitindo que evoluções do ecossis-
tema possam ser medidas com maior precisão e menos ambi-
guidade interpretativa.

Como trabalhos futuros, planeja-se:

• Inclusão de ferramentas baseadas em Large Language
Models (LLMs) para ampliar a cobertura e precisão na
identificação de vulnerabilidades;

• Expansão da análise para contratos multi-arquivo e novas
amostras mais recentes da rede Ethereum;

• Análise mais profunda de casos de vulnerabilidades não
detectadas por nenhuma ferramenta, buscando compre-
ender lacunas persistentes na análise automatizada;

• Exploração da construção de datasets mais robustos e
escaláveis para avaliação de ferramentas de análise de
vulnerabilidades.

Tais medidas visam tornar os estudos de segurança em
contratos inteligentes mais precisos, comparáveis e relevantes
para o avanço seguro da tecnologia blockchain, contribuindo
para uma avaliação longitudinal mais consistente das ferra-
mentas automatizadas.
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