
Revista Eletrônica de Iniciação Científica em Computação, 2025, 23:1
ISSN: 3085-8461 • doi: 10.5753/reic.2025.6850
� This work is licensed under a Creative Commons Attribution 4.0 International License.

Artigo de Pesquisa/Research Paper

Um Mapeamento Sistemático sobre Técnicas de Classificação
e Categorização de Bugs em Software
A Systematic Mapping of Bug Classification and Categorization Techniques in
Software
Igor Ramsés Temóteo dos Santos [Instituto Federal de Ciência e Tecnologia do Ceará | igor.ramses@darmlabs.ifce.edu.br]
Laís Carvalho Coutinho [Instituto Federal de Ciência e Tecnologia do Ceará | lais.carvalho07@aluno.ifce.edu.br]
Samuel Sousa Teles [Instituto Federal de Ciência e Tecnologia do Ceará | samuel.teles@darmlabs.ifce.edu.br]
Rubens Abraão da Silva Sousa [Instituto Federal de Ciência e Tecnologia do Ceará | rubens.silva@darmlabs.ifce.edu.br]
Manoel Lopes Filho [Instituto Federal de Ciência e Tecnologia do Ceará | manoel.filho@darmlabs.ifce.edu.br]
Ronaldo Tadeu Pontes Milfont [Instituto Federal de Ciência e Tecnologia do Ceará | ronaldo.milfont@ifce.edu.br]
Alex Lacerda Ramos [Instituto Federal de Ciência e Tecnologia do Ceará | alex.lacerda@ifce.edu.br]

Q Instituto Federal de Ciência e Tecnologia do Ceará, Rodovia BR-020, km 303, s/nº – Jubaia, Canindé – CE, 62700-000,
Brasil

Resumo. Este estudo é um mapeamento sistemático da literatura sobre as abordagens de classificação e categorização
de bugs em software, analisando 33 artigos finais publicados entre 2019 e 2024. O protocolo foi conduzido seguindo o
modelo PRISMA, utilizando a ferramenta Parsifal para triagem, e a busca foi realizada nas bases ISI Web of Science,
IEEE Xplore, Scopus e Engineering Village. A síntese dos dados foi realizada através de análise qualitativa e extração
padronizada, focando em técnicas, tipos de dados, contextos de aplicação e critérios de categorização. A pesquisa revelou
a predominância de algoritmos supervisionados (como Naive Bayes e Support Vector Machine) e a dependência de dados
textuais não estruturados de repositórios open-source como Mozilla e Eclipse. A exclusividade de dados open-source
restringe a compreensão do ciclo de vida dos bugs em contextos industriais. Consequentemente, identifica-se a necessidade
de pesquisas futuras que explorem ambientes corporativos e a integração de modelos híbridos (dados estruturados e
não-estruturados) para melhor reflexão do ciclo de vida dos bugs.

Abstract. This study is a systematic mapping of the literature on approaches to classifying and categorizing bugs in
software, analyzing 33 final articles published between 2019 and 2024. The protocol was conducted following the PRISMA
model, using the Parsifal tool for screening, and the search was performed in the ISI Web of Science, IEEE Xplore,
Scopus, and Engineering Village databases. Data synthesis was performed through qualitative analysis and standardized
extraction, focusing on technologies, data types, application contexts, and categorization criteria. The research revealed
the predominance of supervised algorithms (such as Naive Bayes and Support Vector Machine) and the dependence on
unstructured textual data from open-source repositories such as Mozilla and Eclipse. The exclusivity of open-source
data restricts understanding of the bug life cycle in industrial contexts. Consequently, there is a need for future research
exploring corporate environments and the integration of hybrid models (structured and unstructured data) to better reflect
the bug life cycle.

Palavras-chave: Classificação de bugs, Categorização de bugs, Mapeamento sistemático, Software
Keywords: Bug classification, Bug categorization, Systematic mapping, Software

Recebido/Received: 11 November 2025 • Aceito/Accepted: 26 December 2025 • Publicado/Published: 31 December 2025

1 Introdução

O ciclo de desenvolvimento do software abrange etapas como
análise de requisitos, design, implementação, testes e ma-
nutenção, que descrevem o processo de construção de um
sistema de software. A eficiência desse processo e a contínua
satisfação das necessidades dos usuários são intrinsecamente
ligadas à garantia de qualidade e confiabilidade do software
[qahtan yas et al., 2023]. Apesar da adoção de rigorosas prá-
ticas de garantia de qualidade, a ocorrência de bugs persiste
no ciclo de desenvolvimento, impulsionada pela crescente
complexidade dos sistemas e pela natureza propensa a erros
da atividade humana de codificação. Consequentemente, es-
ses erros podem comprometer funcionalidades e impactar
negativamente a confiança dos usuários [Meher et al., 2024].
Assim, a adoção de estratégias que minimizem riscos e asse-

gurem a qualidade dos sistemas entregues é de fundamental
importância.

Nesse contexto, abordagens baseadas na classificação e
categorização de bugs têm sido aplicadas, utilizando recursos
de aprendizado de máquina e processamento de linguagem
natural (PNL). Essas técnicas contribuem tanto para uma de-
tecção mais precisa das falhas quanto para a evolução contínua
dos sistemas [Laiq et al., 2025]. A categorização de bugs
pode assumir diferentes cenários, a depender do propósito.
Entre as formas mais recorrentes, é destacada a categorização
por nível de severidade, tais como crítica, alta, média e baixa.
Outra forma utilizada para a categorização é por tipo de falha,
tais como erros funcionais, erros de desempenho, defeitos na
interface e falhas de segurança.

Contudo, com a diversidade crescente de métodos, con-
juntos de dados e métricas de avaliação, torna-se desafiador

https://portal.issn.org/resource/ISSN/3085-8461
https://doi.org/10.5753/reic.2025.6850
https://orcid.org/0009-0005-1698-8046
mailto:igor.ramses@darmlabs.ifce.edu.br
https://orcid.org/0009-0004-1616-7996
mailto:lais.carvalho07@aluno.ifce.edu.br
https://orcid.org/0009-0009-9318-5676
mailto:samuel.teles@darmlabs.ifce.edu.br
https://orcid.org/0000-0003-3385-5913
mailto:rubens.silva@darmlabs.ifce.du.br
https://orcid.org/0000-0002-1005-1747
mailto:manoel.filho@darmlabs.ifce.edu.br
https://orcid.org/0000-0001-5284-7658
mailto:ronaldo.milfont@ifce.edu.br
https://orcid.org/0009-0008-7967-8282
mailto:alex.lacerda@ifce.edu.br


Um Mapeamento Sistemático sobre Técnicas de Classificação e Categorização de Bugs em Software Santos et al. 2025

comparar os resultados obtidos nas pesquisas e avaliar de
forma padronizada suas contribuições [Harzevili et al., 2025].
A tensão operacional reside no fato de que a alta fragmentação
metodológica impede que a comunidade estabeleça qual com-
binação de técnicas, tipos de dados e contextos de aplicação
oferece a melhor capacidade de generalização e replicabili-
dade dos resultados em engenharia de software. Portanto,
organizar e sintetizar o conhecimento disponível é essencial
para fornecer uma base mais clara e estruturada para novos
estudos na área [Ordoñez-Pacheco et al., 2021].

Diante desse contexto, o presente estudo realiza uma
análise do estado da arte sobre as técnicas aplicadas à classi-
ficação e categorização de bugs em software, por meio de um
Mapeamento Sistemático da Literatura. A partir da análise
dos estudos primários selecionados, busca-se identificar ten-
dências tecnológicas, lacunas existentes na pesquisa, técnicas,
algoritmos, tipos de dados e contextos recorrentes, oferecendo
uma visão consolidada e estruturada das soluções propostas e
validadas na literatura [Harzevili et al., 2025]. Desta forma,
espera-se contribuir de forma significativa para o avanço da
área e para a melhoria contínua da qualidade do software e
manutenção de software.

O objetivo deste mapeamento sistemático é identificar e
analisar as principais técnicas, conjuntos de dados e contexto
de aplicação abordados nos estudos voltados à classificação
e categorização de bugs. Para alcançar esse objetivo, foram
selecionados e analisados 33 artigos primários publicados
entre 2019 e 2024, que aplicam diferentes métodos computa-
cionais. A revisão busca oferecer uma visão consolidada das
abordagens existentes, destacando contribuições, limitações
e trabalhos futuros. Além disso, identificar técnicas emer-
gentes, datasets mais utilizados e métricas mais utilizadas
para avaliação de desempenho, assim contribuindo com o
fortalecimento do conhecimento na área de Engenharia de
Software.

Embora o estudo se concentre na identificação e análise
de técnicas, tipos de dados, contextos de aplicação e critérios
de classificação, optou-se pela condução de um Mapeamento
Sistemático (Systematic Mapping Study) visando fornecer
uma visão panorâmica e quantitativa sobre as frequências de
técnicas e tipos de dados utilizados na área.

O recorte temporal de 2019 a 2024 foi definido com base
em dois fatores: a rápida evolução das técnicas de aprendi-
zado de máquina e processamento de linguagem natural, que
têm impactado diretamente as abordagens de classificação e
categorização de bugs, e a necessidade de fornecer uma visão
atualizada sobre as práticas e técnicas emergentes.

Assim, restringir o escopo aos últimos cinco anos per-
mite concentrar a análise em métodos e contextos mais rele-
vantes ao estado da arte atual. O ano de 2025 não foi incluído
integralmente no intervalo de busca sistemática, pois o ano
corrente não havia sido concluído no momento da execução
do protocolo, visando garantir a reprodutibilidade fiel dos
resultados anuais completos.

Este estudo está organizado em cinco seções, sendo elas:
1 - Introdução: apresenta o contexto e o objetivo deste tra-
balho; 2 - Trabalhos Relacionados: discute estudos prévios
semelhantes, destacando contribuições, avanços e lacunas
que contextualizam e reforçam a relevância deste estudo; 3 -
Método: descreve o protocolo utilizado na condução da Ma-

peamento Sistemático, incluindo os critérios de inclusão e
exclusão, além das questões de pesquisa que orientaram a
análise; 4 - Resultados: apresenta os achados da revisão, com
ênfase nas tendências e lacunas identificadas; e 5 - Conclusão:
traz as considerações finais, destacando as implicações dos
resultados e possíveis direções para pesquisas futuras.

2 Trabalhos Relacionados
Priyadarshini [2025] afirma que defeitos de software prejudi-
cam a qualidade do software e representam uma séria ameaça
à sua confiabilidade. Este estudo enfatiza a importância de
técnicas para tarefas de classificação de defeitos em módulos
defeituosos, para garantir a eficiência do processo de desen-
volvimento de software. Entretanto, a variabilidade entre os
datasets e sua influência na capacidade de generalização dos
modelos não são abordadas, não permitindo uma visão ampla
sobre a sua real aplicação.

Nesse sentido, Pachouly et al. [2022] realizaram uma
revisão sistemática sobre a predição de defeitos utilizando
técnicas de Inteligência Artificial (IA), analisando aspectos
como conjuntos de dados mais utilizados, métodos de valida-
ção de dados, abordagens e ferramentas aplicadas. O artigo
chama atenção sobre a limitação de diversidade de datasets
utilizados, ressaltando a escassez de práticas padronizadas
de validação de dados, além de falta de transparência com
relação à origem e estrutura de dados nos trabalhos da área,
comprovando a necessidade de uma análise detalhada sobre a
natureza dos dados utilizados em atividades de classificação
e categorização de bugs.

Ainda mais, Gunalan et al. [2022] exploraram o uso
das descrições textuais, mas agora voltado à categorização
de bugs, a partir do uso de técnicas de PLN. Contudo, o
estudo limita-se ao não generalizar sua aplicação, visto que
foi validado apenas em um conjunto de dados, além de não
ser claro acerca da estrutura dos dados ou da disponibilidade
pública da base. Nesse contexto, uma análise sobre os tipos
de dados lidados a partir das descrições textuais citadas ainda
é pouco explorada.

Por outro lado, Afric et al. [2023] abordaram o impacto
de diferentes classificadores (como RoBERTa e FastText) em
contextos variados, a partir de uma análise sobre a influência
dos rótulos incorretos na qualidade das bases de dados utiliza-
das em classificações de falhas. Porém, o estudo não explora
sua aplicação em tarefas de categorização específicas, além
de não ter apresentado informações sobre a disponibilidade
dos dados utilizados. Diante disso, é necessário explorar a
estrutura e a natureza dos dados envolvidos em classificações
e categorizações.

Da mesma forma, Singh et al. [2024] propuseram um
modelo de classificação de defeitos a partir de descrições
textuais de falhas. Embora, também não discutiram sobre a
estrutura dos dados não estruturados, além da aplicabilidade
em outros contextos, visto que foram restringidos a apenas
uma base de dados. Sendo assim, essas lacunas revelam a
necessidade de investigar sobre os tipos de dados e domínios
explorados no estado da arte.

Por outro lado, Laiq et al. [2025] realizaram um mapea-
mento sistemático sobre técnicas automáticas para categori-
zação de bugs, destacando o uso de aprendizado de máquina



Um Mapeamento Sistemático sobre Técnicas de Classificação e Categorização de Bugs em Software Santos et al. 2025

e NLP. Eles evidenciam que a maioria dos estudos usa dados
de repositórios de código aberto, com pouca validação em
ambientes industriais, além de negligenciar aspectos como
escalabilidade e generalização. Porém, a diversidade e he-
terogeneidade dos dados - a qual pode afetar a eficácia dos
métodos - não foi observada. Assim, é necessária uma análise
sobre a variação entre os domínios e contextos dos projetos
utilizados em tarefas de categorização de defeitos.

Por fim, Zheng et al. [2024] propôs estratégias de análise
e critérios de categorização de defeitos, a fim de explorar o
processo de análise de defeitos. Este estudo discute a sua
aplicação na prática, propondo métodos e processos básicos
para a prevenção de defeitos de software. Contudo, o estudo
não fornece detalhes sobre os dados utilizados, como sua
origem ou estrutura.

Em síntese, os estudos revisados evidenciam avanços no
uso de técnicas de aprendizado de máquina e PLN, porém
mantêm limitações quanto à diversidade de dados e contextos
de aplicação. Assim, este mapeamento sistemático busca
preencher essa lacuna, oferecendo uma visão consolidada
sobre as técnicas, bases e classificações utilizadas, bem como
apontando novas oportunidades de pesquisa em ambientes
corporativos e ágeis.

3 Método
3.1 Planejamento da Revisão
A revisão foi organizada em três fases: planejamento, exe-
cução e resultados. O processo foi conduzido com apoio da
ferramenta Parsifal, que ajudou no gerenciamento das ques-
tões de pesquisa, definição dos critérios de inclusão e exclusão,
avaliação da qualidade dos estudos e extração dos dados. A
Figura 1 apresenta o processo de execução realizado, seguido
de avaliação entre os avaliadores para garantir replicabilidade,
consenso e seleção do estudo com base nos critérios.

A escolha pelo Mapeamento Sistemático justifica-se pela
intenção de, além de mapear, analisar criticamente as evidên-
cias disponíveis, identificar padrões, lacunas e propor direções
para pesquisas futuras, o que requer maior rigor na seleção,
avaliação e síntese dos estudos.

Figura 1. Processo de condução do Mapeamento Sistemático da Literatura.

A metodologia foi colocada conforme o modelo
PRISMA (Preferred Reporting Items for Systematic Revi-
ews and Meta-Analyses), assim garantindo um processo fácil
de replicar e confiável, compreendendo: identificação, tria-
gem e inclusão dos artigos. Iniciando com a busca em bases

de dados que resultaram em um grande volume de artigos,
que passaram pela remoção de duplicados. Na etapa de tri-
agem, os títulos, resumos e palavras-chave foram avaliados
conforme os critérios de inclusão e exclusão. Os artigos se-
lecionados para leitura completa passaram pela análise de
qualidade e extração de dados, conduzida por avaliadores
autônomos com a intervenção de um terceiro avaliador em
situações de discordância. Esse fluxo é ilustrado conforme a
Figura 2.

Figura 2. Fluxo PRISMA e resultados durante a etapa

A ferramenta Parsifal foi escolhida devido à sua capa-
cidade de transparência e organização da revisão, assim per-
mitindo registrar o protocolo completo da revisão, incluindo
critérios de inclusão e exclusão, questões de pesquisa e formu-
lários de extração de dados. Além disso, a ferramenta oferece
integração com o Mendeley e exportação automatizada de
relatórios, facilitando o gerenciamento e reduzindo vieses
durante o processo de revisão.

3.2 Questões de Pesquisa
As questões de pesquisa foram criadas para identificar: as
técnicas utilizadas nos últimos cinco anos para a classificação
e categorização de bugs, os contextos de aplicabilidade mais
frequentes, as bases propostas nos estudos, métricas de ava-
liação e as classificações ou categorias adotadas de acordo
com as técnicas utilizadas.

RQ1: Quais técnicas foram utilizadas nos últimos cinco anos
para a classificação e categorização de bugs? Motiva-
ção: Com a evolução das técnicas utilizadas para classi-
ficação e categorização, é fundamental mapear as mais
recentes aplicadas nesse problema.

RQ2: Em quais contextos a classificação e a categorização
de bugs são mais aplicadas?
Motivação: Entender em quais contextos são aplicadas



Um Mapeamento Sistemático sobre Técnicas de Classificação e Categorização de Bugs em Software Santos et al. 2025

ajuda a entender os ambientes onde essas técnicas têm
mais impacto.

RQ3: Quais bases de dados foram utilizadas?
Motivação: A diversidade de bases de dados utilizadas
impacta diretamente na qualidade e na generalização dos
resultados. Tendo ciência das bases mais utilizadas, é
permitido avaliar o reuso dos datasets e a confiabilidade
deles.

RQ4: Quais são as classificações e/ou categorias emprega-
das dadas as técnicas utilizadas?
Motivação: Identificar quais tipos de classifica-
ções/categorizações estão sendo utilizadas permite iden-
tificar padrões e avaliar a adequação nas técnicas que
foram utilizadas.

3.3 Estratégia de Busca
A busca foi realizada nas bases Engineering Village, IEEE
Digital Library, ISI Web of Science e Scopus. O recorte
temporal foi de 2019 a 2024, definido com base na rápida
evolução das técnicas de aprendizado de máquina e proces-
samento de linguagem natural. Excepcionalmente, artigos
formalmente aceitos para publicação em 2024, mas com data
de publicação final em 2025, foram incluídos para garantir a
visão mais atualizada do estado da arte.

A string de busca utilizada foi:
(“bug classification"OR “bug categorization"OR “defect

classification"OR “defect categorization") AND (“machine
learning"OR “deep learning"OR “natural language proces-
sing"OR “NLP") AND (software)

O recorte temporal foi de 2019 a 2024, com filtros para
artigos revisados por pares, escritos em inglês, com mais de
cinco páginas e disponíveis integralmente.

3.4 Critérios de Inclusão e Exclusão
Foram considerados para inclusão apenas estudos que abor-
dassem classificação ou categorização de bugs em software,
apresentassem método, dados e métricas de avaliação, publi-
cados no período definido e que atendessem aos requisitos
mínimos de qualidade. Foram excluídos trabalhos focados ex-
clusivamente na detecção ou correção de bugs sem atividades
de classificação ou categorização, artigos com dados insufici-
entes para responder às questões de pesquisa e publicações
duplicadas ou versões preliminares de estudos já incluídos.

3.5 Seleção e Avaliação da Qualidade
A busca inicial nas bases resultou em 768 referências (ISI
Web of Science: 106, IEEE Xplore: 202, Scopus: 236, Engi-
neering Village: 224). Após a remoção de 292 duplicados,
476 artigos foram triados por título, resumo e palavras-chave.

Na etapa de triagem de texto completo, foram identi-
ficados 38 artigos para leitura detalhada. Desses, 5 foram
excluídos por apresentarem descrição metodológica incom-
pleta ou ausência de dados necessários, resultando em 33
artigos para a síntese final.

A confiabilidade da triagem foi verificada pelo coefici-
ente Kappa de Cohen, resultando em um valor de k = 0.80, o
que representa uma concordância substancial entre os avali-
adores. A qualidade dos estudos foi avaliada considerando:
revisão por pares, clareza dos objetivos, descrição metodoló-
gica, apresentação de resultados, validade das conclusões e
acesso aos dados.

3.6 Extração dos Dados
A extração de dados foi realizada por meio de formulário
padronizado na plataforma Parsifal, reunindo informações
como: autores, veículo de publicação, técnicas utilizadas,
tipo de dados, contexto de aplicação e métricas de avaliação.
Dois revisores atuaram de forma independente e, em caso de
divergências, um terceiro avaliador decidiu, assegurando a
consistência dos dados.

A síntese dos dados foi conduzida por análise descritiva
quantitativa (contagem de frequência para algoritmos, bases e
contextos) e análise temática narrativa. Esta abordagem mista
foi fundamental para atingir o objetivo do mapeamento siste-
mático, permitindo não apenas a enumeração das tendências,
mas também a síntese crítica das evidências, a identificação de
padrões emergentes e a discussão das implicações das lacunas
identificadas.

4 Resultados
Nesta seção, são apresentados os resultados das perguntas de
pesquisa obtidos a partir da análise dos artigos selecionados.
As Tabelas 1 e 2 apresentam a distribuição das técnicas utiliza-
das para classificar e categorizar bugs nos estudos analisados.

Tabela 1. Distribuição das técnicas utilizadas na classificação e
categorização de bugs

Rank Técnica / Modelo Freq.
1 Naive Bayes 11
2 F-SVM 10
3 MLP (Multi-Layer Perceptron) 9
4 GLM (Generalized Linear Model) 9
5 Random Forest 7
6 Word2Vec 6
7 BERT 5
8 TF-IDF 5
9 Tree-LSTM 5
10 SVM (Support Vector Machine) 5
11 SMOTE 3
12 NLP (Natural Language Processing) 3
13 RDL 3
14 GRCNN 3
15 LSTM 3
16 Gaussian Naive Bayes 2
17 Transformer 2
18 CodeBERT 2
19 DistilBERT 2
20 Multinomial Naive Bayes 2
21 IFSDCR 2
22 CNN (Convolutional Neural Network) 2
23 Fuzzy Linear Regression 2
24 ALBERT 1
25 Polynomial Naive Bayes 1
26 KeyBERT 1
27 Ordinal Regression 1

É notável que grande parte dos artigos analisados em-
prega algoritmos de Machine Learning (ML) e Deep Learning
(DL), mostrando uma tendência de automação na classificação
de bugs. O algoritmo Naive Bayes foi aplicado em 11 de 33
artigos (33%), seguido por Fuzzy Support Vector Machine (F-



Um Mapeamento Sistemático sobre Técnicas de Classificação e Categorização de Bugs em Software Santos et al. 2025

Tabela 2. Distribuição das técnicas utilizadas na classificação e
categorização de bugs. (continuação)

Rank Técnica / Modelo Freq.
28 RoBERTa 1
29 Bayesian Classification 1
30 Rule-Based Classification 1
31 Bug Framework 1
32 Feature Vectors 1
33 Multihead-CNN 1
34 Softmax Classifier 1
35 Gradient Boosting 1
36 SDPET 1
37 IFSDTR 1
38 CRF-LSTM 1
39 Term Frequency 1
40 Inverse Document Frequency 1
41 RNN 1
42 ANN 1
43 Decision Tree 1
44 Logistic Regression 1
45 DeepFM 1
46 K-Nearest Neighbor 1
47 Adaboost 1
48 Fuzzy Multi Linear Regression 1
49 Multiple Linear Regression 1
50 Support Vector Regression 1
51 K-Nearest Neighbors 1
52 Regression 1
53 ONN-DP 1

SVM) em 10 artigos (30%) e Support Vector Machine (SVM)
em 5 artigos (15%). Já o Multilayer Perceptron (MLP) e o Ge-
neralized Linear Model (GLM) apareceram em 9 estudos cada
(27%). A persistência de classificadores tradicionais (Naive
Bayes, SVM) reflete sua interpretabilidade, baixo custo com-
putacional e desempenho como baseline robusto em tarefas
textuais.

Além disso, observou-se o crescimento do uso de mode-
los pré-treinados, como Bidirectional Encoder Representati-
ons from Transformers (BERT) e suas variações CodeBERT,
DistilBERT, RoBERTa e ALBERT, os quais foram emprega-
dos em 11 artigos (33%), indicando uma adoção crescente
de representações semânticas profundas. As técnicas de pré-
processamento também foram frequentemente utilizadas, com
destaque para TF-IDF em 5 artigos (15%), Word2Vec em 6
artigos (18%) e SMOTE em 3 artigos (9%).

Em resumo, vê-se que a classificação e categorização de
bugs têm sido comumente abordadas por meio de algoritmos
supervisionados, com grande parte baseada em modelos de
ML e DL, acompanhadas de um crescente interesse em téc-
nicas de processamento textual. Essa tendência indica uma
busca maior pela automação da classificação e categorização
de bugs, além da melhoria da qualidade da análise semântica,
o que pode auxiliar na eficiência do processo de qualidade e
manutenção de software. A Figura 3, apresenta a distribuição
dos tipos de dados que foram analisados na classificação e/ou
categorização de bugs dos estudos analisados.

De acordo com a Figura 3, é notável que a maioria dos
artigos utiliza dados extraídos de Bug Reports (55%), títu-
los (36%), resumos (39%) e descrições (30%). Essa forte

Figura 3. Distribuição dos tipos de dados utilizados na classificação e
categorização de bugs.

concentração em dados textuais reforça o uso de técnicas
de Processamento de Linguagem Natural (PNL) e aprendi-
zado supervisionado. A análise crítica aponta que a excessiva
dependência de dados textuais faz com que o sucesso da classi-
ficação esteja intrinsecamente ligado à volatilidade semântica
e à qualidade da anotação humana em textos curtos e não
padronizados.

Ademais, diversos artigos utilizam dados categóricos,
tais como severidade (7 artigos, 21%), prioridade (5 artigos,
15%), status (6 artigos, 18%) e assignee (5 artigos, 15%), que
complementam as análises textuais e permitem avaliações
mais amplas e detalhadas.

Por outro lado, atributos temporais e tempo de correção
são pouco explorados. Este é um achado crítico: negligenciar
a dimensão temporal limita severamente a compreensão do
ciclo de vida completo dos bugs e do desempenho operacional
da triagem. Em ambientes corporativos, o tempo de correção é
uma variável-chave para a priorização e alocação de recursos,
e sua ausência nos modelos revisados representa uma barreira
significativa para a transferência e a validade externa dessas
soluções. Esse resultado mostra que, embora o uso de dados
textuais seja frequentemente utilizado, há espaço para estudos
futuros que envolvam dimensões temporais e contextuais,
assim ampliando a visão sobre classificação e categorização
de bugs.

Esse resultado mostra que, embora os dados textuais
sejam recorrentemente empregados, há espaço para estudos
futuros que considerem dimensões temporais, assim ampli-
ando a visão sobre classificação e categorização de bugs. De
forma geral, observa-se que as técnicas que foram utilizadas
nos últimos cinco anos para classificação/categorização de
bugs determinam o uso de algoritmos supervisionados com
técnicas de PLN aplicadas em dados textuais.

Essa aproximação entre ML, modelos pré-treinados e
abordagens de pré-processamento textual mostra uma busca
por automação e escalabilidade em atividades de classifica-
ção. A predominância de dados provenientes de bug reports
evidencia a centralidade das fontes textuais estruturadas e
não estruturadas. Apesar da limitada exploração de dados
temporais e atributos como tempo de correção, mostram-se
oportunidades futuras para ampliação da compreensão do
ciclo de vida de bugs. A Tabela 3, apresenta a distribuição
dos contextos de aplicação que foram abordados nos estudos



Um Mapeamento Sistemático sobre Técnicas de Classificação e Categorização de Bugs em Software Santos et al. 2025

analisados.

Tabela 3. Contextos de aplicação abordados nos estudos
Contexto Número de Ocorrências
Projetos GitHub 9
Projetos Open-source 25
Projetos Cybersecurity 1
Projetos SAAS 1
Projetos Mobile 1
Projetos de Software 1
Projetos Privados 5
Projetos Java 1
Projetos em fase de testes 8
Projetos Ágeis 1
Projetos JavaScript 1

Conforme a Tabela 3, a maioria dos artigos foi condu-
zida em contexto de projetos open-source (76%) e projetos
hospedados no GitHub (27%), o que decorre principalmente
da disponibilidade pública dos dados. Em contrapartida, pro-
jetos privados (15%) e projetos ágeis (apenas 3%) têm baixa
representatividade. Este cenário reforça a ameaça à validade
externa (Seção 4.1), pois a grande dependência de projetos
open-source limita a generalização para cenários corporativos,
onde a cultura de comunicação, a estrutura do bug report e o
viés organizacional são fatores críticos.

Além disso, observa-se a presença de projetos em fase
de testes em 8 estudos (24%), evidenciando o interesse na
avaliação de técnicas em ambientes não consolidados. Em
contrapartida, vê-se que artigos que utilizaram projetos pri-
vados somam 5 artigos (15%), apresentando limitações de
acesso e restrições. Além de contextos menos explorados, tais
como segurança cibernética, SaaS, mobile, Java e JavaScript,
com 1 artigo (3%) cada contexto. Vale ressaltar que apenas 1
artigo (3%) citou a aplicação em projetos ágeis, configurando
uma possível lacuna na literatura sobre a adaptação dessas
técnicas em contextos ágeis.

Em resumo, os resultados abrangem aplicação em pro-
jetos abertos e acessíveis, reforçando a importância de re-
positórios públicos como base de análises científicas. Esse
cenário reforça a importância da disponibilização de dados
reais e evidencia oportunidades de exploração em ambientes
menos estudados, como ambientes corporativos e projetos
ágeis. A Tabela 4, apresenta a distribuição das bases de dados
utilizadas nos estudos analisados.

Conforme a Tabela 4, Mozilla e Eclipse aparecem com
maior frequência (39% cada), o que reforça o alto alinhamento
com a ciência aberta. No entanto, essa concentração limita a
diversidade de contextos, indicando a necessidade de explora-
ção de novas bases de dados de domínios pouco representados.
A predominância de dados não estruturados (84,8%) (Figura
6) é coerente com o foco em PLN, mas a escassez de dados
estruturados (15,2%) sugere a oportunidade de modelos híbri-
dos mais robustos que combinem dados textuais com atributos
categóricos como prioridade e severidade.

Outras bases utilizadas foram NetBeans, em 6 artigos
(18%), e Apache, Bugzilla e Firefox, cada uma utilizada em
3 artigos (9%), reforçando o uso dessas bases em projetos
maduros e bem estabelecidos. Outra base utilizada foi o
GitHub, presente em 4 estudos (12%) com datasets específi-
cos, enquanto bases privadas aparecem em 5 artigos (15%),

Tabela 4. Bases de dados utilizadas nos estudos
Base Número de Ocorrências
GitHub dataset 4
Dataset private 5
Nasa Dataset 1
BugJs 1
Kaggle dataset 2
F-Droid 1
Bugzila 3
JBoss 1
OpenFOAM 1
Firefox 3
Mozilla 13
Eclipse 13
CVE 1
Gentoo 1
Gnome 1
Open office 2
NetBeans 6
Apache 3
KDE 1
LibreOffice 1
Linux 1
Thunderbird 1
Seamonkey 1
Boot2Gecko 1
Add-OnSDK 1
Webtools 1
Addons.mozilla.org 1
Camel 1
Derby 1
Wicket4 1

indicando um interesse em cenários corporativos, embora o
acesso a essas bases apresente limitações.

Além disso, observou-se menor utilização de fontes
como Kaggle, em 2 artigos (6%), e OpenOffice, em 2 ar-
tigos (6%), bem como de bases menos consolidadas, como
NASA Dataset, CVE, F-Droid, Gentoo, Gnome, Linux, KDE,
entre outras, cada uma mencionada em 1 artigo (3%). Esse ce-
nário evidencia uma grande dispersão em repositórios pouco
representativos, o que reforça a necessidade de diversificar as
fontes de dados utilizadas em futuras pesquisas.

Os resultados mostram que a comunidade acadêmica
tem, de forma expressiva, utilizado bases de projetos open-
source, dada a acessibilidade e a grande quantidade de dados.
Porém, essa concentração limita a diversidade de contextos,
mostrando a necessidade de exploração de novas bases de da-
dos de domínios pouco representados. A Figura 4, apresenta
a distribuição da disponibilidade dos datasets utilizados nos
estudos analisados.

Conforme a Figura 4, observa-se que a grande maioria
dos artigos utiliza datasets de disponibilidade pública, presen-
tes em 28 de 33 estudos (84.8%). Essa predominância mostra
o forte alinhamento da comunidade científica com a ciência
aberta, facilitando a replicação e a melhoria de experimentos,
a comparação entre estudos e o avanço do conhecimento na
área de classificação e categorização de bugs.

Por outro lado, há 5 artigos (15.2%) que utilizaram da-
tasets privados, geralmente provenientes de contextos corpo-



Um Mapeamento Sistemático sobre Técnicas de Classificação e Categorização de Bugs em Software Santos et al. 2025

Figura 4. Distribuição da disponibilidade dos datasets analisados.

rativos ou organizações privadas. Embora representem um
retrato fiel de cenários reais, sua restrição limita a reprodução
e o avanço de experimentos, impossibilitando comparações e
validações. Esse cenário indica uma grande abertura da co-
munidade científica em compartilhar dados, assim evoluindo
pesquisas. A Figura 5, apresenta a distribuição do tipo de
estrutura utilizada nos datasets dos estudos analisados.

Figura 5. Distribuição do tipo de estrutura dos datasets analisados.

A análise dos artigos revela uma predominância no uso
de dados não estruturados, presentes em 84,8% (28 de 33) dos
estudos. Esse dado é coerente com a aplicação de técnicas de
PLN, que se mostram eficazes na extração de informações tex-
tuais para a classificação. Entretanto, apenas 15,2% (5 artigos)
utilizaram dados estruturados, como prioridade, severidade e
status, que se mostram mais fáceis de manipulação em mode-
los supervisionados. Esse cenário evidencia uma tendência
da área na exploração de dados textuais, ao mesmo tempo
que mostra uma oportunidade de combinação de modelos
híbridos mais robustos. A Tabela 5, apresenta a distribuição
do tipo de classificação e/ou categorização empregada nos
estudos analisados.

De acordo com a Tabela 5, observa-se uma grande diver-
sidade de classificações e categorizações de bugs empregadas
nos estudos analisados. Dentre as mais recorrentes, destaca-
se a classificação multiclasse, presente em 12 de 33 artigos
(36%), a qual permite que os modelos atribuam os bugs a
duas ou mais categorias, refletindo cenários mais realistas e
complexos.

Além disso, há a classificação por tipo de bug em 4
artigos (12%), demonstrando a preocupação em evidenciar as
diferentes naturezas dos bugs. Outras abordagens de destaque

Tabela 5. Tipos de Classificação e Categorização de Bugs Identifi-
cados

Tipo de Classificação / Categorização Frequência
Classificação multiclasse 12
Classificação por severidade 10
Classificação de duplicidade de bugs 7
Classificação por tipo de bug 4
Classificação baseada em relato detalhado 3
Classificação por tipo técnico 2
Classificação baseada em risco 2
Classificação binária 1
Classificação por prioridade 1
Classificação por similaridade 1
Classificação balanceada 1
Classificação por testes 1
Classificação multirrótulo 1

são: classificação por severidade, com 10 artigos (30%); por
prioridade, com 1 artigo (3%); e por tipo técnico, com 2
artigos (6%), voltadas para a categorização dos bugs conforme
a criticidade e/ou o impacto no sistema.

Abordagens menos frequentes incluem a classificação
binária, com 1 artigo (3%); baseada em risco, com 2 artigos
(6%); por similaridade, com 1 artigo (3%); e multirrótulo,
com 1 artigo (3%). Em menor número, têm-se ainda clas-
sificações balanceada, por testes, por duplicidade de bugs e
categorização baseada em relatos detalhados, todas com 1
artigo (3%).

Esses dados indicam que a grande maioria dos artigos
busca uma categorização mais rica e contextualizada, indo
além da rotulação binária, o que sugere uma maturidade na
área e a possibilidade de refletir contextos reais do desen-
volvimento de software. Ao mesmo tempo, a presença de
abordagens diversas evidencia que a classificação de bugs é
um campo dinâmico e repleto de possibilidades de estudo em
aberto.

4.1 Ameaças à Validade
Esta revisão apresenta algumas limitações e ameaças à vali-
dade que devem ser consideradas na interpretação dos resul-
tados. Em relação à validade da construção, embora a string
de busca tenha sido elaborada de forma ampla, é possível
que nem todos os estudos relevantes tenham sido recuperados
devido a variações terminológicas na literatura.

Quanto à validade interna, a avaliação de qualidade e
a extração dos dados foram conduzidas por dois revisores
independentes, com intervenção de um terceiro em casos
de divergência, mas ainda assim podem ter ocorrido inter-
pretações subjetivas. No que se refere à validade externa, a
predominância de estudos baseados em dados provenientes de
projetos open-source limita a generalização das conclusões
para contextos corporativos e ágeis.

Por fim, no tocante à validade de conclusão, as análi-
ses realizadas dependem das informações fornecidas pelos
estudos primários, que podem conter vieses de publicação
ou ausência de detalhes metodológicos. Para mitigar tais
ameaças, foram aplicados protocolos estruturados, como o
PRISMA, e calculado o coeficiente Kappa, visando assegurar
maior confiabilidade ao processo de seleção e análise.



Um Mapeamento Sistemático sobre Técnicas de Classificação e Categorização de Bugs em Software Santos et al. 2025

5 Conclusão
Os resultados da análise dos 33 artigos selecionados indicam
que a classificação e categorização de bugs é um campo ex-
plorado na área acadêmica. Há uma predominância de algorit-
mos de Machine Learning (ML) e Deep Learning (DL), como
Naive Bayes, SVM, MLP e modelos pré-treinados, como
BERT e suas variantes. Essa tendência reflete a busca por au-
tomação e melhoria da eficiência no processo de manutenção
de software. A aplicação de técnicas de pré-processamento
textual e o foco em dados não estruturados (descrições, resu-
mos e títulos de bugs) reforçam a centralidade do Processa-
mento de Linguagem Natural (PNL).

As fontes de dados predominantes são repositórios open-
source, com destaque para Mozilla e Eclipse, evidenciando
a facilidade de acesso a informações dessas bases. Contudo,
essa concentração limita a diversidade de cenários analisa-
dos, destacando a necessidade de explorar fontes privadas e
dados corporativos. Embora a utilização de datasets públicos
demonstre o alinhamento da comunidade científica com os
princípios da ciência aberta, a menor presença de bases priva-
das aponta para uma lacuna na representação de dados reais,
o que restringe a generalização dos resultados para ambientes
corporativos.

A respeito de contextos de aplicação, grande parte dos
estudos se concentrou em projetos open-source e hospedados
no GitHub, tendo uma baixa representatividade em ambi-
entes corporativos, projetos ágeis, segurança cibernética e
desenvolvimento mobile, indicando lacunas promissoras para
pesquisas futuras. Bem como, a maioria dos artigos foca em
dados textuais, com baixa exploração de atributos temporais
e tempo de correção de bugs, limitando a compreensão do
ciclo de vida de bugs.

No que tange os tipos de classificação e categorização,
os artigos demonstram o uso de abordagens como classifi-
cação multiclasse, por tipo de bug, severidade e prioridade,
mostrando uma tentativa de replicação da complexidade dos
cenários reais no desenvolvimento de software. Todavia, este
campo mostra-se dinâmico, com abordagens menos frequen-
tes que revelam novas possibilidades de inovação.

Os resultados desta revisão podem orientar empresas de
software, gestores de qualidade e pesquisadores na escolha
de técnicas de classificação e categorização mais adequadas
aos seus contextos. Recomenda-se que pesquisas futuras ex-
plorem modelos híbridos que combinem dados estruturados
e não estruturados, incorporando atributos temporais e con-
textuais para ampliar a aplicabilidade prática das técnicas. A
integração de modelos baseados em LLMs (Large Language
Models) com dados de bugs reais também representa uma
direção promissora para aumentar a precisão e a interpretabi-
lidade dos resultados.

Declarações complementares
Financiamento
Esta pesquisa não foi financiada por nenhum órgão governamental e
não-governamental.

Contribuições dos autores
Ramsés contribuiu para a concepção deste estudo. Samuel, Laís
e Rubens realizaram a investigação, a metodologia, a escrita e a

revisão. Manoel e Alex foram responsáveis pela curadoria dos dados,
administração de projetos e validação do estudo. Todos os autores
leram e aprovaram o manuscrito final.

Conflitos de interesse
Os autores declaram que não têm nenhum conflito de interesses.

Disponibilidade de dados e materiais
Os conjuntos de dados (e/ou softwares) gerados e/ou analisados
durante o estudo atual serão feitos mediante solicitação.

Referências
Afric, P., Vukadin, D., Silic, M., and Delac, G. (2023). Em-

pirical study: How issue classification influences software
defect prediction. IEEE Access, 11:11732–11748. DOI:
10.1109/ACCESS.2023.3242045.

Gunalan, P., Jaiseenu, V., and Madumidha, S. (2022). Natural
language processing based bug categorization. In 2022
International Conference on Applied Artificial Intelligence
and Computing (ICAAIC), pages 1859–1863. IEEE. DOI:
10.1109/ICAAIC53929.2022.9793205.

Harzevili, N. S., Belle, A. B., Wang, J., Wang, S., Jiang, Z.
M. J., and Nagappan, N. (2025). A systematic literature
review on automated software vulnerability detection using
machine learning. ACM Computing Surveys, 57:1–36. DOI:
10.1145/3699711.

Laiq, M., bin Ali, N., Börstler, J., and Engström, E. (2025). A
comparative analysis of ml techniques for bug report clas-
sification. Journal of Systems and Software, 227:112457.
DOI: 10.1016/j.jss.2025.112457.

Meher, J. P., Biswas, S., and Mall, R. (2024). Deep
learning-based software bug classification. Infor-
mation and Software Technology, 166:107350. DOI:
10.1016/j.infsof.2023.107350.

Ordoñez-Pacheco, R., Cortes-Verdin, K., and Ocharán-
Hernández, J. O. (2021). Best Practices for Software De-
velopment: A Systematic Literature Review, pages 38–55.
DOI: 10.1007/978-3-030-63329-5_3.

Pachouly, J., Ahirrao, S., Kotecha, K., Selvachandran, G., and
Abraham, A. (2022). A systematic literature review on soft-
ware defect prediction using artificial intelligence: Datasets,
data validation methods, approaches, and tools. Engine-
ering Applications of Artificial Intelligence, 111:104773.
DOI: 10.1016/j.engappai.2022.104773.

Priyadarshini, A. (2025). Software defect prediction across
multiple datasets using classification techniques. Jour-
nal of Information Systems Engineering and Management,
10:158–167. DOI: 10.52783/jisem.v10i41s.7807.

qahtan yas, Alazzawi, A., and Rahmatullah, B. (2023). A
comprehensive review of software development life cycle
methodologies: Pros, cons, and future directions. Iraqi
Journal for Computer Science and Mathematics, pages
173–190. DOI: 10.52866/ijcsm.2023.04.04.014.

Singh, K., Aggarwal, A., Aneja, R. D., Kumar, R., and
Soni, P. (2024). Deep learning models for software de-
fect classification. In 2024 2nd International Confe-
rence on Device Intelligence, Computing and Commu-
nication Technologies (DICCT), pages 1–4. IEEE. DOI:
10.1109/DICCT61038.2024.10532830.

Zheng, L., Xie, Y., Hou, B., and Xie, X. (2024). Software



Um Mapeamento Sistemático sobre Técnicas de Classificação e Categorização de Bugs em Software Santos et al. 2025

defect classification and analysis study. In 2024 5th Inter-
national Conference on Information Science, Parallel and
Distributed Systems (ISPDS), pages 621–624. IEEE. DOI:
10.1109/ISPDS62779.2024.10667506.


	Introdução
	Trabalhos Relacionados
	Método
	Planejamento da Revisão
	Questões de Pesquisa
	Estratégia de Busca
	Critérios de Inclusão e Exclusão
	Seleção e Avaliação da Qualidade
	Extração dos Dados

	Resultados
	 Ameaças à Validade 

	Conclusão

