Revista Eletrônica de Iniciação Científica em Computação https://journals-sol.sbc.org.br/index.php/reic <p>O principal objetivo da REIC é oferecer aos estudantes de graduação, principalmente de Iniciação Científica (IC) e de Trabalho de Conclusão de Curso (TCC), a possibilidade de experimentar todo o processo de produção e divulgação de um trabalho científico, desde a sua concepção até a sua publicação final. Os estudantes são incentivados a escrever artigos científicos relatando suas pesquisas realizadas em projetos de iniciação científica, trabalhos de graduação, monografias de conclusão de curso e demais atividades de pesquisa, com o objetivo didático de contribuir para a formação dos estudantes, alimentar o interesse dos mesmos para as atividades de pesquisa e promover a compreensão do que representa o processo de submissão e publicação de artigos no meio acadêmico e científico.</p> pt-BR reic@sbc.org.br (Editores Chefe da REIC) reic@sbc.org.br (Suporte) sex, 28 jun 2024 18:47:26 +0000 OJS 3.2.1.2 http://blogs.law.harvard.edu/tech/rss 60 Análise Comparativa de Métodos de Undersampling em Classificação Automática de Texto Baseada em Transformers https://journals-sol.sbc.org.br/index.php/reic/article/view/4643 Classificação Automática de Texto (CAT) em bases de dados desbalanceadas é um desafio comum em aplicações do mundo real. Nesse cenário, uma das classes é sub-representada, podendo provocar um viés no processo de aprendizado. Este trabalho investiga o efeito de métodos de undersampling, que visam reduzir instâncias da classe majoritária, no desempenho de estratégias de CAT recentes, baseada em transformers. Avaliamos 15 estratégias existentes de undersampling e uma proposta nesse trabalho. Nossos resultados sugerem que as abordagens de undersampling são importantes para melhorar o desempenho de métodos de classificação em coleções desbalanceadas, não apenas reduzindo o viés de aprendizado, mas também reduzindo o custo de treinamento. Guilherme Fonseca, Washington Cunha, Leonardo Rocha Copyright (c) 2024 The authors https://creativecommons.org/licenses/by-nc/4.0 https://journals-sol.sbc.org.br/index.php/reic/article/view/4643 sex, 28 jun 2024 00:00:00 +0000 Estratégias vencedoras para jogos de convexidade em grafos https://journals-sol.sbc.org.br/index.php/reic/article/view/4644 Em 1981, foi publicado o primeiro artigo em inglês de convexidade em grafos. Três anos depois, em 1984, um de seus autores, Frank Harary, introduziu os primeiros jogos de convexidade. Apesar de definidos há muito tempo, as últimas pesquisas sobre jogos de convexidade datavam de 2003, com poucos resultados significativos devido a sua dificuldade. Neste trabalho, conseguimos usar a Teoria de Sprague-Grundy para resolver jogos de convexidade em grafos especiais, como árvores. Além disso, provamos que um desses jogos é PSPACE-difícil, o que o coloca um nível de complexidade acima dos problemas NP-difíceis. João Brito, Rudini Sampaio Copyright (c) 2024 Os autores https://creativecommons.org/licenses/by-nc/4.0 https://journals-sol.sbc.org.br/index.php/reic/article/view/4644 sex, 28 jun 2024 00:00:00 +0000 Predicting cycling flows in cities without cycling data https://journals-sol.sbc.org.br/index.php/reic/article/view/4645 <p>Cycling is a potential tool to mitigate many of the problems faced by urban populations today. Encouraging the use of bicycles as a legitimate mobility tool, however, demands adequate knowledge of current mobility patterns, such as locations of trip generation and attraction. Unfortunately, cities usually do not gather enough data to adequately understand cycling demand. We propose models based on spatial econometrics and gradient boosted regression trees which can be trained with data from cities with mature cycling cultures and then applied to cities still in their cycling infancy to supply city officials with a better estimate of potential future OD matrices. We perform a case study in the Boston Metropolitan Area and show results comparing both types of models.</p> Eduardo Falbel, Lucas Freitas, Kay Axhausen, Fabio Kon, Raphael Camargo Copyright (c) 2024 Authors https://creativecommons.org/licenses/by-nc/4.0 https://journals-sol.sbc.org.br/index.php/reic/article/view/4645 sex, 28 jun 2024 00:00:00 +0000 A Branch-and-Cut-and-Price Algorithm for Cutting Stock and Related Problems https://journals-sol.sbc.org.br/index.php/reic/article/view/4646 <p>In this project, we introduce a branch-and-cut-and-price framework to solve the Cutting Stock Problems with strong relaxations using the Set Covering (Packing) Formulations, which are solved through column generation. We propose an extended Ryan-Foster branching scheme tailored to non-binary models, a pricing algorithm that produces convergence in a few iterations, and a variable selection technique based on branching history. These strategies are combined with subset-row cuts and custom primal heuristics to create a framework that overcomes the current state-of-the-art of Cutting Stock Problem, Skiving Stock Problem, and other related problems, being at least twice faster in the first problem and at least 60% faster in the second one.</p> Renan Silva, Rafael Schouery Copyright (c) 2024 Authors https://creativecommons.org/licenses/by-nc/4.0 https://journals-sol.sbc.org.br/index.php/reic/article/view/4646 sex, 28 jun 2024 00:00:00 +0000 Investigando Engajamento de Desenvolvedores em Portais de Ecossistemas de Software https://journals-sol.sbc.org.br/index.php/reic/article/view/4647 <p>Portais de Ecossistemas de Software (ECOS) são interfaces web que permitem a um desenvolvedor participar de um ecossistema. Melhorar o engajamento do desenvolvedor é uma preocupação importante para manter um ECOS sustentável no mercado ao longo do tempo. Barreiras encontradas na interação com um portal de ECOS dificultam o engajamento e podem fazer com que os desenvolvedores abandonem o portal e, consequentemente, o ecossistema. Este trabalho investiga fatores que afetam o engajamento de desenvolvedores em portais de ECOS, com foco em documentação oficial e ECOS de código aberto e híbrido. Foram realizados dois estudos de caso, uma pesquisa de opinião e um estudo de campo com desenvolvedores e utilizados métodos mistos para a análise de dados. Ao final, 21 fatores que afetam o engajamento foram identificados com base nos resultados dos estudos conduzidos. Este trabalho visa apoiar o engajamento de desenvolvedores em portais de ECOS e fazer sugestões para a melhoria dos portais com base nos relatos dos participantes, contibuindo para maior satisfação na DX.</p> Thiago Parracho, Rodrigo Zacarias, Rodrigo Santos Copyright (c) 2024 Authors https://creativecommons.org/licenses/by-nc/4.0 https://journals-sol.sbc.org.br/index.php/reic/article/view/4647 sex, 28 jun 2024 00:00:00 +0000 Avaliando um Serviço Personalizado de Roteamento Multicritério e Multimodal para Cidades Inteligentes https://journals-sol.sbc.org.br/index.php/reic/article/view/4648 <p>À medida que a demanda por mobilidade urbana cresce, surgem mais serviços que oferecem roteamento e sugestões de trajetos. No entanto, esses serviços geralmente se concentram apenas no tempo ou na distância da viagem, deixando de lado as preferências individuais dos usuários. Este estudo apresenta um sistema inovador de seleção de rotas que é multimodal e personalizado, levando em consideração as preferências dos usuários, as emissões dos veículos e os custos associados. Essa abordagem busca identificar opções de rotas que sejam econômicas, rápidas e seguras, destacando-se pela inclusão de uma variedade de modos de transporte para atender às necessidades tanto de condutores quanto de passageiros.</p> Camilo Santos, Matheus Brito, Eduardo Cerqueira, Denis Rosário Copyright (c) 2024 Authors https://creativecommons.org/licenses/by-nc/4.0 https://journals-sol.sbc.org.br/index.php/reic/article/view/4648 sex, 28 jun 2024 00:00:00 +0000 Soluções para Dados Heterogêneos em Aprendizado Federado através de Similaridade de Modelos e Agrupamento de Clientes https://journals-sol.sbc.org.br/index.php/reic/article/view/4649 <p>O aumento dos dispositivos móveis e as crescentes preocupações com a privacidade têm colocado desafios significativos na inteligência artificial distribuída. Nesse cenário, surge o Federated Learning (FL) como um método promissor em que os modelos de aprendizagem são treinados de forma colaborativa e privada. No entanto, o FL também enfrenta desafios na convergência de modelos, otimização e sobrecarga de comunicação devido a heterogeneidade nos dados e dispositivos. Nesse contexto, este trabalho relata duas soluções desenvolvidas para endereçar esse problema: 1) NeuralMatch, uma ferramenta capaz de identificar similaridades entre os clientes apenas usando os modelos e 2) FedSCCS um solução completa que utiliza dos princípios anteriores para criar múltiplos modelos por agrupamento de clientes. Ambas soluções se mostram eficientes e eficazes conforme os amplos experimentos realizados.</p> Gabriel Talasso, Leandro Villas Copyright (c) 2024 Authors https://creativecommons.org/licenses/by-nc/4.0 https://journals-sol.sbc.org.br/index.php/reic/article/view/4649 sex, 28 jun 2024 00:00:00 +0000 Orquestração Multi-Critério de Funções de Serviço em Redes Móveis de Borda para Realidade Aumentada Multiusuário https://journals-sol.sbc.org.br/index.php/reic/article/view/4650 A crescente conexão de dispositivos na internet intensifica o uso de recursos de rede, destacando a Realidade Aumentada Multiusuário (RAMU), que combina elementos virtuais com o ambiente real, proporcionando uma experiência imersiva. Este serviço pode ser dividido em Cadeias de Funções de Serviço (SFCs) e distribuído entre servidores de borda, permitindo a execução paralela e o compartilhamento eficiente de recursos, mitigando limitações de escalabilidade e consistência. Este trabalho propõe a Orquestração de Encadeamento de Funções de Serviço de Múltiplos Critérios e Sensível à Mobilidade (OSFEM), que utiliza uma heurística para aprimorar a eficiência de recursos e a qualidade do serviço (QoS) em cenários móveis. Rodrigo Flexa, Hugo Santos, Eduardo Cerqueira, Denis Rosário Copyright (c) 2024 Authors https://creativecommons.org/licenses/by-nc/4.0 https://journals-sol.sbc.org.br/index.php/reic/article/view/4650 sex, 28 jun 2024 00:00:00 +0000 Deep Learning-Driven Parameter Adaptation for Underwater Image Restoration https://journals-sol.sbc.org.br/index.php/reic/article/view/4671 <p>&lt;p&gt;In this paper we propose a learning-based approach to enhance underwater image quality by optimizing parameters and applying intensity transformations. Our methodology involves training a CNN Regression model on diverse underwater images to learn enhancing parameters, followed by applying intensity transformation techniques. In order to evaluate our approach, we conducted experiments using well-known underwater image datasets found in the literature, comprising real-world subaquatic images and we propose a novel underwater image dataset, composed by 276 images from Amazon turbid water rivers. The results demonstrate that our approach achieves an impressive accuracy rate in three different underwater image datasets. This high level of accuracy showcases the robustness and efficiency of our proposed method in restoring underwater images.&lt;/p&gt;</p> Laura Martinho, José Pio, Felipe Oliveira Copyright (c) 2024 The authors https://creativecommons.org/licenses/by-nc/4.0 https://journals-sol.sbc.org.br/index.php/reic/article/view/4671 sáb, 06 jul 2024 00:00:00 +0000 Desenvolvimento de Ferramenta de Análise de Sentimentos para Identificação de Possíveis Sinais de Comportamento Depressivo na Rede Social Twitter https://journals-sol.sbc.org.br/index.php/reic/article/view/3430 <p>A pesquisa sobre modelos computadorizados para identificar problemas de saúde mental em usuários de redes sociais tem crescido desde os anos 2000, principalmente em inglês. Choudhury et al. e Coppersmith et al. propuseram um método para detectar comportamento depressivo usando atributos-chave de postagens no Twitter, como quantidade de tweets, pronomes pessoais, termos depressivos, tom emocional, horário de postagem, menções a antidepressivos e respostas de seguidores. Para verificar se essas novas formas de expressão melhoram o desempenho do modelo, este projeto amplia o trabalho de Choudhury et al. e Coppersmith et al. introduzindo cinco novos atributos: caracteres orientais, emojis, mídia, links e curtidas. Foram criadas duas bases de dados de tweets em português, abrangendo períodos pre-pandemia (01/01/2018 a 31/12/2019) e pandemia (01/01/2020 a 31/12/2021), divididas em duas categorias: ”depressão” e ”controle”, representando usuários com e sem depressão. Essas bases de dados foram usadas para avaliar o impacto dos novos atributos e desenvolver um modelo para detectar comportamento depressivo por meio da análise de sentimentos em tweets em português.</p> Luan Mendes Gonçalves Freitas, Marcelo Ladeira, Marcos Fagundes Caetano Copyright (c) 2024 Luan Mendes Gonçalves Freitas, Marcelo Ladeira, Marcos Fagundes Caetano https://creativecommons.org/licenses/by-nc/4.0 https://journals-sol.sbc.org.br/index.php/reic/article/view/3430 qui, 29 ago 2024 00:00:00 +0000