
SBC Reviews on Computer Science, 2023, 29:1, doi: 10.5753/reviews.2023.2531
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Analysis of Energy Consumption on Android Devices for
Developers: A Systematic Mapping Study
Edwin Monteiro [Federal University of Amazonas |edwin@icomp.ufam.edu.br]
Helena Cavalcante [Federal University of Amazonas | helena.cavalcante@icomp.ufam.edu.br]
Raimundo Barreto [Federal University of Amazonas | rbarreto@icomp.ufam.edu.br]
Rosiane de Freitas [Federal University of Amazonas | rosiane@icomp.ufam.edu.br]

 Institute of Computing, Universidade Federal do Amazonas, Av. Rodrigo Otávio, nº 6200, Coroado I, Campus Uni-
versitário Senador Arthur Virgílio Filho, Setor Norte, CEP 69080-900, Manaus/AM Brazil.

Received: 22 February December 2022 • Accepted: 15 June 2023 • Published: 11 December 2023

Abstract Reducing energy consumption is a major challenge that mobile computing must deal with. Smartphones
are constantly evolving to match traditional computers in many aspects, especially in processing and memory. How-
ever, user experience is severely impacted by the rapid discharge of batteries in smartphones. This article aims to
identify which metrics and assessment techniques are applied to evaluate energy consumption on Android smart-
phones, by summarizing factors that cause high energy consumption through a Systematic Mapping Study (SMS).
The methodology of this SMS consisted of performing searches on the digital libraries ACM, IEEE, and Scopus.
Sixty articles were obtained, of which 17 were identified as relevant for this study. Among the main methods
identified, energy consumption is collected at time intervals based on information on battery voltage/current or on
information from features such as Wi-Fi, cellular networks, screen brightness, screen duration on, Bluetooth usage,
and others. Regarding the tools and applications that collect such information, there are Android batterystats, appli-
cations developed specially for each research like BatteryHub. The data is mainly analyzed by techniques such as
clustering (17.65%), covariance (17.65%), Bayesian classification, and decision trees (11.76%). From these tech-
niques, it was identified that user profile is the main factor affecting battery performance, being present in 23.53%
of the articles, followed by mobile networks and Wi-Fi (17.65%), in addition to applications and services in back-
ground present at 11.76%. Finally, two articles in this SMS provide recommendations to reduce consumption based
on users’ usage profiles. In summary, the analysis has shown a significant correlation between user habits and en-
ergy consumption. As a result, it is recommended that developers prioritize the exploration of artificial intelligence
techniques to automatically adjust smartphone usage settings based on usage context. This approach can lead to
significant battery power savings.

Keywords: Android apps. Android smartphone. Battery Saving. Energy consumption. Energy Efficiency. Mobile
Computing.

1 Introduction

This Systematic Mapping Study (SMS) focuses on smart-
phones with Android Operating System, since it is the operat-
ing system (OS) widely used in mobile computing and which
has gained prominence since its launch by Google and the
Open Handset Alliance in 2007. Android is a Linux kernel-
based open-source system that allows interaction with users
from touches and gestures on the smartphone screen. Inmore
recent statistics taking into account the 2009-2021 interval, it
is possible to notice from Statcounter [2021] that Android is
present in 39.75% of smartphones in terms of the market.
Despite the rising popularity of smartphones, new chal-

lenges have arrived. Processing power, as well as application
complexity, evolves rapidly each year. However, despite a
greater battery capacity, energy autonomy has not evolved
at the same speed as the features introduced or improved in
smartphones. Analysis of energy consumption in applica-
tions is critical to decision-making seeking to increase bat-
tery life, not only in terms of improving user comfort but
also seeking to reduce the environmental costs of disposing
of batteries and e-waste. The focus of this mapping study

is smartphones with the Android operating system, as this
is the operating system that occupies the largest fraction of
the market, aside from being an open-source OS that allows
many developers to contribute.
In a study by Pang et al. [2016], only 18% of a population

of 122 app developers interviewed consider energy savings
during development, and only 10% of programmers measure
the energy consumption of their software. These low rates
are largely due to the lack of knowledge of programmers
regarding techniques, methods, softwares, and frameworks
for the analysis of such an important performance metric of
embedded systems. This systematic mapping study seeks to
synthesize and evaluate the different approaches in the cur-
rent literature, to provide developers with a comprehensive
view of the state of the art on energy consumption of Android
smartphones. Therefore, we considered the most recent pub-
lications that present the evaluation and reduction of energy
consumption of Android devices.
This paper also identifies the main techniques and meth-

ods used in the analysis of energy consumption recommen-
dations for application developers in order to reduce the bat-
tery drain on Android smartphones, by identifying the fac-

https://doi.org/10.5753/reviews.2023.2531
https://orcid.org/0000-0002-9623-3233
mailto:edwin@icomp.ufam.edu.br
https://orcid.org/0000-0001-9632-3637
mailto:helena.cavalcante@icomp.ufam.edu.br
https://orcid.org/0000-0001-8494-4225
mailto:rbarreto@icomp.ufam.edu.br
https://orcid.org/0000-0002-7608-2052
mailto:rosiane@icomp.ufam.edu.br

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

tors with the greatest impact on battery life. An examination
of literature publications reveals a prominent trend among
developers towards customized assessments of energy us-
age. This trend considers the impact of user behavior and
decision-making in the development of energy-efficient so-
lutions. There is a noteworthy interest among developers in
providing personalized recommendations for individual user
profiles, aimed at enhancing decision-making processes and
promoting efficient battery usage on smartphones.
Thus, the research questions (RQ) that guide the develop-

ment of this mapping study, prepared in accordance with the
guidelines provided by Kitchenham and Charters [2007], are:

• RQ1: “What techniques and methods are currently
used to investigate the factors that impact Android
smartphone battery consumption? ”;

• RQ2: “What factors have the greatest impact on An-
droid smartphone battery consumption? ”;

• RQ3: “What are the main recommendations to reduce
the battery consumption of Android smartphones?”.

The main contributions of this work are: (i) to provide an
overview of the state of the art, and; (ii) to identify gaps in the
literature on energy consumption in Android smartphones.
Through a global and comprehensive view of the leading
methods, techniques, tools, and experiments described in the
literature, this work aims to be a guide to: (i) researchers,
suggesting new and promising research paths; and (ii) devel-
opers, adding new ways to create apps that drain less energy.
This paper is divided as follows: Section 2 details the SMS

protocol and describes the search strategies, search strings,
and inclusion and exclusion criteria. Section 3 presents the
results identified in the reading and extraction of the evalu-
ated articles. The discussion of these results is detailed in
Section 4 and the research questions are answered in Sec-
tion 5, and finally, Section 6 discusses the limitations of the
works, gaps to be evaluated and closes with the final consid-
erations.

2 Methodology
This section describes the protocol of the mapping study car-
ried out, whose purpose is to establish the necessary founda-
tions to guide the conduction of the review, in order to iden-
tify the leading methods, techniques, tools, and approaches
that deal with energy consumption on Android smartphones.

2.1 Search strategies
The query for articles using search expressions named
“search strings” was performed in the Scopus indexing
database. This database aggregates articles from other digital
databases such as Elsevier, Springer, and IEEE. In addition
to Scopus, the digital bases of IEEE and ACMwere also con-
sulted. In terms of filters, only papers published in English
from 2017 to October 2021 were considered. The documen-
tation and conduction of the systematic review were carried
out with the aid of StArt software (State of Art through Sys-
tematic Review), distributed by Federal University of São
Carlos [UFSCar, 2021].

The PIO methodology (Population, Intervention, Out-
comes) described by Kitchenham and Charters [2007] was
applied to define the search strings. This methodology con-
sists of using a conjunction of disjunctions of three-word
blocks. These blocks contain words and synonyms associ-
ated, respectively, with population, intervention, and desired
results of the systematic review. Items for each category of
PIO methodology are specified in Table 1.

Table 1. PIO Methodology (Population, Intervention, and Out-
come) applied in the context of this SLR.

PIO Description
Population Android Smartphones.

Intervention
From the identification of

consumption, charging, discharging
and battery saving

Outcome

Techniques, frameworks, databases,
metrics, architectures and analysis
related to energy consumption in

Android smartphones

The definition of the words and synonyms present in the
composition of the string arose from an iterative process di-
vided into two stages: (i) carrying out an ad-hoc search in the
digital databases of Scopus, ACM, and IEEE based on key
terms extracted from the control papers and; (ii) extraction
of terms from the IEEE, ACM, and Scopus digital databases.
Iterations were controlled through the number of relevant ar-
ticles returned. After this step, a search was conducted on the
same databases through the string elaborated and presented
in Table 2. In total, 342 articles were returned, 59 of which
were duplicates. This high number of duplicate papers can
be attributed to the fact that Scopus also indexes articles from
IEEE and ACM. Of the 342 articles under review, 246 were
obtained from Scopus, 78 from IEEE, six from ACM, and 12
were manually entered.

2.2 Inclusion and Exclusion Criteria
The title, abstracts and keywords of the 283 papers, a number
obtained from the difference of all 342 articles returned by
59 papers identified as duplicates, were systematically read
during the first filter of the selection stage and subsequently
accepted or rejected according to the criteria defined in the
Table 3 and Table 4.
Table 2. Final search expression compatible with the three
databases under study performed on May 1, 2021.

Indexing
Base String

ACM,
IEEE
and

Scopus

(“android device*” OR “android smartphon*”
OR “android app*” OR “android servic*”)

AND (“battery charg*” OR “battery discharg*”
OR “battery usage” OR “battery consumption”
OR “energy consumption” OR “energy behavior”
OR “energy efficiency” OR “battery powered”

OR “energy saving” OR “saving energy”
OR “power saving” OR “power consuming”)
AND (approach* OR analy* OR metric

OR measurement OR methodolog* OR model*
OR framework* OR recommend* OR techniqu*

OR dataset OR database)

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

For acceptance, the papers of interest must address energy
consumption on Android smartphones as its main subject
as written in inclusion criteria 1 (IC1), present techniques,
metrics, approaches, methodologies or recommendations fo-
cused on the research topic (IC2) or use/produce databases
with energy metrics related to a specified population (IC3).
For nonacceptance, the papers must not be related to any

inclusion criteria and fit with some criteria in Table 4. In
summary, according to this table, one paper is excluded if:
it refers to procedures not allowing to identify, through the
title, keywords, or abstract, the agreement with the objective
of this mapping; it is not available for full reading; it deals
with power consumption in Android apps, but their focus is
not on the device, for example, it focuses on web applica-
tions; it features programming-level intervention, but there is
no replication for Android, for example, use/modification of
some Java library that is not part of the standard Android API
and was not written specifically for Android and the study
does not perform tests on the mobile system; All these pa-
pers are discarded.
To validate the first selection step, carried out by two

researchers, Kappa criterion of agreement between pairs
was calculated. The methodology detailed by Perez [2020]
served as the basis for calculating Cohen’s Kappa coefficient.
The criteria refinement was carried out in three iterations
with 15 samples each, totaling a sample of 45 papers. The re-
searchers classified the articles individually and, after each
iteration, held a meeting to adjust the criteria. The third
and last iteration resulted in a Kappa coefficient of 0.815,
which represents, according to Perez [2020], an almost per-
fect agreement among researchers.
A total of 60 papers met the inclusion criteria correspond-

ing to the first filter of the selection of papers that consid-
ered only the titles, abstracts, and keywords. Currently, the
number of articles has increased to 60 with the inclusion of
six papers suggested by the reviewers. In this first filter, it
is possible that a number considered high is accepted since
a deep reading is not performed for this step. After that, the
second filter of the selection step was performed, comprising
a full read of the introduction, methodology, and conclusion
sections of these papers. Out of the 60 works, only 30 kept
onmeeting the inclusion criteria. It then proceeded to the full
reading and analysis of papers in the extraction step, which
still implied the rejection of 13 papers, leaving 17 as primary
studies. Figure 1 shows a schematic of the article selection
process.

3 Summary of Results
Among the various articles analyzed, there is a trend in ex-
periments aimed at generating databases or using available
databases in order to apply metrics aimed at energy consump-
tion through data mining. Two of these databases, described
in Pereira et al. [2021] and Rua et al. [2019], are open to the
general public.
In the papers read, three possible approaches were iden-

tified to estimate the energy consumption of an application.
The first is through hardware measurement. This approach
returns more accurate results. The analyzed papers make use

of hardware external to the smartphone components, which
demands its acquisition and the need for specialized knowl-
edge. Also, it does not help to discriminate the causes of
power consumption within a device. The second is through
the construction of energy models. This method is easier to
implement. However, its main disadvantage is in the calibra-
tion of parameters, which is not always an easy task. The
third approach is through software, although simple to im-
plement, it presents results of low precision. The paper by
Oliveira et al. [2019] mentions the RAPL (Running Average
Power Limit) feature available on Intel processors to analyze
power consumption. However, RAPL is not present as an
approach in this article due to the focus on desktop/laptop
processors.
Among studied publications, the predominant type of anal-

ysis is dynamic analysis, present in twelve of the fourteen ar-
ticles. Dynamic analysis is understood as simulations, con-
trolled experiments, or data collection aimed at analyzing en-
ergy consumption at runtime, that is, while the user interacts
with the smartphone. Five papers, Guo et al. [2017], Pereira
et al. [2021], Dai et al. [2020], Almasri and Sameh [2019]
and Linares-Vásquez et al. [2018], also use static analysis
and in four, Dai et al. [2020], Pereira et al. [2021], Oliveira
et al. [2017] and Oliveira et al. [2019] it is done in conjunc-
tion with dynamic analysis. The most common features col-
lected are Wi-Fi status, network connection (3G/4G), Blue-
tooth status, CPU usage, baud rates in kBs, and screen bright-
ness. The numbers of these features in the primary studies
are described in Table 6 and Figure 2. The Table 6 orga-
nizes features into nine groups. For example, the foreground
and background applications group refers to the technique of
collecting the names of applications in use at a given time
interval such as one second. Battery level corresponds to the
available battery charge range (1%-100%). The Screen sta-
tus group refers to the state of the screen, that is, whether it
is on or off. Wi-Fi and Cellular network describe the status
of these features as on or off and Transmission Rates refer
to the sending and receiving rates of these features. To cal-
culate battery consumption and link this consumption to an
app, information is usually collected from apps running in the
foreground or background, battery level, and in some cases,
battery voltage and electrical current.
Some of the main softwares and libraries for energy con-

sumption collection are Trepn Profiler, Android TrepnLib,
PowerTutor, and BatteryStats, as shown in Table 7, in which
the exact numbers are detailed. Trepn Profiler is an Android
application for collecting data related to smartphone perfor-
mance, such as GPU frequency, consumed power, memory,
and network interface, as per information from Qualcomm
[2017]. PowerTutor is an Android application for energy
consumption analysis, according to Dick [2011]. Although
Trepn and PowerTutor are present in seven papers of Table 7,
these apps have been discontinued, which affects their use in
recent versions of Android like 10 and the newest. Batterys-
tats is a tool included in the Android framework responsible
for collecting battery data from smartphones [Google, 2021].
It shows the energy consumed by the main smartphone com-
ponents. The most used software and libraries for compar-
ative studies to determine precision in frameworks are Bat-
teryStats Plugin and, in most studies, Monsoon Power Moni-

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

Table 3. Inclusion criteria defined for the selection of mapping articles.

Criteria id Description of Inclusion Criteria (IC)

IC1 Papers or book chapters in which the main study
is energy consumption in Android smartphones.

IC2
Papers or book chapters that describe techniques, metrics, approaches,

methodologies, models, recommendations applied
to energy consumption in Android smartphones.

IC3 Papers or book chapters that use/provide databases
related to energy consumption on Android smartphones.

Table 4. Exclusion criteria defined for the selection of mapping articles

Criteria id Description of Exclusion Criteria (IC)

EC1 Papers derived from the same research without
inserting new ideas (duplicates).

EC2 Papers dealing with power consumption in Android apps,
however the focus is not on the device.

EC3 Papers focused on web apps or applications that do not
deal with energy consumption on Android smartphones.

EC4 Papers or book chapters that are not available for full reading

EC5
Papers or collection of papers referring to the proceedings that
do not allow to identify, through the title, keywords or abstract,

the agreement with the objective of this mapping.

EC6
Papers or book chapters in which the central theme involves

energy/battery consumption in Android smartphones whose study
is not intended to propose improvements.

EC7 Papers that present evaluations without showing the method used.

EC8 Papers dealing with power consumption on Android smartphones
at the programming or hardware level without the purpose of offering improvements.

tor, a hardware device to estimate power dissipated in smart-
phones with voltage and current measurements. Some stud-
ies also carry out comparative studies with their own elec-
tronic instrumentation. Monkey is the most used software to
perform automated tests in Android applications.
The analyzed publications fall into four categories orga-

nized into subsections, as shown in Table 5: four articles,
23.53%, report controlled studies to determine the pattern of
energy consumption – Subsection 3.1; five articles address
the development of frameworks for analysis and manage-
ment of energy consumption – Subsection 3.2, corresponding
to 29.41% of the total articles; two articles, 11.76%, cover
studies of patterns based on user behavior – Subsection 3.3;
and, finally, six papers, 35.29%, detail techniques to increase
battery life – Subsection 3.4.

3.1 Controlled studies to determine energy
consumption patterns in Android apps

In order to reduce the environmental impact of smartphone
battery disposal, which cannot be reused or recycled, Elliot
et al. [2017] sought to experimentally determine and analyze
the energy consumed by certain multimedia applications and
conduct interviews to document user behavior and its impact
on battery consumption. Using Trepn Profiler application
(refer to Qualcomm [2017]), which is a resource monitor that
allows the monitoring of features such as screen brightness,
Wi-Fi status and GPS, Elliot et al. [2017] collected CPU and
temperature information. The experiment was conducted in

two stages. The first was related to the use of a smartphone
of the Samsung Galaxy Note model to collect data about
smartphone features such as hardware settings, temperature,
screen brightness, network (Wi-Fi and cellular), installed ap-
plications and user behavior.
Results were grouped into the categories of audio appli-

cations, video/streaming applications and chat. In addition,
each group was structured in terms of the Wi-Fi network and
mobile networks. Manufacturer’s native applications such as
Samsung music and Samsung video performed better when
using both Wi-Fi and mobile networks. For example, in au-
dio applications the difference in energy consumption was
0.49 J/s for Samsung Music when using Wi-Fi. Regarding
CPU usage, it was close to the average with 46%. For video
applications while the YouTube andVLCPlayer applications
consumed around 1.24 J/s, the native Samsung video appli-
cation consumed around 0.57 J/s with only 49% CPU usage
being below average usage, around of 54%. It is worth not-
ing that there were noticeable variations for use over Wi-Fi
and use over cellular networks. The Youtube and Samsung
video apps had a slight drop with a difference of 0.42 J/s
and 0.02 J/s respectively for energy consumption and a drop
of 2% and 6% for CPU usage. Regarding the VLC appli-
cation, switching from Wi-Fi to mobile data resulted in a
considerable increase in energy consumption, jumping from
1.25 J/s to 10.45 J/s. Finally, to conclude this analysis by
category, the chat had different behavior between the Viber
and WhatsApp applications depending on the network used.
For Wi-Fi, the apps had one of the lowest energy consump-

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

Search strategy
Selection: Filter 2

Selection: Filter 1

Extraction
342 obtained papers

A total of 336 papers were
returned, of which 246 were
obtained from Scopus
database, 78 from IEEE, 6 from
ACM and 12 by manual search.
Fifty-nine of these 342 were
duplicates, resulting in a total
of 283 papers

60 accepted papers

After systematic reading of
titles, abstracts and keywords
and evaluation of these fields
based on inclusion and
rejection criteria, 60 papers
were accepted.

30 papers accepted

The subsequent reading of the
introduction, methodology and
conclusion sections of the
remaining 60 papers resulted
in 30 acceptances

17 papers accepted

During the extraction step, which
consisted of reading in full-length
all 30 accepted papers and
extracting relevant information,
another 13 papers were rejected,
resulting in 17 primary studies

TOTAL:
17 papers

283

valid papers

223
rejected

59
duplicates

30
rejected

13
rejected

IEEE

Digital
databases

Manual
Search

ACM

Scopus

Figure 1. Number of papers accepted at each stage of the systematic review process.

tions, around 0.49 J/s and 0.46 J/s. Regarding the mobile
network, Viber had 0.29 J/s, in this case a decrease, while
WhatsApp recorded 0.62% indicating an increase. CPU us-
age decreased by 10% compared to that identified for Wi-Fi.
Overall, the biggest energy consumption was in the media
apps with Google music and VLC Player being the main vil-
lain. It was not possible to define which network drains more
battery as the high consumption switched between the two
network types. Although there is a clear difference between
Wi-Fi and cellular network, it concerns specific experimen-
tal scenarios and not in a general way to say which consumes
more energy, thus reiterating that there is no consensus.
Finally, a questionnaire applied at the end of the exper-

iment tried to gather information that could help to under-
stand the collected data. Among the questions were “What
activities do you do on your smartphone?”, “Howmuch time
do you spend on video apps daily?” and “How much time
do you spend on social media apps?”. The results obtained
from the questionnaire are in line with the findings in the ex-
periment, more precisely about video applications that tend
to drain more energy than others such as audio applications.
Social media apps have the same behavior. What can be no-
ticed is that there is not a single trend among users of the
experiment given the usage profile, as there are reports of
users who charged the smartphone twice a day while other
users did not have this need. Thus, the results were not con-
clusive.
In order to study the energy consumption of applications,

Almasri and Sameh [2019] propose a method that combines
static and dynamic analysis for rating applications in regards
to their energy consumption, on a scale of 1 to 6 stars. They
present a simple and intuitive way to show, at the time of
an app installation, its impact on battery life. The method
investigates the different types of permissions required for
applications to be installed and run correctly. Among the

various permissions we can mention “Allows applications to
access information about networks” and others such as “Al-
lows an app to search precise location from location sources
such as GPS, cell towers, and Wi-Fi”. There are two ways
to identify the required permissions, the first is to inspect the
source code of each application through the “AndroidMan-
ifest.xml” file, the second is to collect it directly from the
Android application store, the Play Store. The second option
is identified as the most viable, because although it is not as
accurate and does not reflect all the commands as in a source
code, it is always updated, because as soon as an application
is updated in the store, the permission information is also up-
dated. From this information, each application is evaluated
in terms of star from the point of view of energy consumption.
In summary, the applications in the store are organized into
12 categories, and each group has permissions in common,
so there is a filtering of permissions to extract only those
associated with energy consumption. Finally, the profiling
technique is applied through the PowerTutor application1, an
app similar to the previously mentioned Trepn, to collect in-
formation from smartphone features, within 1 second, in or-
der to measure the amount of energy consumption of com-
ponents such as processor, cellular network, screen, vibra-
tion, cameras, flashlight, speakers and microphone. Given
this information, Almasri and Sameh [2019] defined a scale
to evaluate the collected features with respect to energy con-
sumption. The highest consumption measured was ~25 mAh
and the lowest was ~5 mAh. Therefore, the consumption
scale is in the range between 1 and 30 mAh where one star
means low power consumption and six means high power
consumption. The top five categories of Play Store appli-
cations in terms of energy consumption are: (i) Social with
five stars on Wi-Fi (~26 mAh) and six stars on cellular net-

1http://ziyang.eecs.umich.edu/projects/powertutor/

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

Table 5. Classification of publications analyzed in this review.

Type of Study Studies Amount Percentage

Controlled studies to determine
energy consumption patterns

in Android apps

Elliot et al. [2017]
Mehrotra et al. [2021]

Almasri and Sameh [2019]
Barreto Neto et al. [2020]

4 23.53%

Frameworks for analysis and
energy consumption

management

Rua et al. [2019]
Di Nucci et al. [2017]
Wang et al. [2017]
Duan et al. [2017]

Malavolta et al. [2020]

5 29.41%

Usage patterns of mobile devices Guo et al. [2017]
Pereira et al. [2021] 2 11.76%

Techniques for reducing
energy consumption

Zhang et al. [2019]
Cañete et al. [2020]

Harihar and Sukumaran [2018]
Oliveira et al. [2017]
Oliveira et al. [2019]

Linares-Vásquez et al. [2018]

6 35.29%

Mobile network status

3 (G/4G on /off)

 (12 papers - 70.59%)

Bluetooth status

 (8 papers - 47.06%)

Foreground /backgro

und apps (17 papers

- 100%)

Wi - Fi status

(12 papers - 70.59%) CPU usage

(10
 papers - 58.82%)

Baud rates

(8
 papers - 47.06%)

Screen status

(brightness , on /off)

 (13 papers - 76.47%)

Battery level

(13 papers - 76.47%)

Battery voltage or

current

(12
 papers - 70.59%)

Figure 2. Most commonly collected device and system features for energy consumption analysis.

Table 6. Groups of most collected features among the analyzed
papers.

Features Collected No. Articles Percentage
Applications in
foreground and
background

17 100%

Battery level 13 76.47%
Screen status 13 76.47%

Wi-Fi 12 70.59%
Cellular network 12 70.59%
Battery Voltage

and/or
current

12 70.59%

CPU 10 58.82%
Transmission

Rates 8 47.06%

Bluetooth 8 47.06%

work (30mAh); (ii) Tools with five stars in both Wi-Fi (~26
mAh) and mobile network (~26 mAh); (iii) Communication
with five stars both on Wi-Fi (~25 mAh) and on the cellu-
lar network (~28mAh); (iv) Personalization with four stars
on Wi-Fi (~20mAh) and five stars on cellular network (~22
mAh); and finally, (v) Lifestyle with four stars in both Wi-Fi
(~21 mAh) and cellular network (~21 mAh). Almasri and
Sameh [2019] concluded that social category consumes the
most energy.

Seeking to determine how energy consumption patterns
vary regarding apps and respective system settings, Mehrotra
et al. [2021] developed a multi-class classification algorithm
that separates mobile apps into three categories in terms of
energy consumption: low, medium and high. The objective
is to map the energy consumption from the consumption pat-
tern of the characteristics of smartphones. For this, Mehrotra
et al. [2021] collected the energy consumption of 90 differ-
ent applications in order to build a dataset based on 10 pre-
dictor attributes: total energy consumption, LCD, processor,
Wi-Fi network, cellular network, RAM memory and others.
like name and app category. As mentioned, the data were
organized into the categories of natives, tools, entertainment,
social media, education and advertising. The data collected
by the profiling technique through the Trepn Profiler applica-
tion were generated for the paper’s experimentation, so there
is no label for this database, which makes it difficult to apply
supervised machine-learning models.

Mehrotra et al. [2021] uses unsupervised learning to la-
bel the data. To this end, the K-means cluster algorithm was
used to organize the data into three clusters defined by the
authors as low, medium and high, which will be the labels of
the database. Applications related to applications of the tools
category consume low power and are found in cluster one and
two. Applications related to advertising demand high power
consumption generating high contribution to the cluster la-

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

Table 7. Identification of most used software in data collection for energy consumption analysis.

Software category Power consumption
collection software Estudos Number Percentage

Android data collection
application Trepn Profiler

Rua et al. [2019]
Cañete et al. [2020]
Zhang et al. [2019]

Malavolta et al. [2020]
Elliot et al. [2017]

5 29.41%

Several Profilers Others

Wang et al. [2017]
Barreto Neto et al. [2020]

Cañete et al. [2020]
Zhang et al. [2019]
Duan et al. [2017]
Oliveira et al. [2019]
Oliveira et al. [2017]

7 41.18%

Android data collection
application PowerTutor Almasri and Sameh [2019]

Mehrotra et al. [2021] 2 11.76%

Tool for
command line
data collection

BatteryStats Pereira et al. [2021]
Malavolta et al. [2020] 2 11.76%

beled as high and minimal contribution to the cluster labeled
as low. The educational applications reside in the cluster la-
beled as medium. Supervised learning is applied to labeled
data using algorithms such as Decision Tree, Random Forest,
K-Nearest Neighbors, Rule Induction and Naive Bayes. In
general, the Random Forest algorithm performed better than
the others, with an accuracy of 97% and a Kappa coefficient
of 95%. In the second and third positions are the Decision
Tree and Naive Bayes with 93% and 82% accuracy respec-
tively. When analyzing among the positive classifications
how many were classified correctly using the precision met-
ric, Mehrotra et al. [2021] identified that the Random Forest
hit 100% of the instances whose label is high, 96% for the
medium cluster and 94% for the low cluster.

In a study that also investigates patterns in the data, Bar-
reto Neto et al. [2020] aim to automatically build machine-
learningmodels to estimate energy consumption based on the
usage pattern of each user. A total of 30 smartphone charac-
teristics were collected through a specific application, such
as screen brightness, RAMmemory, processor, current, volt-
age, Wi-Fi and cellular network, among others. This was
made possible by using Android’s own methods such as the
BatteryManager API through Linux’s procfs command. The
calculation to obtain the value of energy consumption around
the power was based on the multiplication of the current and
voltage values considering the time of one second to allow
the use of this definition. The accurate current values were
obtained by the virtual file batt_current_ua_now and the
instantaneous voltage by the property extra_voltage. The
automatic model construction methodology is organized in
five steps: (i) reading the database and removing outliers
using the Local Outlier Factor technique; (ii) choosing the
best features to train the model – done by iterating on the
30 features performing a cross-validation division of 10 on
each one to evaluate the error estimate. The algorithms used
are Random Forest, Support Vector Regressor, Stochastic
Gradient Descent Regressor, Neural Nets, Deep Multilayer
Perceptron and Long short-term memory. The characteris-
tics are ranked through the error of the medians produced

by each one; (iii) construction of 30 models using time se-
ries cross-validation – cross-validation with time series split
is applied. Then the 25th percentile and 75th percentile of
the 30 test scores are calculated. The interquartile range
(iiq) (given by 75th - 25th) will determine a cut-off point
such that test scores below median − 1.5 × iiq and above
median+1.5×iiq; finally in (iv) themost appropriatemodel
is chosen among the 30 generated through the adjusted train-
ing base for the samples filtered in the previous step. For
this, the Nemenyi test is used to rank the scores and choose
the one with the minimum error.

3.2 Frameworks for analysis and energy con-
sumption management

The work presented by Duan et al. [2017] details a frame-
work for energymanagement based on smartphone usage pat-
terns. The collector consists of three components: (i) Data
Collector, (ii) Data Analyzer, and (iii) Decision Maker. In to-
tal, five features are monitored and collected by the Data Col-
lector: the number of screen switches, duration of the screen
on, number of foreground application switches, the volume
of data transfer, and battery level. An application was devel-
oped to collect the features every minute. The power con-
sumption (P) metric is obtained from the battery level (N)
measured in mW as P = v×c×N

100×t with V being the average
voltage during the time T in seconds and C the battery ca-
pacity. Duan et al. [2017] analyze the frequency of use on
devices by the number of screen changes and foreground ap-
plications. Thus, users are classified as active and non-active
depending on the period of change. An active user is ex-
pected to consume more energy than a non-active user.
A set of 22 usage patterns was collected for 24 hours, half

being generated by the Samsung Galaxy S II smartphone
and the other half by the Samsung Galaxy Note III. During
data analysis, the K-means algorithm was used to divide the
data into K clusters. In the experiments, users were divided
into active and non-active, while smartphones were classi-
fied into low-power and high-power consumption. Half of

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

each group was classified as active and non-active. However,
there are two exceptions. Active user #10 has less power con-
sumption than all non-active users for the same device. Non-
active user #15 has higher power consumption than users #17
and #21 on the same device. There are two reasons for this:
the smartphone’s energy efficiency is determined by the man-
ufacturer and; the user’s usage profile. In a last experiment to
validate the hypothesis that non-active users consume more
energy than expected, three test cases were analyzed: Case
one – All background user services were interrupted; Case
two – The same as Case one, but with the execution of tests
changing the screen every 30 seconds for five minutes of du-
ration; Case three and Case four consisted of installing, re-
spectively, a messaging application and an email client based
on cases one and two. For example, the power consumption
on SamsungGalaxy S II for Case four is 483mWwhich is 5%
more than Case three, 57% more than Case one on the same
device, and up to 160% more than in Case four on the latest
Galaxy Note III smartphone. The conclusion is that systems
with services in the background consume more energy than
without the execution of these services and the type of smart-
phone has a great influence on energy consumption. Finally,
based on user type and power consumption, decision-making
can notify the non-active user with high power consumption
on the device. Non-active users can receive recommenda-
tions such as turning off any unused network interfaces, ad-
justing the screen brightness to an acceptable level, and stop-
ping background services when the device remains in a sleep
state. If an old device is the reason, it is advisable to replace
it with an energy-efficient device or install a new battery.
Rua et al. [2019] present the GreenSource infrastructure to

analyze energy consumption in Android applications. The
infrastructure contains (i) a database of open source appli-
cations for Android; (ii) AnaDroid – a framework for in-
strumenting code and monitoring power consumption and;
(iii) a repository with metrics obtained from AnaDroid. The
database contains 609 Android applications obtained from
the MUSE repository, Lopes et al. [2017], by filtering
projects that contain classes with specific libraries for An-
droid. A fundamental part of monitoring energy consump-
tion is the application of the profiling technique. For this,
Rua et al. [2019] use the Trepn Profiler application. The
AnaDroid framework initially deals with the source code of
applications in which a code analysis is performed to gener-
ate metrics such as the use of APIs by methods and classes,
the number of declared variables, functions, and their respec-
tive parameters. Then AnaDroid integrates Trepn into the
source code through instrumentation. This is done to allow
control of application execution through API calls to monitor
power consumption at runtime. With the fully instrumented
source code, the app installer generation starts in the APK
file format. Then, tests in 20 pre-defined usage scenarios
were performed to exercise the applications. The test uses
the Android Application Exerciser Monkey to allow auto-
matic testing in any application. Finally, the results of the
tests performed generate metrics that are stored in a database.
GreenSource database has 281.811 static and dynamic met-
rics, of which 39.375 are test metrics, 241.128 are method
metrics, and 1.308 are class metrics.
On the other hand, the work of Di Nucci et al. [2017] pro-

poses PETrA, a framework to calculate energy consumption
with the ease of software implementation and the accuracy of
hardware implementation. Its methodology is divided into
two stages: simulation and tool operation.
For simulation, PETrA uses the AndroidMonkey program

to simulate user interaction with applications, in the form of
clicks, taps, and gestures. To collect battery consumption
data, PETrA uses tools such as dmtracedump, Batterystats,
and Systrace, all available through Google’s Project Volta.
The framework depends on the installation of its own An-
droid app on the smartphone where data collection will be
applied. This application performs all simulations and col-
lects interactions. At the end of execution, Android Monkey
stores the collected data and test information on a CSV file.
Finally, the framework, previously installed on a computer,
summarizes the results. Additionally, users can view the top
five most power-consuming methods and visualize the en-
ergy profile of the analyzed app in the form of graphs.
To compare performance and determine the framework ac-

curacy, a comparative study was done by measuring the en-
ergy consumption of the same app, in the same conditions,
with PETrA and hardware power monitor Monsoon. The av-
erage estimation error was 4% in relation to the values mea-
sured by the Monsoon monitor. In 95% of the errors, the
difference between the real value and the value produced by
PETra was at most 5%.
Another framework, E-Spector, is presented inWang et al.

[2017]. This online framework for energy consumption anal-
ysis can estimate the runtime consumption of the application
under test (AUT) for both foreground and background appli-
cations, requiring only the installation of an Android appli-
cation. It also creates a power curve for the AUT and shows
all processes and services running at any point in the appli-
cation’s energy curve. The app collects information such as
network traffic data, screen brightness, battery, CPU usage.
These collections are used to calculate the energy dissipation
of the smartphone through the V-Edge Energy model of Xu
et al. [2013] based on voltage and a regression method is
used to build the model for energy estimation. To determine
the framework accuracy, an experiment was carried out with
Monsoon Power Monitor, in which results obtained by the
monitor were compared to the results measured by the E-
Spector. The E-Spector presented an accuracy of 10%, with
an approximate overhead of 4%.
For the purpose of performing multiple tests, Malavolta

et al. [2020] present Android Runner (AR), a framework to
facilitate the execution of experiments with native Android
apps and web apps. Android Runner is a framework that al-
lows replicability and customization of different experiments
to analyze different features and metrics at runtime, such as
power consumption, CPU, and memory usage. Among the
advantages of using AR are the fully automatic, customiz-
able and replicable execution of the framework. Further-
more, AR is independent of the type of profilers used, which
can be either hardware (Monsoon Power Monitor) or soft-
ware (Trepn). It is possible to combine multiple profilers in
a single experiment. AR demands in its input configuration
scripts for the execution of the experiment such as repetitions,
duration time, list of apps, and the list of devices; the appli-
cation installer is in the APK format. The framework out-

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

puts the collections and measurements of energy consump-
tion measured by the batterystats Android plugin, as well as
logs on the execution of the experiment. In terms of accuracy
for AR, a set containing 27 benchmarking applications was
created, each one performing a stress test on an Android fea-
ture such as CPU, screen, and GPS. The application ran for
three minutes, and each round was repeated 30 times with
a two-minute interval between successive collections. The
established accuracy was 95%.

3.3 Usage patterns of mobile devices
Regarding the study of patterns, Guo et al. [2017] present
a study with data from 80.000 smartphone users, carried
out through the Energy Saver battery manager application,
which collects metrics related to how the battery decays ac-
cording to the use of the applications. One of the first known
works dealing with this type of collection was Oliner et al.
[2013] which later served as inspiration for the collection
method used in Pereira et al. [2021] described in this map-
ping. It is the first large-scale study in its category. So far in
the literature, only small or medium-scale studies had been
carried out. The application architecture has two main com-
ponents, EventListener and EventServer. The first collects
data every time a significant event occurs on the smartphone,
such as battery decay, screen brightness change, or an appli-
cation opening. The second transfers the collected data to a
remote server.
After filtering the data, the program calculates the total

usage time of each application and the total battery decay
during the analyzed interval. Based on the usage time, it
calculates the energy consumption of each application. The
metrics used to calculate battery life are the average battery
discharge rate given by dividing the total battery level drain
divided by the total discharge time, and battery life given
as a percentage, obtained by dividing 100% by the average
battery discharge rate. Regarding the consumption rate for
applications, the calculation considers that the average rate
of energy consumption is given by the total battery consump-
tion divided by the total time of use. The results were vali-
dated by means of an experimental setup with the Monsoon
Power Tool software. The results show that there are users
with a heavy pattern of use – an average of 8.6 hours per day
– while users with a light pattern of usage spend less than
one hour. The average usage time for all users in the study
corresponds to 3.79 hours per day. It was also found that the
standby state uses far more energy than expected, accounting
for 45% of the smartphone’s total power consumption in one
day.
In a similar line of reasoning, Pereira et al. [2021] aims to

understand how applications, operating systems, hardware,
and usage habits influence battery consumption. The au-
thors developed an app, BatteryHub, and made it publicly
available on the official Android app store. App user data
was periodically sent to a central unit, helping to generate
a database with more than 700 million process entries and
energy-related data. Among the data collected, there is in-
formation about the applications such as name, version, and
package; battery details like the voltage, temperature, health,
and charging status; CPU status including utilization, uptime,

and sleep time; general device information such as manufac-
turer, model, and operating system version. The database is
public and has 23,600,501 records until the last update re-
ported in the paper. In addition to the database, two other
contributions are Farmer – a REST API to perform quick
database queries through JSON files that contain fields re-
lated to database features and; Lumberjack – a command-
line application that allows you to flexibly query the database
through on-demand queries to allow rapid support in proto-
typing queries by applying different filters and parameters.
This database was submitted to metric analysis that re-

vealed trends in characteristics related to energy consump-
tion, as well as new and promising lines of research. Trends
pointed out that: smartphones in underdeveloped countries
(Equatorial Guinea, Zimbabwe, Botswana, Burundi, Benin)
tend to discharge quickly and charge slowly. One exception
was Greenland, where smartphones charge and discharge
slowly. A possible cause pointed out by the authors was
low ambient temperatures. Pereira et al. [2021] also found
that the difference between smartphones of distinct models
is greater than the difference between smartphones of differ-
ent brands and also that, in general, there is a trend towards
more energy efficiency for newer versions of Android, reach-
ing peak efficiency in Android Oreo operating system.
Apps with location and video services such as Google

Maps, YouTube, and VidMate have higher consumption
trends, while apps such as Facebook, Messenger, and
Chrome have lower consumption trends. An important pa-
per finding was that Facebook Lite consumes more battery
than Facebook’s main app. This happens when running Face-
book Lite takes place on weaker smartphone models. Also
according to Pereira et al. [2021], activating or deactivating
location and Bluetooth makes no difference, and the energy-
saving mode is only effective when the smartphone is charg-
ing. The authors have found that the best network connection
is Bluetooth tethering and that there is no difference between
Wi-Fi and mobile network. Pereira et al. [2021] complement
that the metrics did not indicate an exact energy consump-
tion for each sample, application, or process, only trends to
be investigated. Furthermore, it is important to mention that
these results were obtained based on the typical use of these
smartphones. They do not mean that there is no difference
in a lab environment. Considering the ways smartphones are
normally used, there is not much difference between these
two approaches because other factors such as battery quality,
smartphone age, and context of use can have a much greater
weight on energy consumption.

3.4 Techniques for reducing energy consump-
tion

Among the studies that deal with techniques to reduce energy
consumption there is the PIFA, an intelligent CPU frequency
tuning framework introduced by Zhang et al. [2019], which
regulates CPU frequency according to the app execution
phase. The phases can be characterized as different stages
of execution of an application. For games, there are usu-
ally two phases, according to Zhang et al. [2019], the phase
operation menu and the actual phase when playing. Appli-
cations can have multiple phases performing different func-

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

tionality in addition to different latencies for performance
metrics. The PIFA approach combines at first offline anal-
ysis where previously collected data on energy consumption
are fed to the clustering algorithm (identification phase) to
separate the data into clusters so the result is a classification
model; in a second moment, online analysis is used to per-
form a decision according to the monitoring of smartphone
characteristics such as CPU, GPU and memories to adjust
the frequency. With phase identification, PIFA can adjust
the voltage and frequency of the core at which the applica-
tion is scheduled to run according to the “sweet frequency”.
In an experiment conducted with 18 apps for real use in the
world where 13 were downloaded from the official Android
store (Play Store), and five were obtained from open-source
stores, the analysis of the results shows that PIFA is more
effective in reducing energy consumption, more than 30%
reduction for most apps, in addition to keeping latency at a
desired level of performance with considerably small over-
head, less than 5%.
Another work that aims to make adjustments to some

smartphone features, now in real-time applications, is de-
scribed by Cañete et al. [2020]. The work deals with reduc-
ing energy consumption based on user behavior by dynami-
cally adapting running applications. The focus of the article,
in addition to measuring energy consumption, aims to ensure
that the consumption of the adaptation mechanism does not
increase when compared to the benefits of adaptation, as the
mechanism can reduce battery drain by up to 20%. One of
the key techniques employed is dynamic proxies – wrappers
that allow adding or modifying functionalities, allowing the
adaptation of applications. The interest is in the reconfigura-
tion of the base functionality of the applications and not just
in reusing functionalities such as method authentication and
algorithm encryption.
The architecture of the proposed solution is divided into

(i) handlers: to intercept calls to objects; (ii) monitors: to
obtain context information and control a specific set of vari-
ables from apps; (iii) context: to manage information about
the app’s current context; (iv) analysis: to make decisions
about the most appropriate functionality based on the appli-
cation context and; (v) Adaptation rules: contains a set of
expressions (the rules themselves) that define how the adap-
tation mechanism should act based on the current context.
The validation step used the Trepn Profile tool (mentioned
previously) and the GreenScaler which works mainly in col-
lecting data such as the number of CPU jiffies2 and the colors
used on the screen.
The experiment was carried out in two scenarios. In

the first one, the amount of information displayed on the
screen and the number of requests for data/functionalities
were adapted to show information compatible with the user’s
profile. For example, in this adaptation, the WhatsApp ap-
plication loads, and when starting, all the conversations of
contacts are considered friends. This is justified because the
user frequently chats with a sample of the contact population
which allows for reducing the number of chat requests which
can save energy without affecting the user experience. In the

2Basically every time the CPU timer interrupt occurs the value of the
variable ’jiffies’ is incremented

second scenario, the adaptation consists of adding new func-
tionality and being able to modify an existing one, according
to the user’s profile. For example, data compression can be
applied to photos, videos, or pdf in communication applica-
tions such as Gmail to send a smaller file which can result in
battery savings.
Cañete et al. [2020] obtained a benefit above 20%, from

168 J to 134 J, using a solution based on Internal and Ex-
ternal Proxies. The introduced overhead is minimal repre-
senting a percentage between 0.58% and 2.51%, an increase
from 1 J to 4 J of energy consumed. In the second scenario,
a video chosen by the user was compressed and sent over the
network. The overhead produced was between 0.43% and
1.39% and produced an increase between 3 J and 9 J of en-
ergy consumption, which meant an increase of only 8.87 J in
the worst case.
Contrary to the papers cited in this subsection that try to

reduce energy consumption locally, Harihar and Sukumaran
[2018] transfers part of the local computing to the cloud
through the Mobile Cloud Computing (MCC) framework. It
dynamically selects the code suitable for offloading. There-
fore, it is necessary to analyze whether the cost of transfer-
ring code data during offloading does not consume more bat-
tery than keeping the code in the device. Moreover, the au-
thors sought to collect runtime and data transfer parameters.
Within that framework, runtime and data transferred

through invocation methods are analyzed for all public
method calls. To evaluate the impact of the framework on
the transfer of classes, the size of input objects for each class
is measured using the ObjectOutputStream and ByteArray-
OutputStream classes. These calculations are written to a
binary file and sent to the cloud when an internet connec-
tion is detected. Data is then mined and used to predict class
execution parameters, serving as the basis for code partition-
ing. Through a time series decomposition, data is also di-
vided into three categories: (i) seasonal data, tied to cyclical
variations of data, (ii) trend, which shows the increasing or
decreasing trend of the data, and (iii) residuals. This decom-
position can reveal important patterns of usage habits.
To test the framework, a custom app called Gowas created

and used for 30 days by an unknown number of volunteers.
A reduction in battery consumption of 3.5% was estimated.
Furthermore, the work demonstrated the superiority of dy-
namic methods over static methods to estimate battery gain.
It was also possible to verify the existence of user behavior
patterns, keeping an extra processing load due to instrumen-
tation of only 0.12%. All MCC processing is done in the
cloud, saving battery power.
In a study with a different approach from those presented

in this study, but with significant results, Linares-Vásquez
et al. [2018] present an approach to reduce energy consump-
tion by optimizing the color palette used in the graphical user
interface (GUI). The Gui Energy Multi-objective optiMiza-
tion for Android apps (GEMMA) approach generates color
palettes using the multi-objective optimization technique to
produce color compositions that optimize energy consump-
tion and contrast while using colors that are consistent with
respect to the original color palette. To validate the quality
of the color schemes recommended by GEMMA, optimized
GUIs were generated for 27 applications: 22 free applica-

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

tions available on Google Play and five commercial applica-
tions developed by Italian companies. The visual attractive-
ness of the derived GUIs for the 27 apps was evaluated by
104 mobile app users in an online survey. In addition, devel-
opers and managers from three Italian companies were asked
to provide feedback on the GUIs generated by GEMMA for
their applications. In the experiment with 104 participants,
the color perception was evaluated. For this, three questions
were elaborated: (i) “What is your current position?” (ii)
“How often do you use mobile apps?” (iii) “Is GUI color
rendering important to you in the overall judgment/rating
of a mobile app?”. Eighty-six participants reported using
apps frequently and 18 participants reported using them oc-
casionally. Regarding the importance of GUI color com-
positions in the overall judgment of a mobile app, 29 par-
ticipants reported that it is “very important”, 57 responded
that it is “important”, and only 18 participants think it is
“not very important”. Participants were also asked about the
importance of color compositions to ensure they care about
color compositions and provided helpful responses. None
of the participants answered “nothing important”. Linares-
Vásquez et al. [2018] employed energy monitors to measure
the actual energy saved by adopting the GUIs generated by
GEMMA. Overall, GEMMA was rated on four dimensions:
(i) the ability to optimize the three objectives, (ii) the actual
energy saved by adopting the generated GUIs, (iii) the ex-
tent to which potential users consider the color choices suf-
ficiently acceptable, and (iv) the extent to which the origi-
nal developers of commercial applications would be willing
to take the GEMMA recommendations into account. Re-
garding the applications optimized by GEMMA, in terms
of battery life gain, the original application and the lowest
power solution recommended by GEMMA were compared.
Among the apps analyzed are Privacy Friendly Dicer, Learn
Music notes, Simple Deadlines, Tasks, and Tasks: Astrid
To-Do List. The results indicate that there is a clear reduc-
tion in energy consumption when using the color palette rec-
ommended by GEMMA. Per-app reduction percentages are
Privacy Friendly Dicer (33.48%), Tasks (32.44%), Tasks:
Astrid To-Do List (32.13%), Simple Deadlines (29-34%) and
Learn Music Notes (21.74%). The application performance
improvement is not marginal and varies between +28.22%
and +50.27%.
Oliveira et al. [2017] investigate the impact of some of

the most popular development approaches on the energy con-
sumption of Android apps. This study uses a testbed of 33
different benchmarks and 3 applications on 5 different de-
vices to compare the energy efficiency and performance of
the most commonly used approaches to develop applications
on Android: Java, JavaScript, and C/C++ (Native Develop-
ment Kit – NDK). Oliveira et al. [2017] compared the power
consumption and performance of 33 benchmarks developed
by several authors of the Rosetta Code and The Computer
Language Benchmark Game (TCLBG) to compare the use of
different languages in the development of Android applica-
tions. Multiple versions of each benchmark were run on sev-
eral different mobile devices, measuring runtime and power
consumption. It was found that for 26 of the 33 benchmarks
analyzed, the JavaScript versions exhibited lower power con-
sumption than their Java counterparts; and only six Java

versions of these benchmarks outperformed their JavaScript
counterparts. This indicates that Java may not be the most
appropriate language considering energy efficiency. For the
TCLBG benchmarks, the comparison took into account the
Java, JavaScript, and C++ versions, running them on five
devices with different characteristics, obtaining similar re-
sults. As a result, it was found that although there are some
slight variations in performance, the power consumption re-
lationship between Java, JavaScript, and C++ remains simi-
lar across devices, with JavaScript having an advantage over
other approaches in terms of power consumption. It can be
seen that using the NDK did not improve performance in this
scenario.
In another experiment, Oliveira et al. [2017] tried to re-

duce energy consumption by transforming a native applica-
tion into a hybrid. Four open-source apps were redesigned.
Each application was written in Java and the authors made
parts of them run in JavaScript and C++. The purpose
of the experimentation was to analyze whether using these
approaches together with Java impacted performance and
power consumption. Different models were analyzed to in-
voke Javascript and C++ snippets using Java code and mea-
sured power consumption in all cases. The results indi-
cate that it is possible to save energy using this hybrid ap-
proach - for one of the applications, a hybrid version using
a combination of Java and C++ consumed 0.37 J, under a
given workload, while the original version written entirely
in Java consumed 32.92 J. In terms of results, there is no
superior programming language considering all aspects eval-
uated. The results indicate that JavaScript saves more energy
but is slower compared to Java andC/C++. Therefore, the hy-
brid approach emerges as an alternative to deal with energy-
saving and execution performance dilemma to optimize the
performance of Android applications.
In a later work, Oliveira et al. [2019] investigates in the

Java language which collections have consumed more en-
ergy and which alternative collections can replace the orig-
inal ones to obtain gains in energy consumption. For this
Oliveira et al. [2019] developed the CT+ tool that imple-
ments an energy-aware approach capable of producing rec-
ommendations for energy savings through the use of alterna-
tive implementations for Java collections in different parts
of the system, whether for desktop or mobile. The CT+
tool works in two steps. First, it automatically runs multi-
ple micro-benchmarks independently of the application for
the Java collections available in the runtime. With the data
from these micro-benchmarks, energy consumption profiles
are built for the implementations of these collections. A
power profile provides a grade that can be used to compare
the power consumption of different implementations. After
building the energy profiles, the second step consists of per-
forming a static analysis on the system to be optimized, in or-
der to estimate the frequency of use of multiple collection op-
erations. Finally, the most efficient implementation for each
energy variation is recommended. So CT+ can optionally
apply the recommended changes automatically. The experi-
mentation considering Android smartphones was performed
on Samsung S8, Samsung J7, and Motorola G2 models in
which 4 applications were tested: Commons Math, Fast-
Search, Google Gson, and PasswordGen. The effectiveness

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

of the recommendation varied among the analyzed devices.
Modified versions of the PasswordGen app on the Samsung
S8 and J7 smartphones have seen significant improvements.
The original versions consumed 4.7% and 17.34% more en-
ergy than the modified versions. The recommendation for
this device is to replace ArrayList with FastList. For the Mo-
torola G2 device, there were no recommendations, so con-
sumption remained the same. The Gson app had a significant
improvement of 5.03% on the J7 smartphone. For the Sam-
sung S8, the improvement was only 0.95%. With respect to
J7, the ArrayList collection can be exchanged for FastList
or NodeCachingLinkedList. The Commons Math app had
the most inconsistent results, as the original app consumed
11.31% more power on the Samsung S8, however for the G2
and J7 smartphones less power than the modified versions,
1.2% and 0.33% respectively.

4 Discussion
This mapping study identified the leading techniques and
methods used when it is necessary to analyze the impact on
battery consumption in smartphones. It was divided into: (i)
collection of battery-only information such as voltage and/or
electrical current that is easy to access. The collected values
allow for obtaining other metrics such as the power and total
energy consumed by the smartphone; (ii) metric collected by
tools that, for this purpose, are called profilers such as Trepn,
BatteryStats, and PowerTutor which provide more compre-
hensive captures such as CPU usage,Wi-Fi signal level, func-
tionalities in use such as GPS, Bluetooth, mobile data, the
screen on; and (iii) Artificial Intelligence techniques such
as decision tree, random forest, multilayer perception, and
others focused on analyzing data through predictive models
capable of determining device usage behavior and even re-
ducing energy consumption.
Therefore, it is possible to list several limitations applied

in the scope of the studies that this review understands as
a potential gap to be investigated. Amongst the limitations
are a low amount of information and analysis about applica-
tions running in the background, and controlled experiments
without the presence of real users as in static analysis. Fur-
thermore, access to the source code of applications is often
necessary for certain research studies. However, this require-
ment is rarely met due to the closed-source code nature of the
most popular applications developed by major companies in
the fields of instant messaging, streaming, and gaming. The
next paragraphs describe the limitations and future work of
the analyzed papers with a concise analysis based on the four
types of studies presented in Table 5.
A. Controlled studies to determine energy consumption

patterns in Android apps
Almasri and Sameh [2019] discussed a star-based scor-

ing system to indicate which apps can consume more power
based on characteristics extracted from the manifest file
present in Android apps. The paper uses a metric scale based
on energy consumption to provide the stars. As a proposal
for future work, an algorithm such as k-nearest neighbors can
be added to associate an application with a star based on the
characteristics extracted from the manifest file and the cur-

rent apps considered neighbors by the algorithm.
In contrast to Almasri and Sameh [2019], the subsequent

papers, although presenting different approaches, deal with
the application of machine learning to analyze energy con-
sumption. Mehrotra et al. [2021] discussed the use of
machine-learning algorithms such as decision trees, k-means,
and k-nearest neighbors for multiclass classification. A pre-
dominant factor in this type of method is to establish the label
of the problem. While the absence of a label in the authors’
collected database was resolved using unsupervised k-means,
the database-created label is a pseudo-label. An alternative
approach to avoid a pseudo-label is to employ the binning
technique, which defines the label based on the energy con-
sumption values gathered. Furthermore, given that k-means
were applied in the labeling stage, it would be interesting to
consider it in the multiclass classification stage along with
the previously defined algorithms. Another limiting factor
is the rules of the decision tree which are obtained to repre-
sent the smartphone usage profile. These rules can be used
to add value to a study that aims to identify possible actions
to be taken by an application, for example, to manage energy
consumption.
During the preprocessing stage, Barreto Neto et al. [2020]

identified potential outliers and determined the most signifi-
cant features of the database to utilize in their experiment. In
terms of outlier detection and smoothing, the Hampel filter
technique is worth exploring. As for feature selection, the
Boruta algorithm based on Random Forest is highly relevant.
Moreover, for data division, the one-step time series cross-
validation approach was employed. However, conducting
new experiments using the multi-step approach would be in-
teresting, as it would consider k-set-ahead steps in the future
instead of only one step.
Elliot et al. [2017] examine the correlation between en-

ergy consumption and media application usage, particularly
in regard to audio, video, and social media applications. To
improve the study, conducting additional experiments with
a larger sample size could help to transform the interview
questionnaire into an effective tool for identifying the user
profile associated with energy consumption. One potential
approach to achieve this is to adapt the interview question-
naire into a dataset suitable for machine-learning algorithms,
such as k-nearest neighbors.
In general, papers such as Mehrotra et al. [2021], Almasri

and Sameh [2019], and Elliot et al. [2017] used PowerTutor
or Trepn apps that are currently discontinued. A recommen-
dation for future work, in line with the trend of more recent
papers, is to develop a specific collection app for the survey,
in addition to complementing the data through the use of An-
droid’s batterystats.
B. Frameworks for analysis and energy consumption man-

agement
The study conducted by Di Nucci et al. [2017] involves

the analysis of individual energy consumption in applications
through the use of the PETRA tool, which estimates power
for Android. The analysis considers the methods invoked,
the elapsed time in seconds, and the energy consumption in
Joules. In the end, a file in CSV format is generated with
the analyzed data. Although the framework requires some
configurations to carry out the experiments, there are some

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

limitations in the execution of the experimentation and in the
supply of results, which must be improved. An instance of
a limitation in the experiment is the constraint of executing
a single application at any given time. It would be good to
have a configurable pipeline that helps experiment with mul-
tiple apps (not necessarily in parallel). As mentioned by the
authors, the batterystats program is embedded in the core of
PETRA, allowing for the generation of data that includes a
wealth of energy consumption information. This includes ad-
ditional details on the application’s resource usage, such as
mobile data, Bluetooth connectivity, and the frequency of
CPU core usage, which can enhance the CSV file’s content.
One research conducted by Rua et al. [2019] introduced

GreenSource, a framework designed to analyze energy con-
sumption in Android applications. The infrastructure com-
prises three components: (i) an Android open-source applica-
tion database, (ii) a benchmarking tool called AnaDroid, and
(iii) a repository that contains the primary metrics utilized in
the literature. GreenSource contains a limitation identified
during the application code modification step. In this step,
the insertion of methods that allow starting and stopping the
collection of information associated with energy consump-
tion uses the Trepn application. However, the application
has been discontinued, which makes it difficult to reproduce
the experiment on newer versions of Android. There is an
additional constraint that the app is only assured to be com-
patible with smartphones featuring Qualcomm-branded pro-
cessors utilizing the Snapdragon chipset. To overcome these
limitations, a possible direction for future work is to develop
a specialized application for data collection.
Wang et al. [2017] introduced E-spector, which is another

tool that relies on code instrumentation. One distinctive fea-
ture of this tool is its ability to perform real-time analysis of
energy consumption. Nevertheless, to accomplish this goal,
the analyzed application must be open-source to allow for
code instrumentation, which facilitates code insertion and
method detection. The collection of features related to en-
ergy consumption is developed by the authors themselves,
which can avoid legacy or discontinued app problems com-
pared to the works already mentioned. Although the analy-
sis is done in real-time and can be accessed in a web envi-
ronment, the entire experiment only works locally. Poten-
tial future work should explore the option of running exper-
iments remotely through ADB. Additionally, there is poten-
tial for analyzing energy consumption in proprietary applica-
tions, which may involve a hybrid approach using Android’s
batterystats tool for offline analysis. Finally, the power esti-
mationmodelmay be extended to encompass a broader range
of smartphone models.
The framework presented by Duan et al. [2017] adopts a

software-based approach for analyzing energy consumption,
which consists of two stages: (i) data collection; and (ii) un-
supervised learning-based offline analysis. Step (i) occurs by
running an application for periodically capturing records. In
step (ii), the k-means algorithm separates the data into clus-
ters to generate a bi-class classification of the data. There is
a classification based on users with two possibilities: active
or not active; and a classification based on power consump-
tion which can be low or high. If the energy consumption of
a user belonging to the non-active group is high, then there

are indications of abnormal smartphone behavior. A limita-
tion of this approach is the identification of such anomalies,
as this takes place offline. In future work, the models trained
on each smartphone can be used to perform real-time anal-
ysis, via online machine learning, in order to perform some
action on the Android system to correct any abnormal behav-
ior.
Malavolta et al. [2020] distinguish themselves from pre-

vious frameworks by offering the option to choose the pre-
ferred profiler application in their Android Runner (AR) tool.
Different applications, native or web-based, can be config-
ured to run in different contexts of experimentation. As
there is no instrumentation to modify the source code, pro-
prietary applications can be tested as long as the installer is
in APK format. For future work, compatibility with tools
based on hardware other than Monsoon can be extended and
experiments can be performed with the researchers’ own en-
ergy consumption collection application or another applica-
tion compatible with newer versions of Android.
C. Usage patterns of mobile devices
Regarding usage patterns, Guo et al. [2017] created an ap-

plication that collected data from 80.000 Android devices
over four weeks to calculate the energy consumption rate.
For validation, the collected data were compared with the
Monsoon Power Monitor tool so that the difference between
the values measured by the app and the values obtained by
the tool had a difference of less than 10%, proving that the
method is accurate with a large scale date. However, an ob-
vious limitation is the amount of data. If too little data is
collected, the method can become inaccurate for certain de-
vices. One possible solution to this issue is to gather data
from the batterystats tool in conjunction with the existing
data collection process. This tool, which is a native Android
feature, provides measurements that are more accurate and
can isolate energy consumption for specific features, thereby
enhancing the effectiveness of the data collection.
Pereira et al. [2021] introduced a collaboratively con-

structed dataset consisting of approximately 23 million
records from over 1.600 Android devices. Among the an-
alyzes of the generated base, the work presents the PPM
(percentage-per-minute) metric to obtain trends of which fac-
tors can impact energy consumption. The database can be
applied to facilitate the use of the PPM metric by collecting
which applications are in the foreground and background of
each record collected. With this, one can have stronger ev-
idence of what has caused the high battery consumption of
Android smartphones. Moreover, machine learning models
can leverage current as a new feature to produce energy con-
sumption estimates. Bymultiplying current with voltage, the
power associated with energy consumption can be derived
when the collection interval is set to 1 second.
D. Techniques for reducing energy consumption
In terms of techniques to reduce energy consumption,

Harihar and Sukumaran [2018] minimized energy usage in
their experiments by transferring application code snippets
to cloud processing, thereby avoiding the overhead on smart-
phones. The proposed approach uses techniques such as code
instrumentation, data collection related to energy consump-
tion, and time series. An obvious limitation is in the exclu-
sive parsing of public methods restricted to a single thread.

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

Measurements can generate inaccurate values. It is possi-
ble to use the Android logcat tool to monitor method calls
to try to workaround this situation, in addition to allowing a
study aimed at identifying bugs between method calls. With
respect to partitioning apps into two groups, as it is an NP-
hard problem, heuristics based on genetic algorithms are a
promising approach. Finally, the time-series prediction of
the bandwidth can be inserted without too many problems in
the experiments.

Oliveira et al. [2019] propose the reduction of energy con-
sumption via modifications in Java language collections per-
formed in the CT+ tool using the static analysis technique.
The experiments performed on both desktops and Android
smartphones differ slightly in design on each operating sys-
tem guiding to some nuances as the use of jRAPL on the
desktop platform. Using RAPL allows for accurate resource
analysis, but is limited to Intel processors. To ensure portabil-
ity, the energy consumption capture approach can be adapted
to a software approach.

A previous study conducted by Oliveira et al. [2017] in-
troduced hybrid methodologies for mobile application devel-
opment as a means of minimizing energy consumption. The
results show that there is no common language for power con-
sumption and faster performance/processing scenarios. The
analysis was limited to collecting energy and runtime data.
The experiment did not address other metrics that can in-
fluence energy consumption, such as CPU usage, core fre-
quency, network usage, and others. There is a problem of per-
formance identified in different implementation approaches
of some benchmarks depending on the adopted language. A
curation would be ideal to validate and fix the database when
needed. Using a smartphone differently from the others in
the experiment is another crucial factor to avoid. Conduct-
ing a new experiment with adjustments to the identified prob-
lems may yield significant results for the research.

In conclusion, Linares-Vásquez et al. [2018] took a dis-
tinct approach to optimize applications by making modifica-
tions to the color palette of graphical interfaces. In the case of
OLED screens, the object of study, the energy consumption
of the pixels depends on the level of the color component ren-
dered via the combination of red, green, and blue subpixels
at different intensities in the RGB color model. Consump-
tion becomes a double summation of the RGB intensities
based on the row and column coordinates of the pixel ma-
trix. Changes to the color palette of apps occur through the
GEMMA (Gui Energy Multi-objective optiMization for An-
droid apps) approach. A new color standard is defined by
taking screenshots from the apps. The accuracy of power
consumption is validated using Monsoon hardware. One as-
pect that requires further investigation is the method used to
define colors in the approach. Choosing colors carefully is
crucial to avoid hindering the reading of texts and losing the
identification of GUI elements such as buttons. To improve
this approach in future work, a more precise method could
be applied to application GUIs by reverse engineering, tak-
ing into consideration the appropriate choice of colors for
GUI elements like text fields and buttons.

5 Answers to Research Questions
A. What methods and techniques are currently used to in-
vestigate the factors that impact Android smartphone battery
consumption?
Given the complexity of determining which resources di-

rectly influence energy inefficiency, whether, through the
real-time collection or hardware instrumentation that re-
quires the purchase of extra hardware or through static anal-
ysis that requires access to application source code, which
is not always possible, it is observed in the literature that
these options tend to be complex in terms of how to isolate
and analyze a single feature and estimate its impact on the
battery. Due to this, what is identified in most works as in
Barreto Neto et al. [2020], Pereira et al. [2021] and Linares-
Vásquez et al. [2018] is not isolating the features, but rather
carrying out studies taking energy efficiency into account in
a total. In Pereira et al. [2021], for example, the term “trend”
is adopted when analyzing the Percentage per Minute (PPM)
metric when suggesting which feature could consume more
battery power. Metrics such as power acquired through cur-
rent and voltage in Barreto Neto et al. [2020], separation of
clustered features for low, medium, and high consumption
as identified in Mehrotra et al. [2021] or adjustments to the
color palette as shown in Linares-Vásquez et al. [2018] are
presented.
Amongst 17 analyzed papers, 13 measure direct energy

consumption. To know this consumption, three approaches
are used. Initially, battery voltage and/or current informa-
tion is gathered, which is then utilized to calculate the dis-
sipated power and the total energy consumed during a spe-
cific time period. This time interval is typically determined
by computing the difference between the timestamps of the
collected samples. The power equation (Equation 1) and en-
ergy equation (Equation 2) are the most frequently employed
equations. One paper refers to battery capacity in mAh and
percentage of charge, while another paper computes it using
automated models that rely on network baud rates, screen
brightness, and CPU usage.

P = V ∗ I (1)

E =
∫

Pdt (2)

The definition of timestamps varies. In papers such as
Barreto Neto et al. [2020], Guo et al. [2017], Almasri and
Sameh [2019], Di Nucci et al. [2017], Harihar and Suku-
maran [2018], it is defined as the shortest time in which there
is no change in smartphone components or variations of this
rule. Barreto Neto et al. [2020] define a set of rules for the
definition of an interval slice: i) the sample is from the same
device, ii) the changes in the battery are in the same direc-
tion, either charging or discharging and iii) always within a
variation limit [-2, 2].
The second approach, used in seven papers (see Table 7),

is to collect energy consumption information through special-
ized software. For this purpose, five used the Trepn Profiler
app and two used the PowerTutor app; BatteryStats, Battery
Linux procfs, Android Power Profiler, Project Volta, Green-
Scaler, and DroidWalker are also cited in the total of the sev-
enteen articles.

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

Covariance

 (3 papers - 17.65%)

Standard deviation

 (3 paper - 17.65%)

Statistical measures

identified in the

articles

Arithmetic Mean

(5 papers - 29.41%)

Nemenyi test

(1
 paper - 5.88%)

Clustering

(3 papers - 17.65%)

Box plot

 (1 paper - 5.88%)

Confusion matrix

 (1 paper - 5.88%)

Cohen's kappa

coefficient

(1
 paper - 5.88%)

Wilcoxon Test, Cliff’s

Delta

(1 paper – 5.88%)

p-value

(2 papers – 11.76%)

Figure 3. Most currently used statistical analysis techniques.

Although recent works like Malavolta et al. [2020], Rua
et al. [2019], Almasri and Sameh [2019] use Trepn or Pow-
erTutor as a data capture mechanism, it is important to high-
light problems when using these applications, PowerTutor is
from mid-2011 and mid-2015 Trepn, which makes compat-
ibility and smooth operation difficult on smartphones with
more modern Android hardware and system. Articles like
Di Nucci et al. [2017] make use of tools from Project Volta
such as Batterystats, which is interesting because Google
keeps these tools up to date for current versions of Android.
Other works develop their own applications, see Barreto
Neto et al. [2020] and Pereira et al. [2021], making use of
Android libraries that allow the monitoring of functionalities
to perform the collection. What can be seen are two paths for
real-time collection: using a collection application published
in the literature although it is not updated or developing an
application to perform data collection. The second way is
more effective and accurate to collect data. Details on how
to monitor and collect each resource are available in works
by Barreto Neto et al. [2020] and Pereira et al. [2021].
There is also a significant number of statistical techniques

applied to battery consumption analysis. For the collection
and processing of battery-related information, the arithmetic
mean is widely used. Almasri and Sameh [2019] and Dai
et al. [2020] also use variance and standard deviation for
large-scale generalization of battery traces. Oliveira et al.
[2019] use standard deviation, but also evaluate p-value and
mean to compare application performance. In a study that in-
volved improving power consumption through color adjust-
ments in the GUI, Linares-Vásquez et al. [2018] made use of
techniques like the Wilcoxon Test and Cliff’s Delta. Studies
involving machine-learning algorithms also perform statisti-
cal analyses, the main one being the clustering of samples by
similarities and clustering by K-means. Barreto Neto et al.
[2020] uses the Nemenyi Test. Pereira et al. [2021], for se-
lection of better consumption modeling algorithms, use box
plot charts and confusion matrices. The results are presented
in detail in Figure 3.
Regarding machine-learning algorithms, several models

were used as shown inTable 8. The most common technique
was clustering, present in 17.65% of the works, followed by
Bayesian Classification and Decision Tree algorithm. The

Table 8. Identification of Machine-Learning techniques in the eval-
uated articles.

AI Techniques Percentage of
Occurrences

Clustering 17.65%
Bayesian classification 11.76%

Decision tree 11.76%
LSTM 5.88%

Rule Induction 5.88%
Support Vector Regressor

(SVR) 5.88%

Multilayer Perceptron Neural 5.88%

authors in Pereira et al. [2021] employ both J48 and Random
Forest algorithms, while in Barreto Neto et al. [2020], only
the Random Forest algorithm is utilized, and a Multilayer
Perceptron Neural model algorithm plays a crucial role. Fur-
thermore, crucial artificial intelligence techniques applied in-
clude the rule induction algorithm and Support Vector Re-
gressor (SVR). The AI techniques are shown in Table 8 and
Figure 4.
B. What are the biggest impact factors on Android smart-

phone battery consumption?
Eight of the analyzed papers performed a controlled study

or data analysis of real users. Table 9 shows obtained re-
sults. The biggest impact factor found in the studies is the
user profile itself. Barreto Neto et al. [2020] carried out an
experiment in which two different videos were played on
the same device under the same conditions. The result was
different energy consumption. Duan et al. [2017] showed,
also through experiments, that active usage time is one of
the main factors for the increase or reduction of battery life.
These experiments characterize the relevance of user behav-
ior in battery consumption.
Additionally, the authors also cite background applica-

tions and services as a primary cause of battery drain. De-
spite the importance of this factor, only two studies carried
out experiments focused on it, which may reveal a literature
gap. Elliot et al. [2017] performed an experiment that demon-
strated the high power consumption of background services
by running the same application with four different levels of
services active in the background. The level with more ac-

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

Clustering

(3 Papers - 17.65%)

Decision trees

 (2 papers - 11.76%)

Artificial Intelligence

algorithms

Bayesian

classification

 (2 papers - 11.76%)

Long short - term

memory (LSTM)

 (1 paper - 5.88%)

Rule Induction

(
 1 paper - 5.88%)

Support Vector

Regressor

(1 paper - 5.88%)

Multi Layer

Perceptron Neural

(1
 paper - 5.88%)

Random Forest

(2
 papers - 11.76%)

J48

(1
 paper - 5.88%)

Figure 4. Artificial intelligence algorithms implemented in the studied publications.

tive services had a much higher consumption than the level
with less active services. Alsomentioned as causes of battery
drain are the inefficiency of old hardware inGuo et al. [2017],
Di Nucci et al. [2017]; and standby mode. In an experiment
carried out by Dai et al. [2020], it was shown that after the
user turns the smartphone off, a delay happens of about six
seconds until the current level decreases, explaining the con-
tinuity of background services for some time, even after the
smartphone enters standby mode. Furthermore, according to
Dai et al. [2020], some applications keep the smartphone on,
even if the screen is off, draining the battery.

Table 9. Summary of factors that affect the performance of devices
and their occurrence in evaluated papers.

Factors of
greatest impact

Percentage of
Occurrence

User profile 23.53%
Mobile network and Wi-Fi 17.65%
Applications and services in

background 11.76%

Old hardware 11.76%
Standby mode 11.76%

C. What are the top recommendations for reducing An-
droid smartphone battery consumption?
Only two articles provide a direct recommendation on how

to reduce Android smartphone battery consumption. Other
studies, despite carrying out analyses on high-impact bat-
tery elements, do not provide direct recommendations or
are limited to identifying the factor with the greatest en-
ergy consumption. The papers’ conclusions identify the fol-
lowing indirect recommendations as significant: (i) optimiz-
ing and investigating background activities during standby
mode; (ii) advising researchers to focus their research on
the small fraction of frequently used applications that con-
sume more energy; and (iii) turning off unused network inter-
faces, reducing screen brightness, and stopping background
services when the smartphone is in standby mode. Another
suggestion is not to use smartphones with old and ineffi-

cient hardware and buy new devices regularly. For this to
be feasible, the manufacturer could inform the user about
these requirements. Regarding the development environ-
ment used by professionals, it is recommended to update the
hardware/software platform, avoid inefficient hardware plat-
forms and applications, and optimize system settings.
Furthermore, it is crucial for developers to enhance com-

munication with users about ways to conserve battery life
and protect the environment. In addition, developers should
always make an effort to incorporate green code practices to
reduce battery consumption. Another important step in the
decrease of smartphone energy consumption is to carry out
research intending to keep the evolution of battery technolo-
gies in sync with the evolution of smartphones.

6 Conclusion
This paper presented a Systematic Mapping Study aimed at
identifying metrics, approaches and recommendations to re-
duce energy consumption onAndroid smartphones. All steps
that constitute a review, such as elaboration of the protocol,
conduction, extraction and, finally, the summarization were
addressed in order to allow the replicability of this SLR and
collaborate in future research.
To validate the first stage of article selection, and thus

avoid the introduction of biases, the Kappa criterion of pairs
agreement was adopted through the calculation of Cohen’s
Kappa coefficient, whose value for this review was 0.815,
which represents an almost perfect agreement among re-
searchers [Perez, 2020].
It was noted that user habits tend to be the most responsi-

ble for energy consumption, as time of use, preferred apps
and custom settings are determining factors in battery drain.
There is consensus in the literature about the diversity of
smartphone user options and their energy impact. In this
context, the exploration of future works should maintain fo-
cus on user profile analysis, especially research with large
databases collected in use. The analysis of more recent pub-

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

lications made it possible to notice an increase in the appli-
cation of artificial intelligence techniques to automatically
adapt apps to the context of use in order to save energy.
These techniques are also being used for mining databases
with energy metrics, in order to seek correlations between
factors and battery level for optimization possibilities. The
main focus of this work is, in fact, identifying and summa-
rizing results aiming not only to answer the three elaborated
research questions, but also to allow the discovery of gaps to
be investigated in the research field of energy consumption
in Android smartphones.

Declarations

Acknowledgements
This research was carried out with the support of the Coordina-
tion for the Improvement of Higher Education Personnel − Brazil
(CAPES) − Funding Code 001 and, as provided for in Arts. 21 and
22 of Decree No. 10.521/2020, was partially financed byMotorola
Mobility Comércio de Produtos Eletrônicos Ltda and Flextronics da
Amazônia Ltda, pursuant to Federal Law No. 8.387/1991, through
agreement No. 004/2021, signed with ICOMP/UFAM.

Authors’ Contributions
The authors confirm their contribution to the paper as follows:
study conception and design: Edwin Monteiro, Helena Cavalcante,
Raimundo Barreto, and Rosiane de Freitas; data collection, analy-
sis, and interpretation of results: Edwin Monteiro and Helena Cav-
alcante; draft manuscript preparation: Edwin Monteiro. All au-
thors reviewed the results and approved the final version of the
manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data can be made available upon request.

References
Almasri, A. and Sameh, A. (2019). Rating google-play
apps’ energy consumption on android smartphones. In
2019 2nd IEEE Middle East and North Africa COMMu-
nications Conference (MENACOMM), pages 1–6. DOI:
10.1109/MENACOMM46666.2019.8988554.

Barreto Neto, A. C. S., Farias, F., Mialaret, M. A. T.,
Cartaxo, B., Lima, P. A., and Maciel, P. R. M. (2020).
Building energy consumption models based on smart-
phone user’s usage patterns. CoRR, abs/2012.10246. DOI:
10.1016/j.knosys.2020.106680.

Cañete, A., Horcas, J.-M., Ayala, I., and Fuentes, L. (2020).
Energy efficient adaptation engines for android applica-
tions. Information and Software Technology, 118:106220.
DOI: 10.1016/j.infsof.2019.106220.

Dai, Z., Wang, W., and Wu, Y. (2020). Static energy
consumption analysis for android applications. IOP
Conference Series: Earth and Environmental Science,
512:012011. DOI: 10.1088/1755-1315/512/1/012011.

Di Nucci, D., Palomba, F., Prota, A., Panichella, A., Zaid-
man, A., and Lucia, A. (2017). Petra: A software-based
tool for estimating the energy profile of android applica-
tions. International Conference on Software Engineering.
DOI: 10.1109/ICSE-C.2017.18.

Dick, Zhuoqing Morley Mao, L. Y. (2011).
Power tutor description. Available at: https:
//ziyang.eecs.umich.edu/projects/powertutor/
Accessed: 2021-11-24.

Duan, L., Lawo, M., Rügge, I., and Yu, X. (2017). Power
Management of Smartphones Based on Device Usage Pat-
terns, pages 197–207. Springer. DOI: 10.1007/978-3-319-
45117-618.

Elliot, J., Kor, a.-l., and Omotosho, O. (2017). Energy
consumption in smartphones: An investigation of battery
and energy consumption of media related applications on
android smartphones. International SEEDS Conference
2017. Available at:https://www.researchgate.net/
publication/319954899_Energy_Consumption_
in_Smartphones_An_Investigation_of_Battery_
and_Energy_Consumption_of_Media_Related_
Applications_on_Android_Smartphones.

Google (2021). Battery stats description. Available
at: https://developer.android.com/topic/
performance/power/setup-battery-historian
Accessed: 2021-11-24.

Guo, Y., Wang, C., and Chen, X. (2017). Understanding
application-battery interactions on smartphones: A large-
scale empirical study. IEEE Access, 5:13387–13400. DOI:
10.1109/ACCESS.2017.2728620.

Harihar, V. K. and Sukumaran, S. (2018). Behaviour
comprehension and prediction using time series analysis
of data for code offloading in mobile cloud computing.
In 2018 3rd IEEE International Conference on Recent
Trends in Electronics, Information Communication Tech-
nology (RTEICT), pages 367–375. DOI: 10.1109/RTE-
ICT42901.2018.9012270.

Kitchenham, B. A. and Charters, S. (2007). Guidelines for
performing systematic literature reviews in software engi-
neering. Technical Report EBSE 2007-001, Keele Uni-
versity and Durham University Joint Report. Available at:
https://www.elsevier.com/__data/promis_misc/
525444systematicreviewsguide.pdf.

Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C.,
Penta, M. D., Oliveto, R., and Poshyvanyk, D. (2018).
Multi-objective optimization of energy consumption of
guis in android apps. ACM Transactions on Software En-
gineering and Methodology (TOSEM), 27(3):1–47. DOI:
10.1145/3241742.

Lopes, C. V., Maj, P., Martins, P., Saini, V., Yang, D., Zitny,
J., Sajnani, H., and Vitek, J. (2017). Déjàvu: A map of
code duplicates on github. Proc. ACM Program. Lang.,
1(OOPSLA). DOI: 10.1145/3133908.

Malavolta, I., Grua, E. M., Lam, C.-Y., de Vries, R.,
Tan, F., Zielinski, E., Peters, M., and Kaandorp, L.

https://ieeexplore.ieee.org/document/8988554
https://doi.org/10.1016/j.knosys.2020.106680
https://doi.org/10.1016/j.infsof.2019.106220
https://iopscience.iop.org/article/10.1088/1755-1315/512/1/012011
https://ieeexplore.ieee.org/document/7965243
 https://ziyang.eecs.umich.edu/projects/powertutor/
 https://ziyang.eecs.umich.edu/projects/powertutor/
https://doi.org/10.1007/978-3-319-45117-6_18
https://doi.org/10.1007/978-3-319-45117-6_18
https://www.researchgate.net/publication/319954899_Energy_Consumption_in_Smartphones_An_Investigation_of_Battery_and_Energy_Consumption_of_Media_Related_Applications_on_Android_Smartphones
https://www.researchgate.net/publication/319954899_Energy_Consumption_in_Smartphones_An_Investigation_of_Battery_and_Energy_Consumption_of_Media_Related_Applications_on_Android_Smartphones
https://www.researchgate.net/publication/319954899_Energy_Consumption_in_Smartphones_An_Investigation_of_Battery_and_Energy_Consumption_of_Media_Related_Applications_on_Android_Smartphones
https://www.researchgate.net/publication/319954899_Energy_Consumption_in_Smartphones_An_Investigation_of_Battery_and_Energy_Consumption_of_Media_Related_Applications_on_Android_Smartphones
https://www.researchgate.net/publication/319954899_Energy_Consumption_in_Smartphones_An_Investigation_of_Battery_and_Energy_Consumption_of_Media_Related_Applications_on_Android_Smartphones
https://developer.android.com/topic/performance/power/setup-battery-historian
https://developer.android.com/topic/performance/power/setup-battery-historian
https://ieeexplore.ieee.org/document/7983341
https://ieeexplore.ieee.org/document/9012270
https://ieeexplore.ieee.org/document/9012270
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://doi.org/10.1145/3241742
https://doi.org/10.1145/3133908

Analysis of Energy Consumption on Android Devices for Developers: A Systematic Mapping Study Monteiro et al., 2023

(2020). A framework for the automatic execution
of measurement-based experiments on android devices.
2020 35th IEEE/ACM International Conference on Au-
tomated Software Engineering Workshops (ASEW). DOI:
10.1145/3417113.3422184.

Mehrotra, D., Srivastava, R., Nagpal, R., and Nagpal, D.
(2021). Multiclass classification of mobile applications
as per energy consumption. Journal of King Saud Univer-
sity - Computer and Information Sciences, 33(6):719–727.
DOI: 10.1016/j.jksuci.2018.05.007.

Oliner, A. J., Iyer, A. P., Stoica, I., Lagerspetz, E., and
Tarkoma, S. (2013). Carat: Collaborative energy diagno-
sis for mobile devices. In Proceedings of the 11th ACM
Conference on Embedded Networked Sensor Systems, Sen-
Sys ’13, New York, NY, USA. Association for Computing
Machinery. DOI: 10.1145/2517351.2517354.

Oliveira, W., Oliveira, R., and Castor, F. (2017). A study on
the energy consumption of android app development ap-
proaches. In 2017 IEEE/ACM 14th International Confer-
ence on Mining Software Repositories (MSR), pages 42–
52. DOI: 10.1109/MSR.2017.66.

Oliveira, W., Oliveira, R., Castor, F., Fernandes, B., and
Pinto, G. (2019). Recommending energy-efficient java
collections. In 2019 IEEE/ACM 16th International Con-
ference on Mining Software Repositories (MSR), pages
160–170. DOI: 10.1109/MSR.2019.00033.

Pang, C., Hindle, A., Adams, B., and Hassan, A. E.
(2016). What do programmers know about software en-
ergy consumption? IEEE Software, 33(03):83–89. DOI:
10.1109/MS.2015.83.

Pereira, R., Matalonga, H., Couto, M., Castor, F., Cabral, B.,
Carvalho, P., Sousa, S., and Fernandes, J. (2021). Green-
hub: a large-scale collaborative dataset to battery con-
sumption analysis of android devices. Empirical Software
Engineering, 26. DOI: 10.1007/s10664-020-09925-5.

Perez, J Diaz, B. T. (2020). Systematic literature re-
views in software engineering—enhancement of the
study selection process using cohen’s kappa statistic.
Journal of Systems and Software, 168:110657. DOI:
10.1016/j.jss.2020.110657.

Qualcomm (2017). Trepn description. Available
at:https://www.qualcomm.com/news/onq/2015/
04/introducing-trepn-profiler-60 Accessed:
2021-11-24.

Rua, R., Couto, M., and Saraiva, J. (2019). Greensource:
A large-scale collection of android code, tests and en-
ergy metrics. IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), pages 176–180.
DOI: 10.1109/MSR.2019.00035.

Statcounter (2021). Operating system market share world-
wide. Available at:https://gs.statcounter.com/os-
market-share#monthly-200901-202111 Acessed:
25/10/2021.

UFSCar (2021). Start-lapes-ufscar. Available at: https://
www.lapes.ufscar.br/resources/tools-1/start-1
Acessed: 25/10/2021.

Wang, C., Guo, Y., Shen, P., and Chen, X. (2017). E-
spector: Online energy inspection for android applica-
tions. 2017 IEEE/ACM International Symposium on Low

Power Electronics and Design (ISLPED), pages 1–6. DOI:
10.1109/ISLPED.2017.8009207.

Xu, F., Liu, Y., Li, Q., and Zhang, Y. (2013). V-
edge: Fast self-constructive power modeling of
smartphones based on battery voltage dynamics. In
10th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 13), pages 43–55,
Lombard, IL. USENIX Association. Available at:
https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/xu_fengyuan.

Zhang, X., Xiao, X., He, L., Ma, Y., Huang, Y., Liu,
X., Xu, W., and Liu, C. (2019). Pifa: An intelli-
gent phase identification and frequency adjustment
framework for time-sensitive mobile computing.
2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 54–64.
https://par.nsf.gov/servlets/purl/10127975.
DOI: 10.1109/RTAS.2019.00013.

https://doi.org/10.1145/3417113.3422184
https://doi.org/10.1016/j.jksuci.2018.05.007
https://doi.org/10.1145/2517351.2517354
https://ieeexplore.ieee.org/document/7962354
https://ieeexplore.ieee.org/document/8816747
https://ieeexplore.ieee.org/document/7155416
https://doi.org/10.1007/s10664-020-09925-5
https://doi.org/10.1016/j.jss.2020.110657
 https://www.qualcomm.com/news/onq/2015/04/introducing-trepn-profiler-60
 https://www.qualcomm.com/news/onq/2015/04/introducing-trepn-profiler-60
https://ieeexplore.ieee.org/document/8816732
https://gs.statcounter.com/os-market-share#monthly-200901-202111
https://gs.statcounter.com/os-market-share#monthly-200901-202111
 https://www.lapes.ufscar.br/resources/tools-1/start-1
 https://www.lapes.ufscar.br/resources/tools-1/start-1
https://ieeexplore.ieee.org/document/8009207
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/xu_fengyuan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/xu_fengyuan
https://par.nsf.gov/servlets/purl/10127975
https://ieeexplore.ieee.org/document/8743202

	Introduction
	Methodology
	Search strategies
	Inclusion and Exclusion Criteria

	Summary of Results
	Controlled studies to determine energy consumption patterns in Android apps
	Frameworks for analysis and energy consumption management
	Usage patterns of mobile devices
	Techniques for reducing energy consumption

	Discussion
	Answers to Research Questions
	Conclusion

