Artificial Intelligence at the Service of Biodiversity in the Pantanal
DOI:
https://doi.org/10.5753/compbr.2020.43.1792Keywords:
Biodiversity, Environmental Monitoring, Artificial IntelligenceAbstract
Pantanal is one of the largest floodplains in the world, a place rich in biodiversity and, therefore, known as one of the main biodiversity hot spots in the New World. Considering this rich biodiversity and in view of the advance of agriculture, livestock, tourism, hydroelectric plants and excessive burning, constant monitoring has become even more necessary. To monitor and extract information, several Artificial Intelligence (AI) techniques are used, such as Artificial Neural Network (including deep learning), Random Forest, Support Vector Machine, among others. This information shows the potential of AI techniques to contribute strongly to the process of environmental monitoring, the construction of public policies, aiming at the conservation of biodiversity.
Downloads
References
DIGBY, A.; TOWSEY M.; BELL B. D.; TEAL P. D. A practical comparison of manual and autonomous methods for acoustic monitoring. Methods Ecol Evol, v. 4, p. 675–683, 2013.
GANCHEV, T. D.; JAHN, O.; MARQUES, M. I.; FIGUEIREDO, J. M.; SCHUCHMANN, K.-L. Automated acoustic detection of Vanellus chilensis lampronotus. Expert Systems with Applications, v. 42, p. 6098-6111, 2015.
OLIVEIRA, A. G.; VENTURA, T. M.; GANCHEV, T. D.; SILVA, L. N. S.; MARQUES, M. I.; SCHUCHMANN, K.-L. Speeding up training of automated bird recognizers by data reduction of audio features. PeerJ, v. 8, p. e8407, 2020.
SCHUCHMANN, K.-L.; MARQUES, M. I.; JAHN, O.; GANCHEV, T.; FIGUEIREDO, J. M. Os sons do Pantanal: um projeto de monitoramento acústico automatizado da biodiversidade. Boletim Informativo Sociedade Brasileira de Zoologia, v. 108, p. 11-12, 2014.
SCHUCHMANN, K.-L.; TISSIANI, A. S. O.; DEUS, F. F.; COELHO, F. N.; MOECKLINGOFF, L.; JAHN, O.; GANCHEV, T. D.; BURS, K.; MARQUES, M. I. INAU Pantanal Biodata Center: O Primeiro Banco de Dados Audiovisual para Áreas Úmidas do Brasil. Boletim Informativo Sociedade Brasileira de Zoologia, p. 4-6, 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Brazil Computing
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.