Is it possible to learn about people without hurting their privacy?

Authors

  • Javam Machado Federal University of Ceará

DOI:

https://doi.org/10.5753/compbr.2021.46.4415

Keywords:

privacy, personal data, anonymization, differential privacy

Abstract

This article briefly describes the concept of individual privacy in the Brazilian General Data Protection Law (Lei Geral de Proteção de Dados - LGPD) while discussing personal data collection for profiling creation in modern machine learning systems. The article outlines a few computational techniques for data anonymization and shows that, by associating these techniques with the collection/learning binomial, we can strengthen the publication and study of data while guaranteeing the privacy of data holders.

Downloads

Download data is not yet available.

References

BRITO, F.; MACHADO, J. Preservação de privacidade de dados: Fundamentos, técnicas e aplicações. 36a JAI - Jornada de Atualização em Informática, Cap 3, pag 1–40. SBC, Porto Alegre, 2017.

Congresso Nacional. Lei Geral de Proteção de Dados - Lei No 13.709 de 14 de Agosto de 2018.

DOMINGO-FERRER, J.; SANCHEZ, D.; SORIA-COMAS, J. Database anonymization: Privacy, utility, and microaggregation-based inter-model connections. Synthesis Lectures on Information Security, Privacy, and Trust. Morgan & Claypool, 2016

DWORK, C. Differential privacy. 33rd International Colloquium on Automata, Languages and Programming, pages 1–12, 2006

DWORK, C.; ROTH, A. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

MACHADO, J; DUARTE NETO, E. Privacidade de dados de localização: Modelos, técnicas e mecanismos. 40a JAI - Jornada de Atualização em Informática, Cap 3, pag 105–148. SBC, 2021.

Published

2021-12-01

How to Cite

Machado, J. (2021). Is it possible to learn about people without hurting their privacy?. Brazil Computing, 46(46), 25–28. https://doi.org/10.5753/compbr.2021.46.4415

Issue

Section

Papers