Routing of Cargo Vehicles by Multi-Factor Simulation

Authors

DOI:

https://doi.org/10.5753/isys.2024.3595

Keywords:

Computational Simulation, Scripting, Tracking

Abstract

The effectiveness of supply chain systems depends on the quality of the logistic strategies. The vehicle routing problem is one of the important ones in this context. Traditional solutions of routing use to combine distance and time to define a route. However, there are additional and relevant aspects, or factors, to improve the routing effectiveness. For instance: timing windows of stops; routing vs tracing; velocity according to the truckload type; and road quality. Traditional solutions do not allow flexible and configurable sets of factors for the routing process. This work introduces a new Modeling and Simulation solution to combine multi factors for the routing process. The proposed model allows configuring multi properties according to the truckload features. As results, the model identifies the route with the best balance among the configured property requirements.

Downloads

Download data is not yet available.

References

Arcaini, P., Riccobene, E., and Scandurra, P. (2015). Modeling and validating self-adaptive service-oriented applications. SIGAPP Appl. Comput. Rev., 15(3):35–48.

Arnold, F., Gendreau, M., and Sörensen, K. (2019). Efficiently solving very large-scale routing problems. Comput. Oper. Res., 107(C):32–42.

Balci, O. (2012). A life cycle for modeling and simulation. SIMULATION, 88(7):870–883.

Barboza, T., Baião, F. A., and Santoro, F. M. (2019). A logic-based approach to automatically validate knowledge-intensive processes. iSys - Brazilian Journal of Information Systems, 12(1):76–99.

Barcelos, B. F., Daysemara Cotta, M., Andrade, G. S., Costa, M. T. D., and Silva, V. R. d. (2022). Aplicação do problema do caixeiro viajante para otimizar rota de entrega em uma distribuidora. Revista de Logística da FATEC-Carapicuíba, (2):45–56.

Boscarioli, C., Araujo, R. M. d., and Suzana Maciel, R. (2017). I GranDSI-BR: Grand Research Challenges in Information Systems in Brazil 2016-2026. Sociedade Brasileira de Computação.

Carson, J. S. (2004). Introduction to modeling and simulation. In Proceedings of the 36th Conference on Winter Simulation, WSC ’04, page 9–16. Winter Simulation Conference.

Cayirci, E. (2013). Modeling and simulation as a cloud service: a survey. In Proceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World, WSC ’13, page 389–400. IEEE Press.

Collier, N. and Ozik, J. (2013). Test-driven agent-based simulation development. In Proceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World, WSC ’13, page 1551–1559. IEEE Press.

Company, A. (2020). Anylogic 8.7.4 university version.

da Silva, M. and Pasin, M. (2022). Simulation as support to evaluate ump. In Anais do XVIII Simpósio Brasileiro de Sistemas de Informação, Porto Alegre, RS, Brasil. SBC.

D’Angelo, G., Ferretti, S., and Ghini, V. (2017). Modeling the internet of things: a simulation perspective. In 2017 International Conference on High performance Computing Simulation (HPCS), pages 18–27.

DiFrischia, T. (2018). Scenario analysis with arena simulation. In Proceedings of the 2018 Winter Simulation Conference, WSC ’18, page 4250. IEEE Press.

Falvo, V., Scalise, M., Lupia, F., Casella, P., and Cannataro, M. (2018). A cooperative vehicle routing platform for logistic management in healthcare. In Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, BCB ’18, page 689–692, New York, NY, USA. Association for Computing Machinery.

França, B. B. and Travassos, G. (2015). Experimentation with dynamic simulation models in software engineering: planning and reporting guidelines. Empirical Software Engineering, 21.

Garrido, P. and Castro, C. (2012). A flexible and adaptive hyper-heuristic approach for (dynamic) capacitated vehicle routing problems. Fundam. Inf., 119(1):29–60.

Graciano Neto, V. V., Teles, R. M., Ivamoto, M., Mello, L. H. S., and de Carvalho, C. L. (2011). Um sistema de apoio à decisão baseado em agentes para tratamento de ocorrências no setor elétrico. Revista de Informática Teórica e Aplicada, 17(2):139–153.

Hakim, I. M. and Abbas, F. M. H. (2019). Optimization model of truck utilization to minimize outbound logistics cost. In Proceedings of the 5th International Conference on Industrial and Business Engineering, ICIBE ’19, page 62–66, New York, NY, USA. Association for Computing Machinery.

Lee, E. and Farahmand, K. (2010). Simulation of a base stock inventory management system integrated with transportation strategies of a logistic network. In Proceedings of the Winter Simulation Conference, WSC ’10, page 1934–1945. Winter Simulation Conference.

Li, N., Haralambides, H., Sheng, H., and Jin, Z. (2022). A new vocation queuing model to optimize truck appointments and yard handling-equipment use in dual transactions systems of container terminals. Computers Industrial Engineering, 169:108216.

Manzano, W., Graciano Neto, V., and Nakagawa, E. (2020). Simulation of systems-of-systems dynamic architectures. Pages 245–254.

Molina, S., Costa, M., Nazário, A., Paiva, D., and Cagnin, M. (2023). Cenários abstratos de tratamento de exceções na interoperabilidade de processos-de-processos de negócios. In Anais do V Workshop em Modelagem e Simulação de Sistemas Intensivos em Software, pages 11–20, Porto Alegre, RS, Brasil. SBC.

Nordgren, W. B. (2002). Flexsim: Flexsim simulation environment. In Proceedings of the 34th Conference on Winter Simulation: Exploring New Frontiers, WSC ’02, page 250–252. Winter Simulation Conference.

Novaes, A. G., Burin, P. J., Bez, E. T., and Scholz-Reiter, B. (2011). Roteirização dinâmica de veículos usando simulação e algoritmo genético. Transportes, 19(3):85–92.

Palhares, R. A., Palhares, R. A., and Araujo, M. C. B. (2019). Roteirização de veículos: Aplicação do problema do caixeiro viajante em uma distribuidora de laticínios. Pesquisa Operacional para o Desenvolvimento, 11(2):105–126.

Rahman, S. M. A., Rahman, M. F., Tseng, T.-L. B., and Kamal, T. (2024). A simulation-based approach for line balancing under demand uncertainty in production environment. In Proceedings of the Winter Simulation Conference, WSC ’23, page 2020–2030. IEEE Press.

Robinson, S. (2013). Conceptual modeling for simulation. In Proceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World, WSC ’13, page 377–388. IEEE Press.

Ruiz-Torres, A. J. and Tyworth, J. E. (1997). Simulation based approach to study the interaction of scheduling and routing on a logistic network. In Proceedings of the 29th Conference on Winter Simulation, WSC ’97, page 1189–1194, USA. IEEE Computer Society.

Santos, J., Neto, V. G., and Nakagawa, E. (2020). Business process modeling in systems of systems. In Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software, pages 26–35, Porto Alegre, RS, Brasil. SBC.

Sarjoughian, H. S. (2006). Model composability. In Proceedings of the 38th Conference on Winter Simulation, WSC ’06, page 149–158. Winter Simulation Conference.

Silva, T., Nascimento, M. G., Valença, G., Lira, B., Fraga, G., Miranda, L., Olivia, M., Peixoto, S., and Andrade, E. (2024). Mapping and improvement of processes in the public sector: An experience report at the public ministry of accounts of Pernambuco. iSys - Brazilian Journal of Information Systems, 17(1):2:1 – 2:25.

Teixeira, P. G., Lebtag, B. G. A., de Oliveira, L. W., de Carvalho, S. T., Veiga, E. F., and de Sousa Rocha, C. (2019). Modeling and simulation of a smart street lighting system. In Anais do I Workshop em Modelagem e Simulação de Sistemas Intensivos em Software, pages 44–48, Porto Alegre, RS, Brasil. SBC.

Zong, Z., Wang, H., Wang, J., Zheng, M., and Li, Y. (2022). RBG: Hierarchically solving large-scale routing problems in logistic systems via reinforcement learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, page 4648–4658, New York, NY, USA. Association for Computing Machinery.

Published

2024-12-27

How to Cite

Luiz Pinto da Silva, D., & Mello, B. (2024). Routing of Cargo Vehicles by Multi-Factor Simulation. ISys - Brazilian Journal of Information Systems, 17(1), 20:1 – 20:26. https://doi.org/10.5753/isys.2024.3595

Issue

Section

Regular articles