Identifying Chronic Disease Risk Behaviors: An ontology-based approach

Authors

  • Lucas Pfeiffer Salomão Dias Unisinos
  • Henrique Damasceno Vianna Unisinos https://orcid.org/0000-0002-4005-6098
  • Wesllei Heckler Unisinos
  • Jorge Luis Victória Barbosa Unisinos

DOI:

https://doi.org/10.5753/isys.2024.3762

Keywords:

Ontology, Behavior Classification, Chronic Diseases, Risk Factors, Knowledge Model

Abstract

Chronic diseases are among the leading causes of death worldwide. Risk factors related to chronic diseases are correlated with people's lifestyles, and early changes can prevent many chronic disease deaths. This article proposes an ontology called B-Track Onto to classify behaviors that attenuate or worsen the risk factors associated with chronic diseases. The MIMIC-III dataset was used as the base to import 21 patients from the clinical samples. B-Track Onto inferred all imported patients and categorized them in the expected classes. Besides, this work executed SPARQL queries to answer the competence questions, which returned the expected results for each question. Furthermore, there was an evaluation of the ontology with 10 patients over 4 weeks, showing the ontology's ability to infer behaviors related to risk factors for chronic diseases during the patients' daily lives. This evaluation allowed the inference of patients' preventive and non-preventive habits related to chronic diseases. B-Track Onto is an ontology to correlate human behavior and risk factors of chronic diseases, being a potential tool for classifying preventive and non-preventive behaviors and mitigating chronic diseases.

Downloads

Download data is not yet available.

References

Alfaifi, Y., Grasso, F., and Tamma, V. (2018). An ontology of psychological barriers to support behaviour change. In Proceedings of the 2018 International Conference on Digital Health, DH ’18, page 11–15, New York, NY, USA. Association for Computing Machinery.

Amith, M., Wang, J., Xiong, G., Roberts, K., and Tao, C. (2020). A health consumer ontology of fast food information. In 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 1714–1719.

Bavaresco, R. S. and Barbosa, J. L. V. (2023). Ubiquitous computing in light of human phenotypes: foundations, challenges, and opportunities. Journal of Ambient Intelligence and Humanized Computing, 14(3):2341–2349.

Brown, M., Dip IST, P., Cert, P. H., van Woerden, H., Eslambolchilar, P., Jones, M., and John, A. (2016). Gamification and adherence to web-based mental health interventions: A systematic review. JMIR Mental Health, 3(3):3–391.

Büttenbender, P. C., Neto, E. G. d. A., Heckler, W. F., and Barbosa, J. L. V. (2022). A computational model for identifying behavioral patterns in people with neuropsychiatric disorders. IEEE Latin America Transactions, 20(4):582–589.

Camboim, B. D., da Rosa Tavares, J. E., Tavares, M. C., and Barbosa, J. L. V. (2023). Posture monitoring in healthcare: a systematic mapping study and taxonomy. Medical & Biological Engineering & Computing, 61(8):1887–1899.

Chatterjee, A., Prinz, A., Gerdes, M., and Martinez, S. (2021a). An automatic ontology-based approach to support logical representation of observable and measurable data for healthy lifestyle management: Proof-of-concept study. J Med Internet Res, 23(4):e24656.

Chatterjee, A., Prinz, A., Gerdes, M., and Martinez, S. (2021b). An automatic ontology-based approach to support logical representation of observable and measurable data for healthy lifestyle management: Proof-of-concept study. J Med Internet Res, 23(4):e24656.

Dalmina, L., Vianna, H. D., Dias, L. P. S., Schroeder, G. L., Francisco, R., and Barbosa, J. L. V. (2022). Gamiprom: A generic gamification model based on user profiles. International Journal of Human–Computer Interaction, 0(0):1–17.

Dias, L. P. S., Barbosa, J. L. V., Feij´o, L. P., and Vianna, H. D. (2020). Development and testing of iaware model for ubiquitous care of patients with symptoms of stress, anxiety and depression. Computer Methods and Programs in Biomedicine, 187:105113.

Dias, L. P. S., Vianna, H. D., and Barbosa, J. L. V. (2022). Human behaviour data analysis and noncommunicable diseases: a systematic mapping study. Behaviour & Information Technology, 0(0):1–19.

El-Gayar, O. F., Ambati, L. S., and Nawa, N. (2020). Wearables, Artificial intelligence, and the Future of Healthcare, chapter Deep Learning for Medical Decision Support Systems, pages 104–129. IGI Global.

Genesereth, M. R. and Nilsson, N. J. (1987). Logical Foundations of Artificial Intelligence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Goetz, C., Bavaresco, R., Kunst, R., and Barbosa, J. (2022). Industrial intelligence in the care of workers’ mental health: A review of status and challenges. International Journal of Industrial Ergonomics, 87:103234.

Griffiths, J. C., De Vries, J., McBurney, M. I., Wopereis, S., Serttas, S., and Marsman, D. S. (2020). Measuring health promotion: translating science into policy. European Journal of Nutrition, 59(2):11–23.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowl. Acquis., 5(2):199–220.

Grüninger, M. and Fox, M. S. (1995). Methodology for the design and evaluation of ontologies. Disponível em: [link]. Acesso em: 18 de outubro de 2023.

Guermah, H., Fissaa, T., Guermah, B., Hafiddi, H., and Nassar, M. (2018). Using context ontology and linear svm for chronic kidney disease prediction. In Proceedings of the International Conference on Learning and Optimization Algorithms: Theory and Applications, LOPAL ’18, New York, NY, USA. Association for Computing Machinery.

Guimarães, F. J. Z. (2003). Ontologies use in b2c domain. Disponível em: [link]. Acesso em: 10 de janeiro de 2024.

Heckler, W. F., de Carvalho, J. V., and Barbosa, J. L. V. (2022). Machine learning for suicidal ideation identification: A systematic literature review. Computers in Human Behavior, 128:107095.

Heckler, W. F., Feijó, L. P., de Carvalho, J. V., and Barbosa, J. L. V. (2023). Thoth: An intelligent model for assisting individuals with suicidal ideation. Expert Systems with Applications, 233:120918.

Hu, H. and Kerschberg, L. (2018). Evolving medical ontologies based on causal inference. In Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM ’18, page 954–957. IEEE Press.

Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-w. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Anthony Celi, L., and Mark, R. G. (2016). Mimic-iii, a freely accessible critical care database. Scientific Data, 3(1):160035.

Krummenacher, R. and Strang, T. (2007). Ontologybased context modeling. 3rd Workshop on Context Awareness for Proactive Systems.

Kyada, D. S. and Baria, D. H. (2019). Prevalence of risk factors of non-communicable diseases among the health care professionals of a tertiary care hospital of south gujarat, india. World Journal of Advance Healthcare Research, 3(4):57–61.

Larentis, A. V., Barbosa, D. N. F., and Barbosa, J. L. V. (2023). Salus: A model for educational assistance in noncommunicable chronic diseases. IEEE Latin America Transactions, 21(3):360–366.

Mamdani, E. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1):1–13.

Milne-Ives, M., Lam, C., De Cock, C., Van Velthoven, M. H., and Meinert, E. (2020a). Mobile apps for health behavior change in physical activity, diet, drug and alcohol use, and mental health: Systematic review. JMIR Mhealth Uhealth, 8(3):e17046.

Milne-Ives, M., Lam, C., De Cock, C., Van Velthoven, M. H., and Meinert, E. (2020b). Mobile apps for health behavior change in physical activity, diet, drug and alcohol use, and mental health: Systematic review. JMIR Mhealth Uhealth, 8(3):e17046.

Mitsis, K., Zarkogianni, K., Bountouni, N., Athanasiou, M., and Nikita, K. S. (2019). An ontology-based serious game design for the development of nutrition and food literacy skills. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 1405–1408.

Monteiro, L. Z., Varela, A. R., Alves, L. R., Santos, M. R. S., Lopes, G. R., Caetano J´unior, M. A., and Leandro, S. S. (2018). Prevalência e fatores associados ao uso de ´alcool e tabaco em universit´arios do curso de enfermagem. Revista Eletrônica de Enfermagem, 20.

Musen, M. A. and Team, P. (2015). The prot´eg´e project: A look back and a look forward. AI matters, 1(4):4–12.

Nagaraj, P. and Deepalakshmi, P. (2022). An intelligent fuzzy inference rule-based expert recommendation system for predictive diabetes diagnosis. International Journal of Imaging Systems and Technology.

Nasiri, S. and Khosravani, M. R. (2020a). Progress and challenges in fabrication of wearable sensors for health monitoring. Sensors and Actuators A: Physical, 312:112105.

Nasiri, S. and Khosravani, M. R. (2020b). Progress and challenges in fabrication of wearable sensors for health monitoring. Sensors and Actuators A: Physical, 312:112105.

Paula, L. d. S., Barbosa, J. L. V., and Dias, L. P. S. (2022a). A model for assisting in the treatment of anxiety disorder. Universal Access in the Information Society, 21(2):533–543.

Paula, L. d. S., Dias, L. P. S., Francisco, R., and Barbosa, J. L. V. (2022b). Analysing iot data for anxiety and stress monitoring: A systematic mapping study and taxonomy. International Journal of Human–Computer Interaction, 0(0):1–21.

Pereira, R. and Baranauskas, M. C. (2017). Systemic and Socially Aware Perspective for Information Systems, chapter Grand Research Challenges in IS in Brazil, pages 148–160. (Org.). I GranDSI-BR.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic mapping studies in software engineering. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering, EASE ’08, pages 68–77, Swinton, UK. British Computer Society.

Pfeiffer Salomão Dias, L., Damasceno Vianna, H., Heckler, W., and Luis Vict´oria Barbosa, J. (2023). Ontology-based reasoning to classify behaviors associated with chronic disease risk factors. In Proceedings of the XIX Brazilian Symposium on Information Systems, SBSI ’23, page 292–299, New York, NY, USA. Association for Computing Machinery.

Reda, R., Piccinini, F., and Carbonaro, A. (2018). Towards consistent data representation in the iot healthcare landscape. In Proceedings of the 2018 International Conference on Digital Health, DH ’18, page 5–10, New York, NY, USA. Association for Computing Machinery.

Rehackova, L., Araújo-Soares, V., Steven, S., Adamson, A. J., Taylor, R., and Sniehotta, F. F. (2020). Behaviour change during dietary type 2 diabetes remission: a longitudinal qualitative evaluation of an intervention using a very low energy diet. Diabetic Medicine, 37(6):953–962.

Rentz, D. M., Heckler, W. F., and Barbosa, J. L. V. (2023). A computational model for assisting individuals with suicidal ideation based on context histories. Universal Access in the Information Society.

Sasseville, M., LeBlanc, A., Boucher, M., Dugas, M., Mbemba, G., Tchuente, J., Chouinard, M.-C., Beaulieu, M., Beaudet, N., Skidmore, B., Cholette, P., Aspiros, C., Larouche, A., Chabot, G., and Gagnon, M.-P. (2021). Digital health interventions for the management of mental health in people with chronic diseases: a rapid review. BMJ Open, 11(4).

Tavares, J. E. d. R., Ullrich, M., Roth, N., Kluge, F., Eskofier, B. M., Gaßner, H., Klucken, J., Gladow, T., Marxreiter, F., da Costa, C. A., da Rosa Righi, R., and Vict´oria Barbosa, J. L. (2023). utug: An unsupervised timed up and go test for parkinson’s disease. Biomedical Signal Processing and Control, 81:104394.

Weiser, M. (1999). The computer for the 21st century. SIGMOBILE Mob. Comput. Commun. Rev., 3(3):3–11.

WHO (2020a). Global action plan for the prevention and control of noncommunicable diseases. Disponível em: [link]. Acesso em: 19 de janeiro de 2023.

WHO (2020b). Who reveals leading causes of death and disability worldwide: 2000-2019. Disponível em: [link]. Acesso em: 18 de outubro de 2023.

WHO (2021). Strengthening ncd service delivery through uhc benefit package: technical meeting report, geneva, switzerland, 14-15 july 2020. Disponível em: [link]. Acesso em: 18 de outubro de 2023.

WHO (2023a). Noncommunicable diseases. Disponível em: [link]. Acesso em: 18 de outubro de 2023.

WHO (2023b). Risk factors - noncommunicable diseases. Disponível em: [link]. Acesso em: 18 de outubro de 2023.

WHO, G. W. H. O. (2017). Depression and other common mental disorders global health estimates. Licence: CC BY-NC-SA 3.0 IGO.

Published

2024-06-26

How to Cite

Pfeiffer Salomão Dias, L., Damasceno Vianna, H., Heckler, W., & Luis Victória Barbosa, J. (2024). Identifying Chronic Disease Risk Behaviors: An ontology-based approach. ISys - Brazilian Journal of Information Systems, 17(1), 7:1 – 7:31. https://doi.org/10.5753/isys.2024.3762

Issue

Section

Extended versions of selected articles