IoT and 5G Networks: A Discussion of SDN, NFV and Information Security

Authors

DOI:

https://doi.org/10.5753/jbcs.2024.3021

Keywords:

5G Network, Internet of Things (IoT), Information Security, Software Defined Network (SDN), Network Function Virtualization (NFV), Link Layer, Physical Layer

Abstract

Having an infrastructure capable of exchanging data at high speed is an efficient way to drive the evolution and development of new applications and existing services. The 5G technology has emerged as a trusted source to meet the increased demand of Internet of Things (IoT) devices connected to the network, in addition to enabling Internet connectivity at high broadband speeds. Another important feature of 5G is to allow the use of Software Defined Network (SDN) and Network Function Virtualization (NFV), mechanisms responsible for performing network configurations through software, as well as the control and management of devices using the configuration network functions or device virtualization. The concern with information security in the 5G network is increasing, as cybercriminals try to access important data that is transported over the network, since the demand for connected IoT devices will be greater, allowing for several possibilities of attacks. The understanding of possible threats and attacks is necessary, so that new measures are taken against cybercrimes presented in the 5G and IoT networks. This paper aims to elucidate some conceptions of what 5G technology is and the use of IoT in this network, contextualizing the SDN and NFV paradigms to allow the configuration of the functionality and management of the network by software. In addition, concerns are reported about possible information security attacks that can occur in 5G networks.

Downloads

Download data is not yet available.

References

GPP (2019). 3rd generation partnership project; technical specification group services and system aspects; release 15 description; summary of rel-15 work items (release 15). 3GPP Release 15, pages 1-118. Available online [link].

Abbas, S. G., Husnain, M., Fayyaz, U. U., Shahzad, F., Shah, G. A., and Zafar, K. (2020). Iot-sphere: A framework to secure iot devices from becoming attack target and attack source. In 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pages 1402-1409. DOI: 10.1109/TrustCom50675.2020.00189.

Abdulkarem, H. S. and Dawod, A. (2020). Ddos attack detection and mitigation at sdn data plane layer. In 2020 2nd Global Power, Energy and Communication Conference (GPECOM), pages 322-326. DOI: 10.1109/GPECOM49333.2020.9247850.

Abdulqadder, I. H., Zhou, S., Zou, D., Aziz, I. T., and Akber, S. M. A. (2020a). Bloc-sec: Blockchain-based lightweight security architecture for 5g/b5g enabled sdn/nfv cloud of iot. In 2020 IEEE 20th International Conference on Communication Technology (ICCT), pages 499-507. DOI: 10.1109/ICCT50939.2020.9295823.

Abdulqadder, I. H., Zhou, S., Zou, D., Aziz, I. T., and Akber, S. M. A. (2020b). Multi-layered intrusion detection and prevention in the sdn/nfv enabled cloud of 5g networks using ai-based defense mechanisms. Computer Networks, 179:107364. DOI: 10.1016/j.comnet.2020.107364.

Akpakwu, G. A., Silva, B. J., Hancke, G. P., and Abu-Mahfouz, A. M. (2018). A survey on 5g networks for the internet of things: Communication technologies and challenges. IEEE Access, 6:3619-3647. DOI: 10.1109/ACCESS.2017.2779844.

Alshamrani, A., Chowdhary, A., Pisharody, S., Lu, D., and Huang, D. (2017). A defense system for defeating ddos attacks in sdn based networks. In Proceedings of the 15th ACM International Symposium on Mobility Management and Wireless Access, MobiWac '17, page 83–92, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3132062.3132074.

Ampririt, P., Higashi, S., Qafzezi, E., Ikeda, M., Matsuo, K., and Barolli, L. (2023). An intelligent fuzzy-based system for handover decision in 5g-iot networks considering network slicing and sdn technologies. Internet of Things, 23:100870. DOI: 10.1016/j.iot.2023.100870.

Asif, S. (2019). 5G Mobile Communications Concepts and Technologies, volume 1. CRC Press. Book.

Barona López, L. I., Valdivieso Caraguay, 'A., Maestre Vidal, J., Sotelo Monge, M., and García Villalba, L. J. (2017). Towards incidence management in 5g based on situational awareness. Future Internet, 9(1):3. DOI: 10.3390/fi9010003.

Bifulco, R., Matsiuk, A., and Silvestro, A. (2016). Ready-to-deploy service function chaining for mobile networks. In 2016 IEEE NetSoft Conference and Workshops (NetSoft), pages 175-183. DOI: 10.1109/NETSOFT.2016.7502411.

Cabaj, K., Gregorczyk, M., Mazurczyk, W., Nowakowski, P., and .Z'orawski, P. (2018). Sdn-based mitigation of scanning attacks for the 5g internet of radio light system. In Proceedings of the 13th International Conference on Availability, Reliability and Security, ARES '18, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3230833.3233248.

Carrozzo, G., Siddiqui, M. S., Betzler, A., Bonnet, J., Perez, G. M., Ramos, A., and Subramanya, T. (2020). Ai-driven zero-touch operations, security and trust in multi-operator 5g networks: a conceptual architecture. In 2020 European Conference on Networks and Communications (EuCNC), pages 254-258. DOI: 10.1109/EuCNC48522.2020.9200928.

Chahlaoui, F., El-Fenni, M. R., and Dahmouni, H. (2019). Performance analysis of load balancing mechanisms in sdn networks. In Proceedings of the 2nd International Conference on Networking, Information Systems & Security, NISS19, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3320326.3320368.

Chen, K.-Y., Liu, S., Xu, Y., Siddhrau, I. K., Zhou, S., Guo, Z., and Chao, H. J. (2021). Sdnshield: Nfv-based defense framework against ddos attacks on sdn control plane. IEEE/ACM Trans. Netw., 30(1):1–17. DOI: 10.1109/TNET.2021.3105187.

Costa-Requena, J., Guasch, V. F., and Santos, J. L. (2015). Software defined networks based 5g backhaul architecture. IMCOM '15, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/2701126.2701180.

Coêlho, R. W., Leonardo, E. J., Martimiano, L. A. F., and Silva, R. A. (2023). A survey of the characteristics of sdn, nfv and information security in iot and 5g networks. Revista Brasileira de Computação Aplicada, 15(3):96-105. DOI: 10.5335/rbca.v15i3.14645.

Coêlho, R. W., Leonardo, E. J. a., Martimiano, L. A. F., and Silva, R. A. a. (2022). Segurança da informação nas camadas física e de enlace em redes 5g e iot: Uma revisão sistemática. DOI: 10.14209/sbrt.2022.1570822822.

Dake, D. K., Gadze, J. D., and Klogo, G. S. (2021). Ddos and flash event detection in higher bandwidth sdn-iot using multiagent reinforcement learning. In 2021 International Conference on Computing, Computational Modelling and Applications (ICCMA), pages 16-20. DOI: 10.1109/ICCMA53594.2021.00011.

Das, D., Banerjee, S., Dasgupta, K., Chatterjee, P., Ghosh, U., and Biswas, U. (2023). Blockchain enabled sdn framework for security management in 5g applications. In Proceedings of the 24th International Conference on Distributed Computing and Networking, ICDCN '23, page 414–419, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3571306.3571445.

Dutta, A. and Hammad, E. (2020). 5g security challenges and opportunities: A system approach. In 2020 IEEE 3rd 5G World Forum (5GWF), pages 109-114. DOI: 10.1109/5GWF49715.2020.9221122.

Fang, D., Qian, Y., and Hu, R. Q. (2018). Security for 5g mobile wireless networks. IEEE Access, 6:4850-4874. DOI: 10.1109/ACCESS.2017.2779146.

Ferrag, M. A., Maglaras, L., Argyriou, A., Kosmanos, D., and Janicke, H. (2018). Security for 4G and 5G cellular networks: A survey of existing authentication and privacy-preserving schemes. Journal of Network and Computer Applications, 101(August 2017):55-82. DOI: 10.1016/j.jnca.2017.10.017.

Ghosh, A., Maeder, A., Baker, M., and Chandramouli, D. (2019). 5g evolution: A view on 5g cellular technology beyond 3gpp release 15. IEEE Access, 7:127639-127651. DOI: 10.1109/ACCESS.2019.2939938.

Gupta, A. and Jha, R. K. (2015). A survey of 5g network: Architecture and emerging technologies. IEEE Access, 3:1206-1232. DOI: 10.1109/ACCESS.2015.2461602.

Hakiri, A. and Dezfouli, B. (2021). Towards a blockchain-sdn architecture for secure and trustworthy 5g massive iot networks. In Proceedings of the 2021 ACM International Workshop on Software Defined Networks & Network Function Virtualization Security, SDN-NFV Sec'21, page 11–18, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3445968.3452090.

Jaiswal, A., Kumar, S., Kaiwartya, O., Kumar, N., Song, H., and Lloret, J. (2021). Secrecy Rate Maximization in Virtual-MIMO Enabled SWIPT for 5G Centric IoT Applications. IEEE Systems Journal, 15(2):2810-2821. DOI: 10.1109/JSYST.2020.3036417.

Javanmardi, S., Shojafar, M., Mohammadi, R., Alazab, M., and Caruso, A. M. (2023). An sdn perspective iot-fog security: A survey. Computer Networks, 229:109732. DOI: 10.1016/j.comnet.2023.109732.

Javed, M. A. and khan Niazi, S. (2019). 5g security artifacts (dos / ddos and authentication). In 2019 International Conference on Communication Technologies (ComTech), pages 127-133. DOI: 10.1109/COMTECH.2019.8737800.

Kabir, H., Bin Mohsin, M. H., and Kantola, R. (2020). Implementing a security policy management for 5g customer edge nodes. In NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium, pages 1-8. DOI: 10.1109/NOMS47738.2020.9110321.

Kaur, K. and Ayoade, J. (2023). Analysis of ddos attacks on iot architecture. In 2023 10th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), pages 332-337. DOI: 10.1109/EECSI59885.2023.10295766.

Khan, R., Kumar, P., Jayakody, D. N. K., and Liyanage, M. (2020). A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions. IEEE Communications Surveys and Tutorials, 22(1):196-248. DOI: 10.1109/COMST.2019.2933899.

Li, M., Zhou, H., and Qin, Y. (2023). Qlsfc: An intelligent security function chain with q-learning in sdn/nfv network. In Proceedings of the 2023 6th International Conference on Electronics, Communications and Control Engineering, ICECC '23, page 125–131, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3592307.3592327.

Li, W., Wang, N., Jiao, L., and Zeng, K. (2021). Physical layer spoofing attack detection in mmwave massive mimo 5g networks. IEEE Access, 9:60419-60432. DOI: 10.1109/ACCESS.2021.3073115.

Liang, X. and Qiu, X. (2016). A software defined security architecture for sdn-based 5g network. In 2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC), pages 17-21. DOI: 10.1109/ICNIDC.2016.7974528.

Lioy, A., Gardikis, G., Gaston, B., Jacquin, L., De Benedictis, M., Angelopoulos, Y., and Xylouris, C. (2017). Nfv-based network protection: The shield approach. In 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pages 1-2. DOI: 10.1109/NFV-SDN.2017.8169869.

Liu, C., Raghuramu, A., Chuah, C.-N., and Krishnamurthy, B. (2017). Piggybacking network functions on sdn reactive routing: A feasibility study. In Proceedings of the Symposium on SDN Research, SOSR '17, page 34–40, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3050220.3050225.

Liyanage, M., Ahmad, I., and Abro, A. B. (2018). A Comprehensive Guide to 5G Security, volume 1. Wiley. Book.

Madi, T., Alameddine, H. A., Pourzandi, M., and Boukhtouta, A. (2021). Nfv security survey in 5g networks: A three-dimensional threat taxonomy. Computer Networks, 197:108288. DOI: 10.1016/j.comnet.2021.108288.

Mathew, A. (2020). Network slicing in 5g and the security concerns. In 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), pages 75-78. DOI: 10.1109/ICCMC48092.2020.ICCMC-00014.

Medhat, A. M., Taleb, T., Elmangoush, A., Carella, G. A., Covaci, S., and Magedanz, T. (2017). Service function chaining in next generation networks: State of the art and research challenges. IEEE Communications Magazine, 55(2):216-223. DOI: 10.1109/MCOM.2016.1600219RP.

Meng, Y., Naeem, M. A., Almagrabi, A. O., Ali, R., and Kim, H. S. (2020). Advancing the state of the fog computing to enable 5g network technologies. Sensors, 20(6). DOI: 10.3390/s20061754.

Mir, A., Zuhairi, M. F., Musa, S., Syed, T. A., and Alrehaili, A. (2020). Poster: A survey of security challenges with 5g-iot. In 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH), pages 249-250. DOI: 10.1109/SMART-TECH49988.2020.00063.

Mohan, K. V. M., Kodati, S., and Krishna, V. (2022). Securing sdn enabled iot scenario infrastructure of fog networks from attacks. In 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), pages 1239-1243. DOI: 10.1109/ICAIS53314.2022.9742727.

Munmun, F. A. and Paul, M. (2021). Challenges of ddos attack mitigation in iot devices by software defined networking (sdn). In 2021 International Conference on Science & Contemporary Technologies (ICSCT), pages 1-5. DOI: 10.1109/ICSCT53883.2021.9642640.

Nadeem, M. W., Goh, H. G., Aun, Y., and Ponnusamy, V. (2023). Detecting and mitigating botnet attacks in software-defined networks using deep learning techniques. IEEE Access, 11:49153-49171. DOI: 10.1109/ACCESS.2023.3277397.

Nam, T. L., Mohammad, A. H., Amirul, I., Do-yun, K., Young-June, C., and Yeong, M. J. (2016). Survey of promising technologies for 5g networks. Mobile Information Systems, 2016:1-25. DOI: 10.1155/2016/2676589.

Nguyen, V.-G., Brunstrom, A., Grinnemo, K.-J., and Taheri, J. (2017). Sdn/nfv-based mobile packet core network architectures: A survey. IEEE Communications Surveys & Tutorials, 19(3):1567-1602. DOI: 10.1109/COMST.2017.2690823.

Olazabal, A. A., Kaur, J., and Yeboah-Ofori, A. (2022). Deploying man-in-the-middle attack on iot devices connected to long range wide area networks (lorawan). In 2022 IEEE International Smart Cities Conference (ISC2), pages 1-7. DOI: 10.1109/ISC255366.2022.9922377.

Pan, F., Jiang, Y., Wen, H., Liao, R., and Xu, A. (2017). Physical Layer Security Assisted 5G Network Security. In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pages 1-5, Toronto, ON. IEEE. DOI: 10.1109/VTCFall.2017.8288343.

Park, Y., Kengalahalli, N. V., and Chang, S.-Y. (2018). Distributed security network functions against botnet attacks in software-defined networks. In 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pages 1-7. DOI: 10.1109/NFV-SDN.2018.8725657.

Petrović, R., Simić, D., Stanković, S., and Perić, M. (2021). Man-in-the-middle attack based on arp spoofing in iot educational platform. In 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), pages 307-310. DOI: 10.1109/TELSIKS52058.2021.9606392.

Rahimi, H., Zibaeenejad, A., Rajabzadeh, P., and Safavi, A. A. (2018). On the security of the 5G-IoT architecture. ACM International Conference Proceeding Series, pages 1-8. DOI: 10.1145/3269961.3269968.

Ravi, N., Rani, P. V., and Shalinie, S. M. (2019). Secure deep neural (seden) framework for 5g wireless networks. In 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pages 1-6. DOI: 10.1109/ICCCNT45670.2019.8944654.

Reynaud, F., Aguessy, F.-X., Bettan, O., Bouet, M., and Conan, V. (2016). Attacks against network functions virtualization and software-defined networking: State-of-the-art. In 2016 IEEE NetSoft Conference and Workshops (NetSoft), pages 471-476. DOI: 10.1109/NETSOFT.2016.7502487.

Rohatgi, V. and Goyal, S. (2020). A detailed survey for detection and mitigation techniques against arp spoofing. In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pages 352-356. DOI: 10.1109/I-SMAC49090.2020.9243604.

Saleem, K., Alabduljabbar, G. M., Alrowais, N., Al-Muhtadi, J., Imran, M., and Rodrigues, J. J. P. C. (2020). Bio-inspired network security for 5g-enabled iot applications. IEEE Access, 8:229152-229160. DOI: 10.1109/ACCESS.2020.3046325.

Saritakumar, N., Anusuya, V. K., and Krishnakumar, S. (2023). Detection of arp spoofing attacks in software defined networks. In 2023 International Conference on Intelligent Systems for Communication, IoT and Security (ICISCoIS), pages 422-426. DOI: 10.1109/ICISCoIS56541.2023.10100567.

Sharma, A. and Babbar, H. (2023). Bot-iot: Detection of ddos attacks in internet of things for smart cities. In 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), pages 438-443. Available online [link].

Shin, D., Yun, K., Kim, J., Astillo, P. V., Kim, J.-N., and You, I. (2019). A security protocol for route optimization in dmm-based smart home iot networks. IEEE Access, 7:142531-142550. DOI: 10.1109/ACCESS.2019.2943929.

Sicari, S., Rizzardi, A., and Coen-Porisini, A. (2020). 5G In the internet of things era: An overview on security and privacy challenges. Computer Networks, 179:107345. DOI: 10.1016/j.comnet.2020.107345.

Singh, P., Pawar, P., and Trivedi, A. (2018). Physical Layer Security Approaches in 5G Wireless Communication Networks. In 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), pages 477-482, Jalandhar, India. IEEE. DOI: 10.1109/ICSCCC.2018.8703344.

Sinha, M., Bera, P., and Satpathy, M. (2023). Ddos vulnerabilities analysis in sdn controllers: Understanding the attacking strategies. In 2023 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), pages 1-5. DOI: 10.1109/WiSPNET57748.2023.10134518.

Varum, T., Ramos, A., and Matos, J. N. (2018). Planar microstrip series-fed array for 5g applications with beamforming capabilities. In 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), pages 1-3. DOI: 10.1109/IMWS-5G.2018.8484697.

Wendland, F. and Banse, C. (2018). Enhancing nfv orchestration with security policies. In Proceedings of the 13th International Conference on Availability, Reliability and Security, ARES '18, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3230833.3233253.

Yerrapragada, A. K., Eisman, T., and Kelley, B. (2021). Physical Layer Security for Beyond 5G: Ultra Secure Low Latency Communications. IEEE Open Journal of the Communications Society, 2(August):1-1. DOI: 10.1109/ojcoms.2021.3105185.

Yi, B., Wang, X., Li, K., k. Das, S., and Huang, M. (2018). A comprehensive survey of network function virtualization. Computer Networks, 133:212-262. DOI: 10.1016/j.comnet.2018.01.021.

Yungaicela-Naula, N. M., Vargas-Rosales, C., and Pérez-Díaz, J. A. (2023). Sdn/nfv-based framework for autonomous defense against slow-rate ddos attacks by using reinforcement learning. Future Generation Computer Systems, 149:637-649. DOI: 10.1016/j.future.2023.08.007.

Zhao, H., Xu, M., Zhong, Z., and Wang, D. (2021). A fast physical layer security-based location privacy parameter recommendation algorithm in 5g iot. China Communications, 18(8):75-84. DOI: 10.23919/JCC.2021.08.006.

Downloads

Published

2024-08-10

How to Cite

Coêlho, R. W., Silva, R. A., Martimiano, L. A. F., & Leonardo, E. J. (2024). IoT and 5G Networks: A Discussion of SDN, NFV and Information Security. Journal of the Brazilian Computer Society, 30(1), 212–227. https://doi.org/10.5753/jbcs.2024.3021

Issue

Section

Articles