Comparative Evaluation of Deep Learning Models for Diagnosis of COVID-19 Using X-ray Images and Computed Tomography
DOI:
https://doi.org/10.5753/jbcs.2025.3043Keywords:
Swin Transformer, COVID-19, Chest X-Ray, Deep Learning, Bayesian OptimizationAbstract
(1) Background: The COVID-19 pandemic is an unprecedented global challenge, having affected more than 776.79 million people, with over 7.07 million deaths recorded since 2020. The application of Deep Learning (DL) in diagnosing COVID-19 through chest X-rays and computed tomography (CXR and CT) has proven promising. While CNNs have been effective, models such as the Vision Transformer and Swin Transformer have emerged as promising solutions in this field. (2) Methods: This study investigated the performance of models like ResNet50, Vision Transformer, and Swin Transformer. We utilized Bayesian Optimization (BO) in the diagnosis of COVID-19 in CXR and CT based on four distinct datasets: COVID-QU-Ex, HCV-UFPR-COVID-19, HUST-19, and SARS-COV-2 Ct-Scan Dataset. We found that, although all tested models achieved commendable performance metrics, the Swin Transformer stood out. Its unique architecture provided greater generalization power, especially in cross-dataset evaluation (CDE) tasks, where it was trained on one dataset and tested on another. (3) Results: Our approach aligns with state-of-the-art (SOTA) methods, even in complex tasks like CDE. On some datasets, we achieved exceptional performance metrics, with AUC, Accuracy, Precision, Recall, and F1-Score values of 1. (4) Conclusion: Results obtained by the Swin Transformer go beyond what is offered by current SOTA methods and indicate actual feasibility for application in medical diagnostic scenarios. The robustness and generalization power of the Swin Transformer, demonstrated across different datasets, encourage future exploration and adoption of this approach in clinical settings.
Downloads
References
Abiyev, R. and Ismail, A. (2021). COVID-19 and Pneumonia Diagnosis in X-Ray Images Using Convolutional Neural Networks. Mathematical Problems in Engineering, 2021. DOI: 10.1155/2021/3281135.
Ahamed, K., Islam, M., Uddin, A., Akhter, A., Paul, B., Yousuf, M., Uddin, S., Quinn, J., and Moni, M. (2021). A deep learning approach using effective preprocessing techniques to detect COVID-19 from chest CT-scan and X-ray images. Computers in Biology and Medicine, 139. DOI: 10.1016/j.compbiomed.2021.105014.
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 2623-2631. DOI: 10.1145/3292500.3330701.
Al Rahhal, M., Bazi, Y., Jomaa, R., Alshibli, A., Alajlan, N., Mekhalfi, M., and Melgani, F. (2022). COVID-19 detection in CT/x-ray imagery using vision transformers. Journal of Personalized Medicine, 12(2). DOI: 10.3390/jpm12020310.
Asif, S., Zhao, M., Tang, F., and Zhu, Y. (2022). A deep learning-based framework for detecting COVID-19 patients using chest X-rays. Multimedia Systems, 28(4):1495-1513. DOI: 10.1007/s00530-022-00917-7.
Awan, M., Bilal, M., Yasin, A., Nobanee, H., Khan, N., and Zain, A. (2021). Detection of covid-19 in chest x-ray images: A big data enabled deep learning approach. International Journal of Environmental Research and Public Health, 18(19). DOI: 10.3390/ijerph181910147.
Aytekin, I., Dalmaz, O., Ankishan, H., Saritas, E., Bagci, U., Cukur, T., and Celik, H. (2022). Detecting COVID-19 from respiratory sound recordings with transformers. In Drukker K., I. K., editor, Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 12033. SPIE. ISSN: 16057422. DOI: 10.1117/12.2611490.
Bakator, M. and Radosav, D. (2018). Deep learning and medical diagnosis: A review of literature. Multimodal Technologies and Interaction, 2(3). DOI: 10.3390/mti2030047.
Balderas, L., Lastra, M., Láinez-Ramos-Bossini, A. J., and Benítez, J. M. (2023). Covid-vit: Covid-19 detection method based on vision transformers. In Intelligent Systems Design and Applications, volume 716. Springer International Publishing. DOI: 10.1007/978-3-031-35501-1_8.
Banerjee, A., Bhattacharya, R., Bhateja, V., Singh, P., Lay-Ekuakille, A., and Sarkar, R. (2022). COFE-Net: An ensemble strategy for Computer-Aided Detection for COVID-19. Measurement: Journal of the International Measurement Confederation, 187. DOI: 10.1016/j.measurement.2021.110289.
Cao, K., Deng, T., Zhang, C., Lu, L., and Li, L. (2022). A CNN-transformer fusion network for COVID-19 CXR image classification. PLoS ONE, 17(10 October). DOI: 10.1371/journal.pone.0276758.
Castiglione, A., Vijayakumar, P., Nappi, M., Sadiq, S., and Umer, M. (2021). COVID-19: Automatic detection of the novel coronavirus disease from CT images using an optimized convolutional neural network. IEEE Transactions on Industrial Informatics, 17(9):6480-6488. DOI: 10.1109/TII.2021.3057524.
Castro, R., Luz, P. M., Wakimoto, M. D., Veloso, V. G., Grinsztejn, B., and Perazzo, H. (2020). COVID-19: a meta-analysis of diagnostic test accuracy of commercial assays registered in brazil. The Brazilian Journal of Infectious Diseases, 24(2):180-187. DOI: 10.1016/j.bjid.2020.04.003.
Cha, S.-M., Lee, S.-S., and Ko, B. (2021). Attention-based transfer learning for efficient pneumonia detection in chest x-ray images. Applied Sciences, 11(3). DOI: 10.3390/app11031242.
Chen, H., Zhang, T., Chen, R., Zhu, Z., and Wang, X. (2023). A Novel COVID-19 Image Classification Method Based on the Improved Residual Network. Electronics (Switzerland), 12(1). DOI: 10.3390/electronics12010080.
Chetoui, M. and Akhloufi, M. (2022). Explainable vision transformers and radiomics for COVID-19 detection in chest x-rays. Journal of Clinical Medicine, 11(11). Publisher: MDPI. DOI: 10.3390/jcm11113013.
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, volume 2017-January, pages 1800-1807. Institute of Electrical and Electronics Engineers Inc.. DOI: 10.1109/CVPR.2017.195.
Chouhan, V., Singh, S., Khamparia, A., Gupta, D., Tiwari, P., Moreira, C., Damaševičius, R., and de Albuquerque, V. (2020). A novel transfer learning based approach for pneumonia detection in chest x-ray images. Applied Sciences (Switzerland), 10(2). DOI: 10.3390/app10020559.
Cireşan, D., Meier, U., and Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. Proceedings / CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. DOI: 10.1109/CVPR.2012.6248110.
CNBC, N. G. D. C. (2022). Hust-19 database. Available online [link]. Accessed: 05/05/2023.
Dehkordi, H., Kashiani, H., Hamidi Imani, A., and Shokouhi, S. (2021). Lightweight local transformer for COVID-19 detection using chest CT scans. In ICCKE 2021 - 11th International Conference on Computer Engineering and Knowledge, pages 328-333. Institute of Electrical and Electronics Engineers Inc.. DOI: 10.1109/ICCKE54056.2021.9721517.
Dinh, T., Lee, S.-H., Kwon, S.-G., and Kwon, K.-R. (2022). COVID-19 Chest X-ray Classification and Severity Assessment Using Convolutional and Transformer Neural Networks. Applied Sciences (Switzerland), 12(10). DOI: 10.3390/app12104861.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. CoRR, abs/2010.11929. DOI: 10.48550/arXiv.2010.11929.
Geng, L., Zhang, S., Tong, J., and Xiao, Z. (2019). Lung segmentation method with dilated convolution based on VGG-16 network. Computer Assisted Surgery, 24:27-33. Publisher: Taylor & Francis. DOI: 10.1080/24699322.2019.1649071.
Hamza, A., Attique Khan, M., Wang, S., Alhaisoni, M., Alharbi, M., Hussein, H., et al. (2022). Covid-19 classification using chest x-ray images based on fusion-assisted deep bayesian optimization and grad-cam visualization. Frontiers in Public Health, 10. Available online [link].
Hashmi, M., Katiyar, S., Keskar, A., Bokde, N., and Geem, Z. (2020). Efficient pneumonia detection in chest xray images using deep transfer learning. Diagnostics, 10(6). DOI: 10.3390/diagnostics10060417.
Hassan, H., Ren, Z., Zhao, H., Huang, S., Li, D., Xiang, S., Kang, Y., Chen, S., and Huang, B. (2022). Review and classification of AI-enabled COVID-19 CT imaging models based on computer vision tasks. Computers in Biology and Medicine, 141. Publisher: Elsevier Ltd. DOI: 10.1016/j.compbiomed.2021.105123.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778. DOI: 10.1109/CVPR.2016.90.
Hussain, A., Hussain, T., Ullah, W., and Baik, S. (2022). Vision transformer and deep sequence learning for human activity recognition in surveillance videos. Computational Intelligence and Neuroscience, 2022:3454167. DOI: 10.1155/2022/3454167.
ImageNet1k (2017). Imagenet. Available online [link].
Jain, R., Nagrath, P., Kataria, G., Sirish Kaushik, V., and Jude Hemanth, D. (2020). Pneumonia detection in chest x-ray images using convolutional neural networks and transfer learning. Measurement: Journal of the International Measurement Confederation, 165. DOI: 10.1016/j.measurement.2020.108046.
Jiang, X., Zhu, Y., Cai, G., Zheng, B., and Yang, D. (2022). MXT: A new variant of pyramid vision transformer for multi-label chest x-ray image classification. Cognitive Computation. Publisher: Springer. DOI: 10.1007/s12559-022-10032-4.
Jung, M. and Chi, S. (2020). Human activity classification based on sound recognition and residual convolutional neural network. Automation in Construction, 114:103177. DOI: https://doi.org/10.1016/j.autcon.2020.103177.
Kapoor, N. (2021). Recall, specificity, precision, f1-score and accuracy. Available online [link].
Kathamuthu, N., Subramaniam, S., Le, Q., Muthusamy, S., Panchal, H., Sundararajan, S., Alrubaie, A., and Maher Abdul Zahra, M. (2023). A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan images for medical applications. Advances in Engineering Software, 175. DOI: 10.1016/j.advengsoft.2022.103317.
Khobragade, P. P. and Manthalkar, R. (2024). Thoracic computed tomography (ct) image-based identification and severity classification of covid-19 cases using vision transformer (vit). SN Applied Sciences, 6:48. DOI: 10.1007/s42452-024-06048-0.
Kibriya, H. and Amin, R. (2023). A residual network-based framework for COVID-19 detection from CXR images. Neural Computing and Applications, 35(11):8505-8516. DOI: 10.1007/s00521-022-08127-y.
Konwer, A. and Prasanna, P. (2022). Clinical outcome prediction in COVID-19 using self-supervised vision transformer representations. In Drukker K., I. K., editor, Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 12033. SPIE. ISSN: 16057422. DOI: 10.1117/12.2612957.
Krishnan, K. and Krishnan, K. (2021). Vision transformer based COVID-19 detection using chest x-rays. In Kumar R., Jain S., S. H., editor, Proceedings of IEEE International Conference on Signal Processing,Computing and Control, volume 2021-October, pages 644-648. Institute of Electrical and Electronics Engineers Inc. ISSN: 26438615. DOI: 10.1109/ISPCC53510.2021.9609375.
Lanjewar, M., Shaikh, A., and Parab, J. (2022). Cloud-based COVID-19 disease prediction system from X-Ray images using convolutional neural network on smartphone. Multimedia Tools and Applications. DOI: 10.1007/s11042-022-14232-w.
Li, J., Yang, Z., and Yu, Y. (2021). A medical AI diagnosis platform based on vision transformer for coronavirus. In 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology, CEI 2021, pages 246-252. Institute of Electrical and Electronics Engineers Inc.. DOI: 10.1109/CEI52496.2021.9574576.
Liang, G. and Zheng, L. (2020). A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Computer Methods and Programs in Biomedicine, 187. DOI: 10.1016/j.cmpb.2019.06.023.
Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234:11-26. DOI: 10.1016/j.neucom.2016.12.038.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 9992-10002. DOI: 10.1109/ICCV48922.2021.00986.
Luján-García, J. E., Yáñez-Márquez, C., Villuendas-Rey, Y., and Camacho-Nieto, O. (2020). A transfer learning method for pneumonia classification and visualization. Applied Sciences, 10(8). DOI: 10.3390/app10082908.
Luz, E., Silva, P., Silva, R., Silva, L., Guimarães, J., Miozzo, G., Moreira, G., and Menotti, D. (2021). Towards an effective and efficient deep learning model for COVID-19 patterns detection in x-ray images. Research on Biomedical Engineering, 38(1):149-162. Publisher: Springer Science and Business Media Deutschland GmbH. DOI: 10.1007/s42600-021-00151-6.
Ma, Y. and Lv, W. (2022). Identification of pneumonia in chest x-ray image based on transformer. International Journal of Antennas and Propagation, 2022. DOI: 10.1155/2022/5072666.
Marefat, A., Marefat, M., Hassannataj Joloudari, J., Nematollahi, M. A., and Lashgari, R. (2023). Cctcovid: Covid-19 detection from chest x-ray images using compact convolutional transformers. Frontiers in Public Health, 11. DOI: 10.3389/fpubh.2023.1025746.
Meedeniya, D., Kumarasinghe, H., Kolonne, S., Fernando, C., Díez, I., and Marques, G. (2022). Chest x-ray analysis empowered with deep learning: A systematic review. Applied Soft Computing, 126. DOI: 10.1016/j.asoc.2022.109319.
Mehboob, F., Rauf, A., Jiang, R., Saudagar, A. K. J., Malik, K. M., Khan, M. B., Hasnat, M. H. A., AlTameem, A., and AlKhathami, M. (2022). Towards robust diagnosis of COVID-19 using vision self-attention transformer. SCIENTIFIC REPORTS, 12(1). DOI: 10.1038/s41598-022-13039-x.
Mondal, A., Bhattacharjee, A., Singla, P., and Prathosh, A. (2022). XViTCOS: Explainable vision transformer based COVID-19 screening using radiography. IEEE Journal of Translational Engineering in Health and Medicine, 10. Publisher: Institute of Electrical and Electronics Engineers Inc.. DOI: 10.1109/JTEHM.2021.3134096.
Murphy, Z., Venkatesh, K., Sulam, J., and Yi, P. (2022). Visual Transformers and Convolutional Neural Networks for Disease Classification on Radiographs: A Comparison of Performance, Sample Efficiency, and Hidden Stratification. Radiology: Artificial Intelligence, 4(6). DOI: 10.1148/ryai.220012.
Ning, W., Lei, S., Yang, J., Cao, Y., Jiang, P., Yang, Q., and et al. (2020). Open resource of clinical data from patients with pneumonia for the prediction of covid-19 outcomes via deep learning. Nature Biomedical Engineering, 4:1197–1207. DOI: 10.1038/s41551-020-00633-5.
Nishio, M., Kobayashi, D., Nishioka, E., Matsuo, H., Urase, Y., Onoue, K., Ishikura, R., Kitamura, Y., Sakai, E., Tomita, M., Hamanaka, A., and Murakami, T. (2022). Deep learning model for the automatic classification of COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy: a multi-center retrospective study. Scientific Reports, 12(1). DOI: 10.1038/s41598-022-11990-3.
Pan, S., Wang, T., Qiu, R., Axente, M., Chang, C.-W., Peng, J., Patel, A., Shelton, J., Patel, S., Roper, J., and Yang, X. (2023). 2D medical image synthesis using transformer-based denoising diffusion probabilistic model. Physics in Medicine and Biology, 68(10). DOI: 10.1088/1361-6560/acca5c.
Park, S., Kim, G., Oh, Y., Seo, J., Lee, S., Kim, J., Moon, S., Lim, J.-K., Park, C., and Ye, J. (2022a). Self-evolving vision transformer for chest x-ray diagnosis through knowledge distillation. Nature Communications, 13(1). DOI: 10.1038/s41467-022-31514-x.
Park, S., Kim, G., Oh, Y., Seo, J., Lee, S., Kim, J., Moon, S., Lim, J.-K., and Ye, J. (2022b). Multi-task vision transformer using low-level chest x-ray feature corpus for COVID-19 diagnosis and severity quantification. Medical Image Analysis, 75. DOI: 10.1016/j.media.2021.102299.
Peng, L., Wang, C., Tian, G., Liu, G., Li, G., Lu, Y., Yang, J., Chen, M., and Li, Z. (2022). Analysis of ct scan images for covid-19 pneumonia based on a deep ensemble framework with densenet, swin transformer, and regnet. Frontiers In Microbiology, 13:1. DOI: 10.3389/fmicb.2022.995323.
PyTorch (2023). Previous pytorch versions | pytorch. Available online [link].
Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., and Dosovitskiy, A. (2021). Do vision transformers see like convolutional neural networks? CoRR, abs/2108.08810.
Rahman, T., Chowdhury, M., Khandakar, A., Islam, K., Islam, K., Mahbub, Z., Kadir, M., and Kashem, S. (2020). Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest x-ray. Applied Sciences (Switzerland), 10(9). DOI: 10.3390/app10093233.
Raman, B., Cassar, M. P., Tunnicliffe, E. M., Filippini, N., Griffanti, L., Alfaro-Almagro, F., Okell, T., Sheerin, F., Xie, C., Mahmod, M., Mózes, F. E., Lewandowski, A. J., Ohuma, E. O., Holdsworth, D., Lamlum, H., Woodman, M. J., Krasopoulos, G., Mills, R., McConnell, F. A. K., Wang, C., Arthofer, C., Lange, F. J., Andersson, J., Jenkinson, M., Antoniades, C., Channon, K., Shanmuganathan, M., Ferreira, V. M., Piechnik, S. K., Klenerman, P., Brightling, C., Talbot, N. P., Petousi, N., Rahman, N. M., Ho, L. P., Saunders, K., Geddes, J. R., Harrison, P. J., Pattinson, K., Rowland, M. J., Angus, B. J., Gleeson, F., Pavlides, M., Koychev, I., Miller, K. L., Mackay, C., Jezzard, P., Smith, S. M., and Neubauer, S. (2021). Medium-term effects of sars-cov-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine, 31:100683. DOI: 10.1016/j.eclinm.2020.100683.
Shekhar, S., Bansode, A., and Salim, A. (2021). A comparative study of hyper-parameter optimization tools. In 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering, CSDE 2021.
Shome, D., Kar, T., Mohanty, S., Tiwari, P., Muhammad, K., Altameem, A., Zhang, Y., and Saudagar, A. (2021). Covid-transformer: Interpretable covid-19 detection using vision transformer for healthcare. International Journal of Environmental Research and Public Health, 18(21). Publisher: MDPI. DOI: 10.3390/ijerph182111086.
Soares, E. and Angelov, P. (2020). Sars-cov-2 ct-scan dataset. DOI: 10.34740/KAGGLE/DSV/1199870.
Srivastava, G., Pradhan, N., and Saini, Y. (2022). Ensemble of Deep Neural Networks based on Condorcet's Jury Theorem for screening Covid-19 and Pneumonia from radiograph images. Computers in Biology and Medicine, 149. DOI: 10.1016/j.compbiomed.2022.105979.
Sun, W., Qin, Z., Deng, H., Wang, J., Zhang, Y., Zhang, K., Barnes, N., Birchfield, S., Kong, L., and Zhong, Y. (2022). Vicinity vision transformer. DOI: 10.48550/arXiv.2206.10552.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2818-2826. DOI: 10.1109/CVPR.2016.308.
Tahir, A. M. (2022). Covid-qu dataset. Available online [link].
Tahir, A. M., Chowdhury, M. E. H., Qiblawey, Y., Khandakar, A., Rahman, T., Kiranyaz, S., Khurshid, U., Ibtehaz, N., Mahmud, S., and Ezeddin, M. (2021). Covid-qu. DOI: 10.34740/KAGGLE/DSV/2759090.
Than, J., Thon, P., Rijal, O., Kassim, R., Yunus, A., Noor, N., and Then, P. (2021). Preliminary study on patch sizes in vision transformers (ViT) for COVID-19 and diseased lungs classification. In 1st National Biomedical Engineering Conference, NBEC 2021, pages 146-150. Institute of Electrical and Electronics Engineers Inc.. DOI: 10.1109/NBEC53282.2021.9618751.
Tian, G., Wang, Z., Wang, C., Chen, J., Liu, G., Xu, H., Lu, Y., Han, Z., Zhao, Y., and Li, Z. (2022). A deep ensemble learning-based automated detection of covid-19 using lung ct images and vision transformer and convnext. Frontiers In Microbiology, 13:1. DOI: 10.3389/fmicb.2022.1024104.
Tuli, S., Dasgupta, I., Grant, E., and Griffiths, T. L. (2021). Are convolutional neural networks or transformers more like human vision? CoRR, abs/2105.07197. DOI: 10.48550/arXiv.2105.07197.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Fergus, R., Wallach, H., Wallach, H., Guyon, I., Vishwanathan, S., Luxburg, U. v., Garnett, R., Vishwanathan, S., Bengio, S., and Fergus, R., editors, Advances in Neural Information Processing Systems, volume 2017-December, pages 5999 - 6009. Neural information processing systems foundation. Available online [link].
Wang, T., Nie, Z., Wang, R., Xu, Q., Huang, H., Xu, H., Xie, F., and Liu, X.-J. (2023). PneuNet: deep learning for COVID-19 pneumonia diagnosis on chest X-ray image analysis using Vision Transformer. Medical and Biological Engineering and Computing, 61(6):1395-1408. DOI: 10.1007/s11517-022-02746-2.
Wei, Z., Pan, H., Li, L., Lu, M., Niu, X., Dong, P., and Li, D. (2022). Dmformer: Closing the gap between cnn and vision transformers. arXiv preprint arXiv:2209.07738. DOI: 10.48550/ARXIV.2209.07738.
WHO (2024). Who coronavirus (covid-19) dashboard | who coronavirus (covid-19) dashboard with vaccination data. [link]. Accessed on May 23, 2024.
Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht, B. (2018). The marginal value of adaptive gradient methods in machine learning. DOI: https://doi.org/10.48550/arXiv.1705.08292.
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. (2020). Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38-45. Association for Computational Linguistics. DOI: 10.18653/v1/2020.emnlp-demos.6.
Yao, Z., Li, J., Guan, Z., Ye, Y., and Chen, Y. (2020). Liver disease screening based on densely connected deep neural networks. Neural networks : the official journal of the International Neural Network Society, 123:299-304. Place: United States. DOI: 10.1016/j.neunet.2019.11.005.
Yuan, J., Wu, F., Li, Y., Li, J., Huang, G., and Huang, Q. (2023). DPDH-CapNet: A Novel Lightweight Capsule Network with Non-routing for COVID-19 Diagnosis Using X-ray Images. Journal of Digital Imaging. DOI: 10.1007/s10278-023-00791-3.
Zhang, L. and Wen, Y. (2021). A transformer-based framework for automatic COVID19 diagnosis in chest CTs. In Proceedings of the IEEE International Conference on Computer Vision, volume 2021-October, pages 513-518. Institute of Electrical and Electronics Engineers Inc. ISSN: 15505499. DOI: 10.1109/ICCVW54120.2021.00063.
Zhao, J., Zhang, Y., He, X., and Xie, P. (2020). Covid-ct-dataset: A CT scan dataset about COVID-19. CoRR, abs/2003.13865. DOI: 10.48550/arXiv.2003.13865.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aroldo Ferraz, Roberto Cesar Betini

This work is licensed under a Creative Commons Attribution 4.0 International License.