Data sharing-based approach for Federated Learning tasks on Edge Devices
DOI:
https://doi.org/10.5753/jbcs.2025.3682Keywords:
Federated Learning, non-IID data, distributed datasets, privacy-flexible environment, privacy-sensitive environment, edge devices, training and convergenceAbstract
Federated Learning (FL) enables edge devices to collaboratively train a global machine learning model. In this paradigm, the data is maintained on the devices themselves and a server is responsible for aggregating the parameters of the local models. However, the aggregated model may present convergence difficulties when the device data are non-independent and identically distributed (non-IID), that is, when they present a heterogeneous distribution. This work proposes an algorithm that extends data sharing-based solutions from the literature by considering privacy-flexible environment, where users agree to share a small percentage of their private, and privacy-sensitive environment, where it is assumed that the aggregator server has a set of public global data that is shared with users in the initial phase of the FL process. The proposed algorithm is evaluated in a distributed and centralized way considering a Human Activity Recognition (HAR) application. The results show that data sharing strategies indicate improved global model performance in non-IID scenarios.
Downloads
References
Amannejad, Y. (2020). Building and Evaluating Federated Models for Edge Computing. In 2020 16th International Conference on Network and Service Management (CNSM), pages 1-5. DOI: 10.23919/CNSM50824.2020.9269105.
Asad, M., Moustafa, A., Ito, T., and Aslam, M. (2020). Evaluating the Communication Efficiency in Federated Learning Algorithms. CoRR, abs/2004.02738. DOI: 10.48550/arXiv.2004.02738.
Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., and Lane, N. D. (2020). Flower: A Friendly Federated Learning Research Framework. CoRR, abs/2007.14390. DOI: 10.48550/arXiv.2007.14390.
Brecko, A., Kajati, E., Koziorek, J., and Zolotova, I. (2022). Federated Learning for Edge Computing: A Survey. Applied Sciences, 12(18). DOI: 10.3390/app12189124.
Duan, Q., Huang, J., Hu, S., Deng, R., Lu, Z., and Yu, S. (2023). Combining Federated Learning and Edge Computing Toward Ubiquitous Intelligence in 6G Network: Challenges, Recent Advances, and Future Directions. IEEE Communications Surveys & Tutorials, 25(4):2892-2950. DOI: 10.1109/COMST.2023.3316615.
Haller, M., Lenz, C., Nachtigall, R., Awayshehl, F. M., and Alawadi, S. (2023). Handling Non-IID Data in Federated Learning: An Experimental Evaluation Towards Unified Metrics. In 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, pages 0762-0770. DOI: 10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361408.
Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., and He, B. (2021). A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection. IEEE Transactions on Knowledge and Data Engineering, PP:1-1. DOI: 10.1109/TKDE.2021.3124599.
Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. (2020). On the Convergence of Fedavg on Non-IID Data. arXiv. DOI: 10.48550/arXiv.1907.02189.
Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y.-C., Yang, Q., Niyato, D., and Miao, C. (2020). Federated Learning in Mobile Edge Networks: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 22(3):2031-2063. DOI: 10.1109/COMST.2020.2986024.
Ma, X., Zhu, J., Lin, Z., Chen, S., and Qin, Y. (2022). A state-of-the-art Survey on Solving non-IID Data in Federated Learning. Future Generation Computer Systems, 135:244-258. DOI: 10.1016/j.future.2022.05.003.
Malekzadeh, M., Clegg, R. G., Cavallaro, A., and Haddadi, H. (2019). Mobile Sensor Data Anonymization. In Proceedings of the International Conference on Internet of Things Design and Implementation, pages 49-58, New York, NY, USA. ACM. DOI: 10.48550/arXiv.1810.11546.
McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2016). Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv. DOI: 10.48550/arXiv.1602.05629.
Nakayama, K. and Jeno, G. (2022). Federated Learning with Python: Design and implement a federated learning system and develop applications using existing frameworks. Packt Publishing. Book.
Quan, P. K., Kundroo, M., and Kim, T. (2023). Experimental Evaluation and Analysis of Federated Learning in Edge Computing Environments. IEEE Access, 11:33628-33639. DOI: 10.1109/ACCESS.2023.3262945.
Saddaf Khan, N., Qadir, S., Anjum, G., and Uddin, N. (2024). Stressense: Real-time detection of stress-displaying behaviors. International Journal of Medical Informatics, 185:105401. DOI: https://doi.org/10.1016/j.ijmedinf.2024.105401.
Seo, E., Pham, V., and Elmroth, E. (2023). Accelerating Convergence in Wireless Federated Learning by Sharing Marginal Data. In 2023 International Conference on Information Networking (ICOIN). DOI: 10.1109/ICOIN56518.2023.10048937.
Shao, J., Li, Z., Sun, W., Zhou, T., Sun, Y., Liu, L., Lin, Z., Mao, Y., and Zhang, J. (2024). A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency. DOI: 10.48550/arXiv.2307.10655.
Sirohi, D., Kumar, N., Rana, P. S., Tanwar, S., Iqbal, R., and Hijjii, M. (2023). Federated Learning for 6G-enabled Secure Communication Systems: A Comprehensive Survey. Artificial Intelligence Review. DOI: 10.1007/s10462-023-10417-3.
Sozinov, K., Vlassov, V., and Girdzijauskas, S. (2018). Human Activity Recognition using Federated Learning. In 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, pages 1103-1111. DOI: 10.1109/BDCloud.2018.00164.
Ustad, A., Logacjov, A., Trollebo, S. O., Thingstad, P., Vereijken, B., Bach, K., and Maroni, N. S. (2023). Validation of an activity type recognition model classifying daily physical behavior in older adults: The har70+ model. Sensors, 23(5). DOI: 10.3390/s23052368.
Wu, J., Dong, F., Leung, H., Zhu, Z., Zhou, J., and Drew, S. (2024). Topology-aware Federated Learning in Edge Computing: A Comprehensive Survey. ACM Comput. Surv., 56(10). DOI: 10.1145/3659205.
Yang, Z., Chen, M., Wong, K.-K., Poor, H. V., and Cui, S. (2022). Federated Learning for 6G: Applications, Challenges, and Opportunities. Engineering, 8:33-41. DOI: 10.1016/j.eng.2021.12.002.
Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. (2022). Federated Learning with Non-IID Data. arXiv. DOI: 10.48550/ARXIV.1806.00582.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Renan R. de Oliveira, Leandro A. Freitas, Waldir Moreira, Maria Ribeiro, Antonio Oliveira-Jr

This work is licensed under a Creative Commons Attribution 4.0 International License.

