Global Localization using OpenStreetMap and Elevation Offsets
DOI:
https://doi.org/10.5753/jbcs.2024.3795Keywords:
Autonomous driving, data association, global localization, self-driving vehiclesAbstract
Localization is a critical component in autonomous vehicle navigation stacks. While GNSS-only localization cannot be fully reliable and available all the time, localization based on 3D high-definition (HD) maps have to be robust to world changes, which is still a challenging issue. Added to that, in general, HD maps are expensive and difficult to construct and maintain.
In this paper, we propose a particle filter-based 2D global pose estimation method that can use the crowdsourced OpenStreetMap (OSM) API, a digital surface map, or both. The main contributions of the proposed approach are: that it is lightweight, does not require the vehicle to map the environment, does not require a GPU (can be used with low-power computing resources), is agnostic to the odometry source, and achieved relatively low position and orientation errors for this localization modality using the KITTI dataset sequences. The proposed method's implementation is open source and is available with the experimental results on our GitHub page.
Downloads
References
Amini, A., Rosman, G., Karaman, S., and Rus, D. (2019). Variational end-to-end navigation and localization. Proceedings - IEEE International Conference on Robotics and Automation, 2019-May:8958-8964. DOI: 10.1109/ICRA.2019.8793579.
Bhattacharyya, P., Gu, Y., Bao, J., Liu, X., and Kamijo, S. (2017). 3D Scene Understanding at Urban Intersection Using Stereo Vision and Digital Map. In IEEE Vehicular Technology Conference, volume 2017-June. Institute of Electrical and Electronics Engineers Inc.. DOI: 10.1109/VTCSpring.2017.8108283.
Brubaker, M. A., Geiger, A., and Urtasun, R. (2016). Map-based probabilistic visual self-localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(4):652-665. DOI: 10.1109/TPAMI.2015.2453975.
Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The kitti dataset. The International Journal of Robotics Research, 32(11):1231-1237. DOI: 10.1177/027836491349129.
Grupp, M. (2017). evo: Python package for the evaluation of odometry and SLAM. Available online [link] .
Hyuga, S., Ito, M., Iwai, M., and Sezaki, K. (2016). An online localization method for a subway train utilizing the barometer on a smartphone. In GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems. DOI: 10.1145/2996913.2996999.
Imperoli, M., Potena, C., Nardi, D., Grisetti, G., and Pretto, A. (2018). An Effective Multi-Cue Positioning System for Agricultural Robotics. IEEE Robotics and Automation Letters, 3(4). DOI: 10.1109/LRA.2018.2855052.
Larnaout, D., Gay-Bellile, V., Bourgeois, S., and Dhome, M. (2013). Vehicle 6-DoF localization based on SLAM constrained by GPS and digital elevation model information. In 2013 IEEE International Conference on Image Processing, ICIP 2013 - Proceedings. DOI: 10.1109/ICIP.2013.6738516.
Mandel, C. and Laue, T. (2010). Particle filter-based position estimation in road networks using digital elevation models. In IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings. DOI: 10.1109/IROS.2010.5650755.
Miller, I. D., Cowley, A., Konkimalla, R., Shivakumar, S. S., Nguyen, T., Smith, T., Taylor, C. J., and Kumar, V. (2021). Any Way You Look at It: Semantic Crossview Localization and Mapping with LiDAR. IEEE Robotics and Automation Letters, 6(2). DOI: 10.1109/LRA.2021.3061332.
Przewodowski, A. and Osorio, F. S. (2022). A Monte Carlo particle filter formulation for mapless-based localization. 2022 IEEE Intelligent Vehicles Symposium (IV), pages 1782-1788. DOI: 10.1109/IV51971.2022.9827064.
Quack, T., Hesseler, F. J., and Abel, D. (2019). Fast real-time localization with sparse digital maps for connected automated vehicles in urban areas. In IFAC-PapersOnLine, volume 52, pages 366-371. Elsevier B.V.. DOI: 10.1016/j.ifacol.2019.09.059.
Radwan, N., Tipaldi, G. D., Spinello, L., and Burgard, W. (2016). Do you see the bakery? Leveraging geo-referenced texts for global localization in public maps. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June:4837-4842. DOI: 10.1109/ICRA.2016.7487688.
Sarlin, P.-E., DeTone, D., Yang, T.-Y., Avetisyan, A., Straub, J., Malisiewicz, T., Bulo, S. R., Newcombe, R., Kontschieder, P., and Balntas, V. (2023). Orienternet: Visual localization in 2d public maps with neural matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21632-21642. Available online [link].
Yan, F., Vysotska, O., and Stachniss, C. (2019). Global Localization on OpenStreetMap Using 4-bit Semantic Descriptors. In 2019 European Conference on Mobile Robots, ECMR 2019 - Proceedings. Institute of Electrical and Electronics Engineers Inc.. DOI: 10.1109/ECMR.2019.8870918.
Zhan, H., Weerasekera, C. S., Bian, J., Garg, R., and Reid, I. D. (2021). DF-VO: What Should Be Learnt for Visual Odometry? ArXiv, abs/2103.00933. DOI: 10.48550/arXiv.2103.00933.
Zhan, H., Weerasekera, C. S., Bian, J. W., and Reid, I. (2020). Visual Odometry Revisited: What Should Be Learnt? In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 4203-4210. DOI: 10.1109/ICRA40945.2020.9197374.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 André Przewodowski, Fernando Santos Osório, Valdir Grassi Júnior
This work is licensed under a Creative Commons Attribution 4.0 International License.