Dependability Evaluation of a Smart Poultry Monitoring System with Disaster Recovery Mechanism

Authors

DOI:

https://doi.org/10.5753/jbcs.2024.3863

Keywords:

Smart Poultry, Dependability, Edge Computing, Disaster Recovery, Stochastic Petri Net

Abstract

The Internet of Things (IoT) has changed how poultry farming is carried out, offering various advantages to farmers. One notable benefit is the real-time monitoring of bird breeding tasks, ensuring the well-being of the animals. Farmers can enhance their operations through task automation by incorporating an edge server for local sensor data processing. Tasks automation enables farmers to make informed decisions, improving production efficiency, bird quality, and agribusiness profits. However, poultry farming faces challenges, with disaster recovery a critical concern. Potential events like fires, power outages, or equipment failures can significantly impact birds and production. Consequently, continuous monitoring of birds is vital, and any disruptions must be minimized to uphold system integrity. This study introduces Stochastic Petri Nets (SPN) models to evaluate the availability and reliability of an intelligent bird breeding system. The system integrates a disaster recovery solution for uninterrupted operations. Furthermore, a sensitivity analysis is conducted on the components of the smart poultry system to pinpoint the most relevant one to the system's availability in the proposed architecture. This analysis can aid system architects in developing distributed architectures, considering points of failure and recovery measures. The study results demonstrate the system's high availability and reliability, enabling farmers to make informed decisions and improve the overall productivity of their farms.

Downloads

Download data is not yet available.

References

Abdulhamid, A., Rahman, M. M., Kabir, S., and Ghafir, I. (2024). Enhancing safety in iot systems: A model-based assessment of a smart irrigation system using fault tree analysis. Electronics, 13(6):1156. DOI: 10.3390/electronics13061156.

Andrade, E. and Nogueira, B. (2020). Dependability evaluation of a disaster recovery solution for iot infrastructures. The Journal of Supercomputing, 76(3):1828-1849. DOI: 10.1007/s11227-018-2290-0.

Antony, J. (2014). Design of experiments for engineers and scientists. Elsevier. DOI: 10.1016/C2012-0-03558-2.

Astill, J., Dara, R. A., Fraser, E. D., Roberts, B., and Sharif, S. (2020). Smart poultry management: Smart sensors, big data, and the internet of things. Computers and Electronics in Agriculture, 170:105291. DOI: 10.1016/j.compag.2020.105291.

Brito, C., Silva, L., Callou, G., Nguyen, T. A., Min, D., Lee, J.-W., and Silva, F. A. (2021). Offloading data through unmanned aerial vehicles: a dependability evaluation. Electronics, 10(16):1916. DOI: 10.3390/electronics10161916.

Campolongo, F., Tarantola, S., and Saltelli, A. (1999). Tackling quantitatively large dimensionality problems. Computer Physics Communication, 117(1):75-85. DOI: 10.1016/S0010-4655(98)00165-9.

Catelani, M., Ciani, L., Bartolini, A., Del Rio, C., Guidi, G., and Patrizi, G. (2021). Reliability analysis of wireless sensor network for smart farming applications. Sensors, 21(22):7683. DOI: 10.3390/s21227683.

Chen, L. and Ha, W. (2018). Reliability prediction and qos selection for web service composition. International Journal of Computational Science and Engineering, 16(2):202-211. DOI: 10.1504/IJCSE.2018.090442.

Girault, C. and Valk, R. (2013). Petri nets for systems engineering: a guide to modeling, verification, and applications. Springer Science & Business Media. Book.

Kamyod, C. (2018). End-to-end reliability analysis of an iot based smart agriculture. In 2018 International Conference on Digital Arts, Media and Technology (ICDAMT), pages 258-261. DOI: 10.1109/ICDAMT.2018.8376535.

Kamyod, C. (2019). Reliability analysis of the smart farm system: A case study of small and medium-sized farm-thailand. In 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), pages 1-5. DOI: 10.1109/WPMC48795.2019.9096090.

Kleijnen, J. P. (1995). Sensitivity analysis and optimization in simulation: design of experiments and case studies. In Winter Simulation Conference Proceedings, 1995., pages 133-140. IEEE. DOI: 10.1145/224401.224454.

Lashari, M. H., Memon, A. A., Shah, S. A. A., Nenwani, K., and Shafqat, F. (2018). Iot based poultry environment monitoring system. In 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), pages 1-5. IEEE. DOI: 10.1109/IOTAIS.2018.8600837.

Londra, P. A., Kotsatos, I.-E., Theotokatos, N., Theocharis, A. T., and Dercas, N. (2021). Reliability analysis of rainwater harvesting tanks for irrigation use in greenhouse agriculture. Hydrology, 8(3):132. DOI: 10.3390/hydrology8030132.

Maciel, P., Matos, R., Silva, B., Figueiredo, J., Oliveira, D., Fé, I., Maciel, R., and Dantas, J. (2017). Mercury: Performance and dependability evaluation of systems with exponential, expolynomial, and general distributions. In 2017 IEEE 22nd Pacific Rim international symposium on dependable computing (PRDC), pages 50-57. IEEE. DOI: 10.1109/PRDC.2017.16.

Marsan, M. A. (1990). Stochastic petri nets: an elementary introduction. In Advances in Petri Nets 1989 9, pages 1-29. Springer. DOI: 10.1007/3-540-52494-0_23.

Mendonça, J., Lima, R., Matos, R., Ferreira, J., and Andrade, E. (2018). Availability analysis of a disaster recovery solution through stochastic models and fault injection experiments. In 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), pages 135-142. IEEE. DOI: 10.1109/AINA.2018.00032.

Mohammadian, H. D., Mohammadian, F. D., and Assante, D. (2020). Iot-education policies on national and international level regarding best practices in german smes. In 2020 IEEE Global Engineering Education Conf. (EDUCON), pages 1848-1857. IEEE. DOI: 10.1109/EDUCON45650.2020.9125148.

Montoya-Munoz, A. I., da Silva, R. A., Rendon, O. M. C., and da Fonseca, N. L. (2022). Reliability provisioning for fog nodes in smart farming iot-fog-cloud continuum. Computers and Electronics in Agriculture, 200:107252. DOI: 10.1016/j.compag.2022.107252.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541-580. DOI: 10.1109/5.24143.

Oliveira, F., Pereira, P., Dantas, J., Araujo, J., and Maciel, P. (2023). Dependability evaluation of a smart poultry house: Addressing availability issues through the edge, fog, and cloud computing. IEEE Transactions on Industrial Informatics. DOI: 10.1109/TII.2023.3275656.

Peterson, J. L. (1981). Petri net theory and the modeling of systems. Prentice Hall PTR. Available online [link].

Petri, C. A. (1962). Kommunikation mit automaten. Available online [link].

Rahman, M. M., Abdulhamid, A., Kabir, S., and Gope, P. (2023). Failure analysis of iot-based smart agriculture system: Towards sustainable food security. In 2023 5th International Conference on Sustainable Technologies for Industry 5.0 (STI), pages 1-6. DOI: 10.1109/STI59863.2023.10464772.

Reese, G. (2009). Cloud application architectures: building applications and infrastructure in the cloud. " O'Reilly Media, Inc.". Book.

Reisig, W. (1985). Petri Nets, volume 4 of Monographs in Theoretical Computer Science. An EATCS Series. Springer Berlin, Heidelberg. DOI: 10.1007/978-3-642-69968-9.

Rodrigues, L., Gonçalves, I., Fé, I., Endo, P., and Silva, F. A. (2020). Modelo estocástico para avaliaçao de disponibilidade de hospitais inteligentes. In Anais do XIX Workshop em Desempenho de Sistemas Computacionais e de Comunicação, pages 145-156. SBC. Available online [link].

Rooney, W. J., McBride, G. E., and Hanif, T. (2008). Ibm totalstorage productivity center for replication for z/os. IBM Systems Journal, 47(4):681-694. DOI: 10.1147/SJ.2008.5386522.

Santos, B., Soares, A., Nguyen, T.-A., Min, D.-K., Lee, J.-W., and Silva, F.-A. (2021a). Iot sensor networks in smart buildings: A performance assessment using queuing models. Sensors, 21(16):5660. DOI: 10.3390/s21165660.

Santos, L., Cunha, B., Fé, I., Vieira, M., and Silva, F. A. (2021b). Data processing on edge and cloud: a performability evaluation and sensitivity analysis. Journal of Network and Systems Management, 29(3):27. DOI: 10.1007/s10922-021-09592-x.

Silva, F. A., Brito, C., Araújo, G., Fé, I., Tyan, M., Lee, J.-W., Nguyen, T. A., and Maciel, P. R. M. (2022). Model-driven impact quantification of energy resource redundancy and server rejuvenation on the dependability of medical sensor networks in smart hospitals. Sensors, 22(4):1595. DOI: 10.3390/s22041595.

Silva, F. A., Fé, I., Silva, F., and Nguyen, T. A. (2024). Quantifying the impact of resource redundancy on smart city system dependability: a model-driven approach. Cluster Computing, pages 1-21. DOI: 10.1007/s10586-023-04259-5.

Smith, D., Lyle, S., Berry, A., Manning, N., Zaki, M., and Neely, A. (2015). Internet of animal health things (ioaht) opportunities and challenges. University of Cambridge: Cambridge, UK. Available online [link].

SOUSA, E. T. G. d. (2015). Modelagem de desempenho, dependabilidade e custo para o planejamento de infraestruturas de nuvens privadas. Available online [link].

Statista (2024). Number of internet of things (iot) connected devices worldwide from 2019 to 2030 (in billions). Available online [link]. Accessed in: 28 aug. 2024.

Xu, J., Gu, B., and Tian, G. (2022). Review of agricultural iot technology. Artificial Intelligence in Agriculture, 6:10-22. DOI: 10.1016/j.aiia.2022.01.001.

Downloads

Published

2024-09-02

How to Cite

Barbosa, V., Sabino, A., Lima, L. N., Victor, C., Feitosa, L., Andrade, E., & Silva, F. A. (2024). Dependability Evaluation of a Smart Poultry Monitoring System with Disaster Recovery Mechanism. Journal of the Brazilian Computer Society, 30(1), 252–263. https://doi.org/10.5753/jbcs.2024.3863

Issue

Section

Articles