A Practical Evaluation of a Federated Learning Application in IoT Device and Cloud Environment
DOI:
https://doi.org/10.5753/jbcs.2025.4324Keywords:
Federated Learning, Internet of Things, Machine LearningAbstract
Internet of Things (IoT) devices have grown exponentially in recent years, resulting in valuable data for machine learning applications. Traditionally, machine learning models require centralized data collection and processing, which is not feasible in the IoT landscape due to high density and growing data privacy concerns. Federated Learning is a trend in this scenario, as it allows collaborative training of models on IoT devices, distributed and without the need to share data. This paper examines a federated learning framework for IoT devices, employing a parameter server topology in a benign node environment without considering strategies for optimizing model performance. The evaluation is conducted in two distinct scenarios: (i) a testbed of IoT devices equipped with ARM processors and limited to 2GB of RAM, and (ii) a virtualized cloud environment with a mixture of resource-constrained virtual machines. The experiments use non-identically distributed (non-IID) datasets—MNIST for the IoT testbed and CIFAR-10 for the cloud environment—evaluated under various client configurations and aggregation strategies. In the IoT device scenario, the framework achieved an accuracy of up to 0.6 after ten rounds of global aggregation, while the cloud environment attained a maximum accuracy of 0.4. These results demonstrate the feasibility of applying FL in resource-constrained IoT environments, with scalability and accuracy influenced by the number of clients and local training epochs.
Downloads
References
Alli, A. A. and Alam, M. M. (2019). SecOFF-FCIoT: Machine learning based secure offloading in fog-cloud of things for smart city applications. Internet of Things, 7:100070. DOI: https://doi.org/10.1016/j.iot.2019.100070.
Andreoni, M. and Mattos, D. M. F. (2021). Resumo de grandes volumes de dados com filtro de bloom: Uma abordagem eficiente para aprendizado profundo com redes neurais convolucionais em fluxos de rede. In Anais do XXXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 532-545, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/sbrc.2021.16745.
Chiu, T.-C., Shih, Y.-Y., Pang, A.-C., Wang, C.-S., Weng, W., and Chou, C.-T. (2020). Semisupervised distributed learning with non-IID data for AIoT service platform. IEEE Internet of Things Journal, 7(10):9266-9277. DOI: 10.1109/JIOT.2020.2995162.
Ciftler, B. S., Albaseer, A., Lasla, N., and Abdallah, M. (2020). Federated learning for RSS fingerprint-based localization: A privacy-preserving crowdsourcing method. In 2020 International Wireless Communications and Mobile Computing (IWCMC), pages 2112-2117. DOI: 10.1109/IWCMC48107.2020.9148111.
Cunha Neto, H. N., Hribar, J., Dusparic, I., Fernandes, N. C., and Mattos, D. M. (2024). Fedsbs: Federated-learning participant-selection method for intrusion detection systems. Computer Networks, 244:110351. DOI: https://doi.org/10.1016/j.comnet.2024.110351.
Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage, D. (2018). Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604. DOI: 0.48550/arXiv.1811.03604.
Kong, L., Liu, X.-Y., Sheng, H., Zeng, P., and Chen, G. (2020). Federated tensor mining for secure industrial internet of things. IEEE Transactions on Industrial Informatics, 16(3):2144-2153. DOI: 10.1109/TII.2019.2937876.
Lai, F., Zhu, X., Madhyastha, H. V., and Chowdhury, M. (2021). Oort: Efficient federated learning via guided participant selection. In USENIX Symposium on Operating Systems Design and Implementation (OSDI). Available online [link].
Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y. C., Yang, Q., Niyato, D., and Miao, C. (2020). Federated learning in mobile edge networks: A comprehensive survey. IEEE Communications Surveys & Tutorials. DOI: 0.1109/COMST.2020.2986024.
Liu, W., Xu, X., Li, D., Qi, L., Dai, F., Dou, W., and Ni, Q. (2022). Privacy preservation for federated learning with robust aggregation in edge computing. IEEE Internet of Things Journal. DOI: 10.1109/JIOT.2022.3229122.
Lu, Y., Huang, X., Dai, Y., Maharjan, S., and Zhang, Y. (2020). Differentially private asynchronous federated learning for mobile edge computing in urban informatics. IEEE Transactions on Industrial Informatics, 16(3):2134-2143. DOI: 10.1109/TII.2019.2942179.
Md. Fadlullah, Z. and Kato, N. (2022). HCP: Heterogeneous computing platform for federated learning based collaborative content caching towards 6G networks. IEEE Transactions on Emerging Topics in Computing, 10(1):112-123. DOI: 10.1109/TETC.2020.2986238.
Medeiros, D. S. V., Cunha Neto, H. N., Andreoni Lopez, M., Magalhães, L. C. S., Silva, E. F., Vieira, A. B., Fernandes, N. C., and Mattos, D. M. F. (2019). Análise de dados em redes sem fio de grande porte: Processamento em fluxo em tempo real, tendências e desafios. Minicursos do Simpósio Brasileiro de Redes de Computadores-SBRC, 2019:142-195. Available online [link].
Mills, J., Hu, J., and Min, G. (2019). Communication-efficient federated learning for wireless edge intelligence in IoT. IEEE Internet of Things Journal, 7(7):5986-5994. DOI: 10.1109/JIOT.2019.2956615.
Neto, H. N. C., Dusparic, I., Mattos, D. M. F., and Fernande, N. C. (2022). FedSA: Accelerating intrusion detection in collaborative environments with federated simulated annealing. In 2022 IEEE 8th International Conference on Network Softwarization (NetSoft), pages 420-428. DOI: 10.1109/NetSoft54395.2022.9844024.
Neto, H. N. C., Hribar, J., Dusparic, I., Mattos, D. M. F., and Fernandes, N. C. (2023). A survey on securing federated learning: Analysis of applications, attacks, challenges, and trends. IEEE Access, 11:41928-41953. DOI: 10.1109/ACCESS.2023.3269980.
Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J., and Vincent Poor, H. (2021). Federated learning for internet of things: A comprehensive survey. IEEE Communications Surveys & Tutorials, 23(3):1622-1658. DOI: 10.1109/COMST.2021.3075439.
Savazzi, S., Nicoli, M., and Rampa, V. (2020). Federated learning with cooperating devices: A consensus approach for massive IoT networks. IEEE Internet of Things Journal, 7(5):4641-4654. DOI: 10.1109/JIOT.2020.2964162.
Wang, X., Wang, C., Li, X., Leung, V. C. M., and Taleb, T. (2020). Federated deep reinforcement learning for internet of things with decentralized cooperative edge caching. IEEE Internet of Things Journal, 7(10):9441-9455. DOI: 10.1109/JIOT.2020.2986803.
Yu, Z., Hu, J., Min, G., Lu, H., Zhao, Z., Wang, H., and Georgalas, N. (2018). Federated learning based proactive content caching in edge computing. In 2018 IEEE Global Communications Conference (GLOBECOM), pages 1-6. DOI: 10.1109/GLOCOM.2018.8647616.
Zhang, T., He, C., Ma, T., Gao, L., Ma, M., and Avestimehr, S. (2021). Federated learning for internet of things. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, pages 413-419. DOI: 10.1145/3485730.3493444.
Zhou, Z., Yang, S., Pu, L., and Yu, S. (2020). CEFL: Online admission control, data scheduling, and accuracy tuning for cost-efficient federated learning across edge nodes. IEEE Internet of Things Journal, 7(10):9341-9356. DOI: 10.1109/JIOT.2020.2984332.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Guilherme Nunes Nasseh Barbosa, Diogo Menezes Ferrazani Mattos

This work is licensed under a Creative Commons Attribution 4.0 International License.

