Infrastructure and tool support for MDE in the petrochemical industry automation
DOI:
https://doi.org/10.5753/jbcs.2025.4547Keywords:
Model-Driven Engineering, Graphical Domain-Specific Language, M4PIA, MPA, EMSOAbstract
Automation is essential for productivity and safety in the oil industry, but designing control systems often requires multiple software tools, leading to redundant plant modeling (costing time and money) and creating possible inconsistencies. The Model-Driven Engineering for Petrochemical Industry Automation (M4PIA) approach streamlines automation design by enabling the interoperability of models between different tools. Currently, M4PIA integrates EMSO for process simulations and MPA for deploying real plant applications. Besides, it supports high-level, graphical automation models design, also providing a component library. This paper aims to detail M4PIA, positioning it within the state-of-the-art, and illustrate its application through the deployment of an oil and gas automation system. This case study highlights M4PIA’s ability to handle complex, real-world systems, demonstrating the platform’s capability to optimize modeling stages through domain-specific languages (DSLs) and automated transformations. The results show that M4PIA not only reduces development time but also enhances system reliability and maintainability. By bridging simulation and deployment tools, M4PIA establishes a solid foundation for efficient and robust application development in the oil and gas sector. This platform represents a significant step forward in advancing model-driven engineering for industrial automation.
Downloads
References
Basso, F., de Souza Moura, J., Correia, C. E. X., Casola, K., and Becker, L. B. (2023). Graphical dsl devoted to ease the application of model-driven engineering in petrochemical industry automation. In Prof. of Workshop on Requirements Engineering, Porto Alegre, RS, Brasil. SBC. DOI: 10.29327/1298356.26-19.
Blas, M., Espertino, C., and Gonnet, S. (2021). Modeling routing processes through network theory: A grammar to define rdevs simulation models. In Anais do III Workshop em Modelagem e Simulação de Sistemas Intensivos em Software, pages 10-19, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/mssis.2021.17255.
Bonjour, J. and Bejan, A. (2006). Optimal distribution of cooling during gas compression. Energy, 31(4):409-424. DOI: 10.1016/j.energy.2005.04.004.
Boukouvala, F., Li, J., Xiao, X., and Floudas, C. A. (2016). Data-driven modeling and global optimization of industrial-scale petrochemical planning operations. In 2016 American Control Conference (ACC), pages 3340-3345. DOI: 10.1109/ACC.2016.7525433.
Brambilla, M., Cabot, J., and Wimmer, M. (2017). Model-Driven Software Engineering in Practice. Springer. DOI: 10.1007/978-3-031-02546-4.
Correia, C., Becker, L., and Basso, F. (2023). A review on the infrastructure and tool support for model-driven engineering in the automation of the petrochemical industry. In Anais do V Workshop em Modelagem e Simulação de Sistemas Intensivos em Software, pages 31-40, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/mssis.2023.235679.
Cruz, M. V. S. (2021). Engenharia reversa baseada em modelos para aplicações de simulação, controle e operação de plantas na indústria petroquímica. Master's thesis, Federal University of Santa Catarina (in Portuguese). Available at: [link].
Damo, T. P. (2019). Engenharia baseada em modelos para aplicações de simulação, controle e operação de plantas na indústria petroquímica. Master's thesis, Federal University of Santa Catarina (in Portuguese). Available at: [link].
Damo, T. P., Becker, L. B., and Basso, F. P. (2019). Model-Driven Engineering Infrastructure and Tool Support for Petrochemical Industry Automation. Advances in Science, Technology and Engineering Systems Journal, 4(4):174-187. DOI: 10.25046/aj040422.
de Oliveira Sousa, A. and Malveira Costa Valentim, N. (2021). Designing usability and ux with uxug-ap: An observational study and an interview with experts. In Proceedings of the XVII Brazilian Symposium on Information Systems, SBSI '21, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3466933.3466959.
de Souza Moura, J. (2022). Uma dsl gráfica de suporte para a infraestrutura m4pia. Tcc (undergrad), Federal University of Pampa (in Portuguese). Available at: [link].
Devold, H. (2008). Oil and Gas Production Handbook: An Introduction to Oil and Gas Production, Transport, Refining and Petrochemical Industry. ABB Oil and Gas. Book.
Espertino, C., Blas, M., and Gonnet, S. (2022). Developing rdevs simulation models from textual specifications. In Anais do IV Workshop em Modelagem e Simulação de Sistemas Intensivos em Software, pages 41-50, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/mssis.2022.226306.
Favre, J.-M. (2005). Foundations of Model (Driven) (Reverse) Engineering : Models – Episode I: Stories of The Fidus Papyrus and of The Solarus. In Bezivin, J. and Heckel, R., editors, Language Engineering for Model-Driven Software Development, volume 4101 of Dagstuhl Seminar Proceedings (DagSemProc), pages 1-31, Dagstuhl, Germany. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. DOI: 10.4230/DagSemProc.04101.8.
Fenton, N. and Bieman, J. (2014). Software Metrics: A Rigorous and Practical Approach. CRC Press, third edition edition. Book.
Foundation, E. (2023a). Acceleo. Available at: [link]. Accessed on: 16 July 2023.
Foundation, E. (2023b). Eclipse qvt operational. Available at: [link]. Accessed on: 16 July 2023.
Foundation, E. (2023c). Sirius. Available at: [link]. Accessed on: 18 July 2023.
Frohm, J., Lindström, V., Winroth, M., and Stahre, J. (2006). The industry's view on automation in manufacturing. IFAC Proceedings Volumes, 39(4):453-458. 9th IFAC Symposium on Automated Systems Based on Human Skill and Knowledge. DOI: 10.3182/20060522-3-FR-2904.00073.
Gesser, R. S., Sartori, R., Damo, T. P., Vettorazzo, C. M., Becker, L. B., Lima, D. M., de Lima, M. L., Ribeiro, L. D., Campos, M. C., and Normey-Rico, J. E. (2022). Advanced control applied to a gas compression system of an offshore platform: From modeling to related system infrastructure. Journal of Petroleum Science and Engineering, 208:109428. DOI: 10.1016/j.petrol.2021.109428.
Gravdahl, J., Willems, F., de Jager, B., and Egeland, O. (2000). Modeling for surge control of centrifugal compressors: comparison with experiment. In Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), volume 2, pages 1341-1346 vol.2. DOI: 10.1109/CDC.2000.912043.
Guisasola, T. and Maia, R. (2009). Mpa, um sistema de controle de plantas industriais. In Lua Workshop 2009, Rio de Janeiro, RJ, Brasil. Available at: [link]. Accessed on: 15 July 2023.
Hästbacka, D., Vepsäläinen, T., and Kuikka, S. (2011). Model-driven development of industrial process control applications. Journal of Systems and Software, 84(7):1100-1113. DOI: 10.1016/j.jss.2011.01.063.
Klatt, K.-U. and Marquardt, W. (2009). Perspectives for process systems engineering—personal views from academia and industry. Computers & Chemical Engineering, 33(3):536-550. Selected Papers from the 17th European Symposium on Computer Aided Process Engineering held in Bucharest, Romania, May 2007. DOI: 10.1016/j.compchemeng.2008.09.002.
Kourouklidis, P., Kolovos, D., Noppen, J., and Matragkas, N. (2021). A model-driven engineering approach for monitoring machine learning models. In 2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), pages 160-164. DOI: 10.1109/MODELS-C53483.2021.00028.
Liu, Y., Li, Y., Lu, H., Pan, Z., Dai, P., Sun, G., and Yang, Q. (2021). A full-scale process for produced water treatment on offshore oilfield: Reduction of organic pollutants dominated by hydrocarbons. Journal of Cleaner Production, 296:126511. DOI: 10.1016/j.jclepro.2021.126511.
Lukács, G. and Bartha, T. (2022). Conception of a formal model-based methodology to support railway engineers in the specification and verification of interlocking systems. In 2022 IEEE 16th International Symposium on Applied Computational Intelligence and Informatics (SACI), pages 000283-000288. DOI: 10.1109/SACI55618.2022.9919532.
Mailund, T. (2018). Domain-Specific Languages in R: Advanced Statistical Programming. Apress, USA, 1st edition. DOI: 10.1007/978-1-4842-3588-1.
Makwashi, N., Zhao, D., Ahmed, T., and Paiko, I. (2019). Pipeline gas hydrate formation and treatment: A review. Available at: [link].
Mokhatab, S., Poe, W. A., and Mak, J. Y. (2015). Handbook of Natural Gas Transmission and Processing: Principles and Practices. Gulf Professional Publishing, third edition edition. DOI: 10.1016/C2017-0-03889-2.
Nakaya, M. and Li, X. (2013). On-line tracking simulator with a hybrid of physical and just-in-time models. Journal of Process Control, 23(2):171-178. IFAC World Congress Special Issue. DOI: 10.1016/j.jprocont.2012.06.007.
Neis, P., Wehrmeister, M. A., Mendes, M. F., and Pesente, J. R. (2023). Applying a model-driven approach to the development of power plant scada/ems software. International Journal of Electrical Power & Energy Systems, 153:109336. DOI: 10.1016/j.ijepes.2023.109336.
Otto, L. (2017). DSL: Quebre a barreira entre desenvolvimento e negócios. Casa do Código. Book.
Parr, T. (2023). Antlr. Available at: [link]. Accessed on: 16 July 2023.
Paz, A., Boussaidi, G. E., and Mili, H. (2021). checsdm: A method for ensuring consistency in heterogeneous safety-critical system design. IEEE Transactions on Software Engineering, 47(12):2713-2739. DOI: 10.1109/TSE.2020.2966994.
Plucenio, A., Vettorazo, C., Picon, B., Campos, M., and Lopes de Lima, M. (2016). Modeling and control of an oil platform gas compression station. XXI Congresso Brasileiro de Automática. Available at: [link].
Ponsard, C. and Darquennes, D. (2023). Mbse tool selection process: Feedback from a railway case study. In 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), pages 710-714. DOI: 10.1109/MODELS-C59198.2023.00114.
(PUC-Rio), T. I. (2018). MPA Programming Libraries from the Tecgraf Institute (PUC-Rio). Available at: [link]. Accessed on: 11/01/2023.
PUCRJ (1993). The programming language lua. Available at: [link]. Accessed on: 15 July 2023.
Raibulet, C., Arcelli Fontana, F., and Zanoni, M. (2017). Model-driven reverse engineering approaches: A systematic literature review. IEEE Access, 5:14516-14542. DOI: 10.1109/ACCESS.2017.2733518.
Rugaber, S. and Stirewalt, K. (2004). Model-driven reverse engineering. IEEE Softw., 21(4):45–53. DOI: 10.1109/MS.2004.23.
Satuf, E., Pinto, S. F., and Dias, B. Q. (2009). Automatic alignment system for pra-1 pumping platform (in portuguese). In 5th Rio Automation Congress. DOI: 10.5753/mssis.2023.235679.
Schmidt, D. (2006). Guest editor's introduction: Model-driven engineering. Computer, 39(2):25-31. DOI: 10.1109/MC.2006.58.
Seborg, D. E., Mellichamp, D. A., and Edgar, T. F. (2010). Process Dynamics and Control. John Wiley & Sons. DOI: 10.1021/cen-v056n033.p045.
Selic, B. (2003). The pragmatics of model-driven development. IEEE Software, 20(5):19-25. DOI: 10.1109/MS.2003.1231146.
Shafieezadeh, M., Hormozi, M. K., Hassannayebi, E., Ahmadi, L., Soleymani, M., and and, A. G. (2020). A system dynamics simulation model to evaluate project planning policies. International Journal of Modelling and Simulation, 40(3):201-216. DOI: 10.1080/02286203.2019.1596779.
Sheng, J. J. (2015). Enhanced oil recovery in shale reservoirs by gas injection. Journal of Natural Gas Science and Engineering, 22:252-259. DOI: 10.1016/j.jngse.2014.12.002.
Silva Cruz, M. V., Damo, T. P., and Becker, L. B. (2020). Round-trip engineering for petrochemical industry automation. IFAC-PapersOnLine, 53(2):11824-11829. 21st IFAC World Congress. DOI: 10.1016/j.ifacol.2020.12.693.
Soares, R. d. P. and Secchi, A. (2003). EMSO: A new environment for modelling, simulation and optimisation. In Computer Aided Chemical Engineering, volume 14, pages 947-952. Elsevier. DOI: 10.1016/S1570-7946(03)80239-0.
Sommerville, I. (2011). Software Engineering. Pearson. Book.
Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2008). EMF: Eclipse Modeling Framework. Pearson Education. Book.
Taghaddos, H., Mashayekhi, A., and Sherafat, B. (2016). Automation of construction quantity take-off: Using building information modeling (bim). pages 2218-2227. DOI: 10.1061/9780784479827.221.
Teixeira, P., Lebtag, B., and Basso, F. (2020). Diversity of mde toolboxes and their uncommon properties. In Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software, pages 1-10, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/mssis.2020.12489.
van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific languages: An annotated bibliography. SIGPLAN Not., 35(6):26–36. DOI: 10.1145/352029.352035.
Vepsäläinen, T., Sierla, S., Peltola, J., and Kuikka, S. (2010). Assessing the industrial applicability and adoption potential of the aukoton model driven control application engineering approach. In 2010 8th IEEE International Conference on Industrial Informatics, pages 883-889. DOI: 10.1109/INDIN.2010.5549626.
Vidal, C., Fernández-Sánchez, C., Díaz, J., and Pérez, J. (2015). A model-driven engineering process for autonomic sensor-actuator networks. International Journal of Distributed Sensor Networks, 11(3):684892. DOI: 10.1155/2015/684892.
Wang, F., Yang, Z.-B., Huang, Z.-Q., Liu, C.-W., Zhou, Y., Bodeveix, J.-P., and Filali, M. (2020). An approach to generate the traceability between restricted natural language requirements and aadl models. IEEE Transactions on Reliability, 69(1):154-173. DOI: 10.1109/TR.2019.2936072.
Wang, X., Love, P. E., Kim, M. J., Park, C.-S., Sing, C.-P., and Hou, L. (2013). A conceptual framework for integrating building information modeling with augmented reality. Automation in Construction, 34:37-44. Information Technologies in Safety Management. DOI: 10.1016/j.autcon.2012.10.012.
Xenos, D. P., Cicciotti, M., Kopanos, G. M., Bouaswaig, A. E., Kahrs, O., Martinez-Botas, R., and Thornhill, N. F. (2015). Optimization of a network of compressors in parallel: Real time optimization (rto) of compressors in chemical plants – an industrial case study. Applied Energy, 144:51-63. DOI: 10.1016/j.apenergy.2015.01.010.
Yusuf, A. Z., John, Y. M., Aderemi, B. O., Patel, R., and Mujtaba, I. M. (2019). Modelling, simulation and sensitivity analysis of naphtha catalytic reforming reactions. Computers & Chemical Engineering, 130:106531. DOI: 10.1016/j.compchemeng.2019.106531.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Carlos Eduardo Xavier Correia, Leandro Buss Becker, Fabio Paulo Basso

This work is licensed under a Creative Commons Attribution 4.0 International License.

