Enhancing Disease and Pest Detection in Greenhouse Tomato Cultivation Using Advanced Machine Learning on New Dataset of Images
DOI:
https://doi.org/10.5753/jbcs.2025.4581Keywords:
Plant Diseases, Tomato Diseases, Greenhouses, Convolutional Neural Networks, Ensemble, Deep LearningAbstract
Increasing food production is a continuous need. In this context, agriculture is a fundamental part of meeting the ever-increasing demand for food. Plant diseases are one of the factors that compromise food production goals, and the characteristics and climate of each production region influence them. Tomatoes are one of the world's most consumed vegetables and are widely affected by various diseases. However, tomato cultivation in greenhouses allows its continuous production. In this context, this research work focuses on the problem of identifying diseases in scenarios of tomato cultivation in greenhouses, where we have specific occurrences of diseases that are affected by regional climatic conditions. Brazil is a major producer of tomatoes, producing more than 3 million tons annually, with 8% of this production being made in the state of Paraná. This study was developed through data collection in collaboration with greenhouse tomato producers from an important region in North Paraná. For this study, we created new datasets with two image sizes: the Tomato Leaf Image Dataset (TLID) with image sizes of 256x256 pixels and 15,256 images, and the Patch Tomato Leaf Image Dataset (PTLID) with patch sizes of 32x32 pixels and 227,218 images. Both datasets comprise seven classes, including four types of diseases, two combinations of diseases on the same leaf, and the healthy leaf. Machine Learning techniques have been widely used to identify plant diseases. This work presents two machine learning methods tested with both datasets. In the proposed models, we combine three convolutional neural networks, a customized CNN, VGG19, and Resnet50, and two voting classification methods using hard and soft decisions. The evaluation performed on the datasets showed that when the patches are used, the results improve significantly, reaching an accuracy of 90.48%. It is also possible to identify the stage of the disease.
Downloads
References
Ahmed, K., Shahidi, T. R., Irfanul Alam, S. M., and Momen, S. (2019). Rice leaf disease detection using machine learning techniques. In 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), pages 1-5. DOI: 10.1109/STI47673.2019.9068096.
Angelotti F, Ghini R, B. W. (2017). Como o aumento da temperatura interfere nas doenças de plantas. Embrapa., Brasília. Book.
Balasundram, S., Golhani, K., Shamshiri, R., and Vadamalai, G. (2020). Precision Agriculture Technologies for Management of Plant Diseases, pages 259-278. DOI: 10.1007/978-3-030-35955-3_13.
Bank, T. W. (2022). Agriculture and food. Available at : [link].
Bharadwaj, S., Midha, A., Sharma, S., Sidhu, G. S., and Kumar, R. (2024). Optical screening of citrus leaf diseases using label-free spectroscopic tools: A review. Journal of Agriculture and Food Research, 18:101303. DOI: https://doi.org/10.1016/j.jafr.2024.101303.
Brahimi, M., Kamel, B., and Moussaoui, A. (2017). Deep learning for tomato diseases: Classification and symptoms visualization. Applied Artificial Intelligence, 31:1-17. DOI: 10.1080/08839514.2017.1315516.
Burka, D., Puppe, C., Szepesváry, L., and Tasnádi, A. (2022). Voting: A machine learning approach. European Journal of Operational Research, 299(3):1003-1017. DOI: 10.1016/j.ejor.2021.10.005.
Campagnol R, Melo Simone da Costa, P. R. R. (2015). Cultivo de hortaliças em ambiente protegido. SENAR - Pr, Curitiba. Available at: [link].
Crammer, K., Singer, Y., Cristianini, N., Shawe-Taylor, J., and Williamson, B. (2002). On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res, 2. Available at: [link].
Cruz, Y. J., Rivas, M., Quiza, R., Villalonga, A., Haber, R. E., and Beruvides, G. (2021). Ensemble of convolutional neural networks based on an evolutionary algorithm applied to an industrial welding process. Computers in Industry, 133:103530. DOI: 10.1016/j.compind.2021.103530.
Food and of the United Nations, A. O. (2017). The future of food and agriculture – Trends and challenges. FAO, Rome. Book.
Gehlot, M. and Saini, M. L. (2020). Analysis of different cnn architectures for tomato leaf disease classification. In 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), pages 1-6. DOI: 10.1109/ICRAIE51050.2020.9358279.
Ghini, R., Hamada, E., and Bettiol, W. (2008). Climate change and plant diseases. Scientia Agricola, 65(spe):98–107. DOI: 10.1590/S0103-90162008000700015.
Ghini R, Hamada E, B. W. (2011). Impactos das mudanças climáticas sobre doenças de importantes culturas no Brasil. Embrapa Meio Ambiente.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778. DOI: 10.1109/CVPR.2016.90.
Hong, H., Lin, J., and Huang, F. (2020). Tomato disease detection and classification by deep learning. In 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), pages 25-29. DOI: 10.1109/ICBAIE49996.2020.00012.
Hughes, D. P. and Salathe, M. (2016). An open access repository of images on plant health to enable the development of mobile disease diagnostics. DOI: 10.48550/arXiv.1511.08060.
IBGE (2022). Instituto brasileiro de geografia e estatística. Available at: [link].
Khalid, A., Akbar, S., Hassan, S. A., Firdous, S., and Gull, S. (2023). Detection of tomato leaf disease using deep convolutional neural networks. In 2023 4th International Conference on Advancements in Computational Sciences (ICACS), pages 1-6. DOI: 10.1109/ICACS55311.2023.10089689.
Khanal, S., K C, K., Fulton, J., Shearer, S., and Ozkan, E. (2020). Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sensing, 12:3783. DOI: 10.3390/rs12223783.
Kini, A., Reddy, P., and Pai, S. (2023). Techniques of deep learning and image processing in plant leaf disease detection: a review. International Journal of Electrical and Computer Engineering (IJECE), 13:3029. DOI: 10.11591/ijece.v13i3.pp3029-3040.
Leite, G. L. D. and Fialho, A. (2018). Chapter 14 - protection of tomatoes using bagging technology and its role in ipm of arthropod pests. pages 305-311. DOI: https://doi.org/10.1016/B978-0-12-802441-6.00014-0.
Lopes, C. A. and Ávila, A. C. (2005). Doenças do tomateiro. Embrapa hortaliças, Brasília. Book.
Malunao, D. C., Tamargo, R. S., Sandil, R. C., Cunanan, C. F., Merin, J. V., and Jallorina, R. D. (2022). Deep convolutional neural networks-based machine vision system for detecting tomato leaf disease. In 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pages 1-5. DOI: 10.1109/CONECCT55679.2022.9865111.
Meeradevi, V, R., Mundada, M. R., Sawkar, S. P., Bellad, R. S., and Keerthi, P. S. (2020). Design and development of efficient techniques for leaf disease detection using deep convolutional neural networks. In 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), pages 153-158. DOI: 10.1109/DISCOVER50404.2020.9278067.
Omar, S., Jain, R., and Bali, V. (2022). Leaf disease detection using convolutional neural network. In 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON), volume 1, pages 53-56. DOI: 10.1109/COM-IT-CON54601.2022.9850950.
Pradhan, P. and Kumar, B. (2022). Automatic detection of tomato diseases using fine-tuned pre-trained deep learning models. In 2022 3rd International Conference for Emerging Technology (INCET), pages 1-5. DOI: 10.1109/INCET54531.2022.9825376.
Pulgar, F. J., Rivera, A. J., Charte, F., and del Jesus, M. J. (2017). On the impact of imbalanced data in convolutional neural networks performance. In Hybrid Artificial Intelligent Systems, pages 220-232, Cham. Springer International Publishing. DOI: 10.1007/978-3-319-59650-1_19.
Pushpa, B. R., Ashok, A., and A V, S. H. (2021). Plant disease detection and classification using deep learning model. In 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), pages 1285-1291. DOI: 10.1109/ICIRCA51532.2021.9544729.
Sakkarvarthi, G., Sathianesan, G. W., Murugan, V. S., Reddy, A. J., Jayagopal, P., and Elsisi, M. (2022). Detection and classification of tomato crop disease using convolutional neural network. Electronics, 11(21). DOI: 10.3390/electronics11213618.
Sardogan, M., Tuncer, A., and Ozen, Y. (2018). Plant leaf disease detection and classification based on cnn with lvq algorithm. In 2018 3rd International Conference on Computer Science and Engineering (UBMK), pages 382-385. DOI: 10.1109/UBMK.2018.8566635.
Sharma, P., Hans, P., and Gupta, S. C. (2020). Classification of plant leaf diseases using machine learning and image preprocessing techniques. In 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pages 480-484. DOI: 10.1109/Confluence47617.2020.9057889.
Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. DOI: 10.48550/arXiv.1409.1556.
Tan, L., Lu, J., and Jiang, H. (2021). Tomato leaf diseases classification based on leaf images: A comparison between classical machine learning and deep learning methods. AgriEngineering, 3:542-558. DOI: 10.3390/agriengineering3030035.
Tarik, M. I., Akter, S., Mamun, A. A., and Sattar, A. (2021). Potato disease detection using machine learning. In 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), pages 800-803. DOI: 10.1109/ICICV50876.2021.9388606.
Tm, P., Pranathi, A., SaiAshritha, K., Chittaragi, N. B., and Koolagudi, S. G. (2018). Tomato leaf disease detection using convolutional neural networks. In 2018 Eleventh International Conference on Contemporary Computing (IC3), pages 1-5. DOI: 10.1109/IC3.2018.8530532.
Turkoglu, M., Yanikoglu, B., and Hanbay, D. (2022). Plantdiseasenet: convolutional neural network ensemble for plant disease and pest detection. Signal, Image and Video Processing, 16:1-9. DOI: 10.1007/s11760-021-01909-2.
Vapnik, V. (1995). The nature of statistical learning theory. Springer, Berlin. Book.
Vida, J. B., Zambolim, L., Tessmann, D. J., Brandão Filho, J. U. T., Verzignassi, J. R., and Caixeta, M. P. (2004). Manejo de doenças de plantas em cultivo protegido. Fitopatologia brasileira, 29:355-372. DOI: 10.1590/S0100-41582004000400001.
Vox, G., Teitel, M., Pardossi, A., Minuto, A., Tinivella, F., and Schettini, E. (2010). Sustainable greenhouse systems. Sustainable Agriculture: Technology, Planning and Management, pages 1-80. Available at:[link].
X. Dong, Z. Y., W. Cao, Y. S., and Ma, Q. (2020). A survey on ensemble learning. In Front. Comput. Sci., number 14, page 241–258. DOI: 10.1007/s11704-019-8208-z.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Grasielli B. Zimmermann, Marcelo E. Pellenz, Yandre M. G. Costa, Alceu de S. Britto Jr.

This work is licensed under a Creative Commons Attribution 4.0 International License.