Elevating Virtual Reality Experiences with Olfactory Integration: A Preliminary Review
DOI:
https://doi.org/10.5753/jbcs.2024.4632Keywords:
Virtual Reality, Artificial Intelligence, Olfactory, Brain–Computer Interface, Olfactory Virtual RealismAbstract
Virtual reality (VR) provides immersive audio-visual experiences but often overlook olfactory senses, which are crucial for human perception and cognition. Smell enhances object recognition, visual spatial attention, and evaluation methods for spatial attention deficits. The sense of smell relies on the olfactory nerve to create a direct link between external stimuli and the limbic system, a brain network involved in regulating emotions such as sadness, anger, joy, and fear, as well as controlling physiological responses like the startle reflex, vocal intonation, pain perception, and memory processes. Artificial intelligence (AI) is essential for integrating odors into VR, enhancing contextual understanding and synchronizing smells with plot developments. Current multi-modal approaches highlight the need for integrated models combining images, texts, and smells. Olfactory cues can enhance memory retention and recall, benefiting educational and training applications. Incorporating scents into immersive technologies creates more realistic and engaging experiences, crucial for fields like healthcare, military training, and education. In this preliminary review, we will explore Olfactory Virtual Reality (OVR) technologies, AI applications, available devices, and future perspectives in the field. Additionally, we will discuss the challenges facing this technology, including issues of delay, size, and the limited range of available odors. A new wearable interface featuring miniaturized odor generators (OGs) and AI algorithms enables rapid responses and low power consumption, achieving latency-free mixed reality. OVR research shows promising applications in treating Post-Traumatic Stress Disorder (PTSD), alleviating anxiety, and enhancing immersion. Recent advancements, such as compact OGs and computer-controlled olfactory stimulation, represent significant progress in multisensory communication technology.
Downloads
References
Achebouche, R., Tromelin, A., Audouze, K., and Taboureau, O. (2022). Application of artificial intelligence to decode the relationships between smell, olfactory receptors and small molecules. Sci. Rep., 12(1):18817. DOI: https://doi.org/10.1038/s41598-022-23176-y.
Appel, L., Ali, S., Narag, T., Mozeson, K., Pasat, Z., Orchanian-Cheff, A., and Campos, J. L. (2021). Virtual reality to promote wellbeing in persons with dementia: A scoping review. J. Rehabil. Assist. Technol. Eng., 8:20556683211053952. DOI: https://doi.org/10.1177/20556683211053952.
Barfield, W. and Danas, E. (1996). Comments on the use of olfactory displays for virtual environments. Presence (Camb.), 5(1):109-121. DOI: https://doi.org/10.1162/pres.1996.5.1.109.
Barry, D. T. (2018). Adaptation, artificial intelligence, and physical medicine and rehabilitation. PM R, 10(9 Suppl 2):S131-S143. DOI: https://doi.org/10.1016/j.pmrj.2018.04.013.
Baus, O. and Bouchard, S. (2010). The sense of olfaction: Its characteristics and its possible applications in virtual environments. J CyberTherapy Rehab, 3:31-50. Available at: [link].
Baus, O. and Bouchard, S. (2017). Exposure to an unpleasant odour increases the sense of presence in virtual reality. Virtual Real., 21(2):59-74. DOI: https://doi.org/10.1007/s10055-016-0299-3.
Berger, R. G. (2012). Scent and chemistry. the molecular world of odors. by günther ohloff, wilhelm pickenhagen and philip kraft. Angew. Chem. Int. Ed Engl., 51(13):3058-3058. DOI: https://doi.org/10.1002/ffj.3131.
Bockbrader, M. A., Francisco, G., Lee, R., Olson, J., Solinsky, R., and Boninger, M. L. (2018). Brain computer interfaces in rehabilitation medicine. PM R, 10(9 Suppl 2):S233-S243. DOI: https://doi.org/10.1016/j.pmrj.2018.05.028.
Bordegoni, M., Carulli, M., and Bader, S. (2019). Wearable olfactory display for museum exhibitions. In 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). IEEE. DOI: https://doi.org/10.1109/VR.2006.147.
Carrieri, C. R., Rodrigues, A., Lopes, P. S., Andréo-Filho, N., Santos, Y. R., Cairolli, O. B., Stevic, M., Duque, M. D., Minarini, P. R. R., and Leite-Silva, V. R. (2022). Sensory priming: The olfaction as an attention inducer. Braz. J. Pharm. Sci., 58. DOI: https://doi.org/10.1590/s2175-97902022e20335.
Covaci, A., Trestian, R., Saleme, E. B., Comsa, I.-S., Assres, G., Santos, C. A. S., and Ghinea, G. (2019). 360° mulsemedia: A way to improve subjective QoE in 360° videos. In Proceedings of the 27th ACM International Conference on Multimedia, New York, NY, USA. ACM. DOI: https://doi.org/10.1145/3343031.3350954.
Cowan, K., Ketron, S., Kostyk, A., and Kristofferson, K. (2023). Can you smell the (virtual) roses? the influence of olfactory cues in virtual reality on immersion and positive brand responses. J. Retail., 99(3):385-399. DOI: https://doi.org/10.1016/j.jretai.2023.07.004.
Cowan, K., Spielmann, N., Horn, E., and Griffart, C. (2021). Perception is reality… how digital retail environments influence brand perceptions through presence. J. Bus. Res., 123:86-96. DOI: https://doi.org/10.1016/j.jbusres.2020.09.058.
Croy, I., Nordin, S., and Hummel, T. (2014). Olfactory disorders and quality of life-an updated review. Chem. Senses, 39(3):185-194. DOI: https://doi.org/10.1093/chemse/bjt072.
de Paiva Guimarães, M., Martins, J. M., Dias, D. R. C., Guimarães, R. d. F. R., and Gnecco, B. B. (2022). An olfactory display for virtual reality glasses. Multimed. Syst., 28(5):1573-1583. DOI: https://doi.org/10.1007/s00530-022-00908-8.
Dobbelstein, D., Herrdum, S., and Rukzio, E. (2017). inscent: a wearable olfactory display as an amplification for mobile notifications. In Proceedings of the 2017 ACM International Symposium on Wearable Computers, New York, NY, USA. ACM. DOI: https://doi.org/10.1145/3123021.3123035.
Doty, R. L. (2019). Psychophysical testing of smell and taste function. Handb. Clin. Neurol., 164:229-246. DOI: https://doi.org/10.1016/b978-0-444-63855-7.00015-0.
Doty, R. L., Deems, D. A., and Stellar, S. (1988). Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology, 38(8):1237-1244. DOI: https://doi.org/10.1212/wnl.38.8.1237.
Dozio, N., Maggioni, E., Pittera, D., Gallace, A., and Obrist, M. (2021). May I smell your attention: Exploration of smell and sound for visuospatial attention in virtual reality. Front. Psychol., 12:671470. DOI: https://doi.org/10.3389/fpsyg.2021.671470.
Elder, R. S. and Krishna, A. (2022). A review of sensory imagery for consumer psychology. J. Consum. Psychol., 32(2):293-315. DOI: https://doi.org/10.1002/jcpy.1242.
Flavián, C., Ibáñez-Sánchez, S., and Orús, C. (2019). The impact of virtual, augmented and mixed reality technologies on the customer experience. J. Bus. Res., 100:547-560. DOI: https://doi.org/10.1016/j.jbusres.2018.10.050.
Flavián, C., Ibáñez-Sánchez, S., and Orús, C. (2021). The influence of scent on virtual reality experiences: The role of aroma-content congruence. J. Bus. Res., 123:289-301. DOI: https://doi.org/10.1016/j.jbusres.2020.09.036.
Floyd Mueller, F., Dwyer, T., Goodwin, S., Marriott, K., Deng, J., D. Phan, H., Lin, J., Chen, K.-T., Wang, Y., and Ashok Khot, R. (2021). Data as delight: Eating data. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, New York, NY, USA. ACM. DOI: https://doi.org/10.1145/3411764.3445218.
Fournel, A., Ferdenzi, C., Sezille, C., Rouby, C., and Bensafi, M. (2016). Multidimensional representation of odors in the human olfactory cortex. Hum. Brain Mapp., 37(6):2161-2172. DOI: https://doi.org/10.1002/hbm.23164.
Gao, Z., Chen, S., Li, R., Lou, Z., Han, W., Jiang, K., Qu, F., and Shen, G. (2021). An artificial olfactory system with sensing, memory and self-protection capabilities. Nano Energy, 86(106078):106078. DOI: https://doi.org/10.1016/j.nanoen.2021.106078.
Gromer, D., Madeira, O., Gast, P., Nehfischer, M., Jost, M., Müller, M., Mühlberger, A., and Pauli, P. (2018). Height simulation in a virtual reality CAVE system: Validity of fear responses and effects of an immersion manipulation. Front. Hum. Neurosci., 12:372. DOI: https://doi.org/10.3389/fnhum.2018.00372.
Gupta, R., Mittal, A., Agrawal, V., Gupta, S., Gupta, K., Jain, R. R., Garg, P., Mohanty, S. K., Sogani, R., Chhabra, H. S., et al. (2021). Odorify: a conglomerate of artificial intelligence-driven prediction engines for olfactory decoding. Journal of Biological Chemistry, 297(2). DOI: https://doi.org/10.1016/j.jbc.2021.100956.
Hariri, S., Mustafa, N. A., Karunanayaka, K., and Cheok, A. D. (2016). Electrical stimulation of olfactory receptors for digitizing smell. In Proceedings of the 2016 workshop on Multimodal Virtual and Augmented Reality, New York, NY, USA. ACM. DOI: https://doi.org/10.1145/3001959.3001964.
Harris, N. M., Lindeman, R. W., Bah, C. S. F., Gerhard, D., and Hoermann, S. (2023). Eliciting real cravings with virtual food: Using immersive technologies to explore the effects of food stimuli in virtual reality. Front. Psychol., 14:956585. DOI: https://doi.org/10.3389/fpsyg.2023.956585.
Hasegawa, K., Qiu, L., and Shinoda, H. (2018). Midair ultrasound fragrance rendering. IEEE Trans. Vis. Comput. Graph., 24(4):1477-1485. DOI: https://doi.org/10.1109/TVCG.2018.2794118.
Herrera, N. S. and McMahan, R. P. (2014). Development of a simple and low-cost olfactory display for immersive media experiences. In Proceedings of the 2nd ACM International Workshop on Immersive Media Experiences, New York, NY, USA. ACM. DOI: https://doi.org/10.1145/2660579.2660584.
Holloman, A. K. and Crawford, C. S. (2022). Can you smell me now. In Proceedings of the ACM Southeast Conference, New York, NY, USA. ACM. DOI: https://doi.org/10.1145/3476883.3520225.
Honaman, J. (2024). The future of flavor: Exploring ai’s role in food design and development. Available online [link].
Ischer, M., Baron, N., Mermoud, C., Cayeux, I., Porcherot, C., Sander, D., and Delplanque, S. (2014). How incorporation of scents could enhance immersive virtual experiences. Front. Psychol., 5:736. DOI: https://doi.org/10.3389/fpsyg.2014.00736.
Johnston, L. (2022). L’oreal’s yves saint laurent marries ai with eeg for fragrance perfection. Available online [link].
Jones Moore, L., Bowers, C., Washburn, D., Cortes, A., and Satya, R. (2004). The effect of olfaction on immersion into virtual environments" in human performance, situation awareness and automation: Issues and considerations for the 21st century. Lawrence Erlbaum Associates, pages 282-285. Available online [link].
Kadohisa, M. (2013). Effects of odor on emotion, with implications. Front. Syst. Neurosci., 7:66. DOI: https://doi.org/10.3389%2Ffnsys.2013.00066.
Karunanayaka, K., Cheok, A. D., and Vedadi, S. (2023). Digital smell: Toward electrically reproducing artificial smell sensations. IEEE Access, 11:50659-50670. DOI: https://doi.org/10.1109/ACCESS.2023.3278093.
Kaye, J. j. (2004). Making scents: aromatic output for hci. Interactions, 11(1):48-61. DOI: https://doi.org/10.1145/962342.964333.
Keller, A., Gerkin, R. C., Guan, Y., Dhurandhar, A., Turu, G., Szalai, B., Mainland, J. D., Ihara, Y., Yu, C. W., Wolfinger, R., Vens, C., Schietgat, L., De Grave, K., Norel, R., DREAM Olfaction Prediction Consortium, Stolovitzky, G., Cecchi, G. A., Vosshall, L. B., and Meyer, P. (2017). Predicting human olfactory perception from chemical features of odor molecules. Science, 355(6327):820-826. DOI: https://doi.org/10.1126/science.aal2014.
Keller, A. and Vosshall, L. B. (2016). Olfactory perception of chemically diverse molecules. BMC Neurosci., 17(1). DOI: https://doi.org/10.1186/s12868-016-0287-2.
Khamsi, R. (2022). Unpicking the link between smell and memories. Nature, 606(7915):S2-S4. DOI: https://doi.org/10.1038/d41586-022-01626-x.
Kowalewski, J. and Ray, A. (2020). Predicting human olfactory perception from activities of odorant receptors. iScience, 23(8):101361. DOI: https://doi.org/10.1016/j.isci.2020.101361.
Kuhlmann, K., Tschapek, A., Wiese, H., Eisenacher, M., Meyer, H. E., Hatt, H. H., Oeljeklaus, S., and Warscheid, B. (2014). The membrane proteome of sensory cilia to the depth of olfactory receptors. Mol. Cell. Proteomics, 13(7):1828-1843. DOI: https://doi.org/10.1074/mcp.m113.035378.
Laffort, P. and Gortan, C. (1987). Olfactory properties of some gases in hyperbaric atmosphere. Chem. Senses, 12(1):139-142. DOI: https://doi.org/10.1093/chemse/12.1.139.
Lee, B. K., Mayhew, E. J., Sanchez-Lengeling, B., Wei, J. N., Qian, W. W., Little, K. A., Andres, M., Nguyen, B. B., Moloy, T., Yasonik, J., Parker, J. K., Gerkin, R. C., Mainland, J. D., and Wiltschko, A. B. (2023). A principal odor map unifies diverse tasks in olfactory perception. Science, 381(6661):999-1006. DOI: https://doi.org/10.1126/science.ade4401.
Li, W., Zinbarg, R. E., Boehm, S. G., and Paller, K. A. (2008). Neural and behavioral evidence for affective priming from unconsciously perceived emotional facial expressions and the influence of trait anxiety. J. Cogn. Neurosci., 20(1):95-107. DOI: https://doi.org/10.1162/jocn.2008.20006.
Licon, C. C., Manesse, C., Dantec, M., Fournel, A., and Bensafi, M. (2018). Pleasantness and trigeminal sensations as salient dimensions in organizing the semantic and physiological spaces of odors. Sci. Rep., 8(1). DOI: https://doi.org/10.1038/s41598-018-26510-5.
Liu, Y., Jia, S., Yiu, C. K., Park, W., Chen, Z., Nan, J., Huang, X., Chen, H., Li, W., Gao, Y., Song, W., Yokota, T., Someya, T., Zhao, Z., Li, Y., and Yu, X. (2024). Intelligent wearable olfactory interface for latency-free mixed reality and fast olfactory enhancement. Nat. Commun., 15(1):4474. DOI: https://doi.org/10.1038/s41467-024-48884-z.
Liu, Y., Yiu, C. K., Zhao, Z., Park, W., Shi, R., Huang, X., Zeng, Y., Wang, K., Wong, T. H., Jia, S., Zhou, J., Gao, Z., Zhao, L., Yao, K., Li, J., Sha, C., Gao, Y., Zhao, G., Huang, Y., Li, D., Guo, Q., Li, Y., and Yu, X. (2023). Soft, miniaturized, wireless olfactory interface for virtual reality. Nat. Commun., 14(1):2297. DOI: https://doi.org/10.1038/s41467-023-37678-4.
Lyu, K., Brambilla, A., Globa, A., and de Dear, R. (2023a). An immersive multisensory virtual reality approach to the study of human-built environment interactions. Autom. Constr., 150(104836):104836. DOI: https://doi.org/10.1016/j.autcon.2023.104836.
Lyu, K., Globa, A., Brambilla, A., and de Dear, R. (2023b). An immersive multisensory virtual reality approach to the study of human-built environment interactions: Technical workflows. MethodsX, 11(102279):102279. DOI: https://doi.org/10.1016/j.mex.2023.102279.
Maggioni, E., Cobden, R., Dmitrenko, D., Hornbaek, K., and Obrist, M. (2020). Smell space: Mapping out the olfactory design space for novel interactions. ACM Trans. Comput. Hum. Interact., 27(5):1-26. DOI: https://doi.org/10.1145/3402449.
Maggioni, E., Cobden, R., Dmitrenko, D., and Obrist, M. (2018). Smell-o-message: Integration of olfactory notifications into a messaging application to improve users' performance. In Proceedings of the 20th ACM International Conference on Multimodal Interaction, New York, NY, USA. ACM. DOI: https://doi.org/10.1145/3242969.3242975.
Malnic, B., Hirono, J., Sato, T., and Buck, L. B. (1999). Combinatorial receptor codes for odors. Cell, 96(5):713-723. DOI: https://doi.org/10.1016/s0092-8674(00)80581-4.
Micaroni, L., Carulli, M., Ferrise, F., Gallace, A., and Bordegoni, M. (2019). An olfactory display to study the integration of vision and olfaction in a virtual reality environment. J. Comput. Inf. Sci. Eng., 19(3):031015. DOI: https://doi.org/10.1115/1.4043068.
Morrin, M. and Ratneshwar, S. (2003). Does it make sense to use scents to enhance brand memory? J. Mark. Res., 40(1):10-25. DOI: https://doi.org/10.1509/jmkr.40.1.10.19128.
Munyan, 3rd, B. G., Neer, S. M., Beidel, D. C., and Jentsch, F. (2016). Olfactory stimuli increase presence in virtual environments. PLoS One, 11(6):e0157568. DOI: https://doi.org/10.1371/journal.pone.0157568.
Nakamoto, T. and Yoshikawa, K. (2006). Movie with scents generated by olfactory display using solenoid valves. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E89-A(11):3327-3332. DOI: https://doi.org/10.1109/VR.2006.102.
Narciso, D., Melo, M., Vasconcelos-Raposo, J., and Bessa, M. (2020). The impact of olfactory and wind stimuli on 360 videos using head-mounted displays. ACM Trans. Appl. Percept., 17(1):1-13. DOI: https://doi.org/10.1145/3343031.3350954.
Niedenthal, S., Fredborg, W., Lundén, P., Ehrndal, M., and Olofsson, J. K. (2023). A graspable olfactory display for virtual reality. Int. J. Hum. Comput. Stud., 169(102928):102928. DOI: https://doi.org/10.1016/j.ijhcs.2022.102928.
Niedenthal, S., Lunden, P., Ehrndal, M., and Olofsson, J. K. (2019). A handheld olfactory display for smell-enabled VR games. In 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). IEEE. DOI: https://doi.org/10.1109/ISOEN.2019.8823162.
Panagiotakopoulos, D., Marentakis, G., Metzitakos, R., Deliyannis, I., and Dedes, F. (2022). Digital scent technology: Toward the internet of senses and the metaverse. IT Prof., 24(3):52-59. DOI: https://doi.org/10.1109/MITP.2022.3177292.
Patnaik, B., Batch, A., and Elmqvist, N. (2018). Information olfactation: Harnessing scent to convey data. IEEE Trans. Vis. Comput. Graph., 25(1):726-736. DOI: https://doi.org/10.1109/TVCG.2018.2865237.
Persky, S. and Dolwick, A. P. (2020). Olfactory perception and presence in a virtual reality food environment. Front. Virtual Real., 1. DOI: https://doi.org/10.3389/frvir.2020.571812.
Pizzi, G., Vannucci, V., and Aiello, G. (2020). Branding in the time of virtual reality: Are virtual store brand perceptions real? J. Bus. Res., 119:502-510. DOI: https://doi.org/10.1016/j.jbusres.2019.11.063.
Ranasinghe, N., Jain, P., Thi Ngoc Tram, N., Koh, K. C. R., Tolley, D., Karwita, S., Lien-Ya, L., Liangkun, Y., Shamaiah, K., Eason Wai Tung, C., Yen, C. C., and Do, E. Y.-L. (2018). Season traveller: Multisensory narration for enhancing the virtual reality experience. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, New York, NY, USA. ACM. DOI: https://doi.org/10.1145/3173574.3174151.
Ranasinghe, N., Nakatsu, R., Nii, H., and Gopalakrishnakone, P. (2012). Tongue mounted interface for digitally actuating the sense of taste. In 2012 16th International Symposium on Wearable Computers. IEEE. DOI: https://doi.org/10.1109/ISWC.2012.16.
Ravia, A., Snitz, K., Honigstein, D., Finkel, M., Zirler, R., Perl, O., Secundo, L., Laudamiel, C., Harel, D., and Sobel, N. (2020). A measure of smell enables the creation of olfactory metamers. Nature, 588(7836):118-123. DOI: https://doi.org/10.1038/s41586-020-2891-7.
S Herz, R. (2021). Olfactory virtual reality: A new frontier in the treatment and prevention of posttraumatic stress disorder. Brain Sci., 11(8):1070. DOI: https://doi.org/10.3390/brainsci11081070.
Saini, K. and Ramanathan, V. (2022). Predicting odor from molecular structure: a multi-label classification approach. Scientific reports, 12(1):13863. DOI: https://doi.org/10.1038/s41598-022-18086-y.
Satava, R. M., Morgan, K., Sieburg, H. B., Mattheus, R., and Christensen, J. P., editors (1995). Interactive technology and the new paradigm for healthcare. Studies in Health Technology and Informatics. IOS Press, Amsterdam, NY. Book.
Seah, S. A., Martinez Plasencia, D., Bennett, P. D., Karnik, A., Otrocol, V. S., Knibbe, J., Cockburn, A., and Subramanian, S. (2014). SensaBubble: a chrono-sensory mid-air display of sight and smell. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New York, NY, USA. ACM. DOI: https://doi.org/10.1145/2556288.2557087.
Sehad, N., Bariah, L., Hamidouche, W., Hellaoui, H., Jäntti, R., and Debbah, M. (2024). Generative AI for immersive communication: The next frontier in internet-of-senses through 6G. DOI: https://doi.org/10.48550/arXiv.2404.01713.
Sharma, A., Kumar, R., Ranjta, S., and Varadwaj, P. K. (2021). SMILES to smell: Decoding the structure-odor relationship of chemical compounds using the deep neural network approach. J. Chem. Inf. Model., 61(2):676-688. DOI: https://doi.org/10.1021/acs.jcim.0c01288.
Sharma, A., Saha, B. K., Kumar, R., and Varadwaj, P. K. (2022). OlfactionBase: a repository to explore odors, odorants, olfactory receptors and odorant-receptor interactions. Nucleic Acids Res., 50(D1):D678-D686. DOI: https://doi.org/10.1093/nar/gkab763.
Slater, M. and Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. Front. Robot. AI, 3. DOI: https://doi.org/10.3389/frobt.2016.00074.
Smith, S. A. and Mulligan, N. W. (2021). Immersion, presence, and episodic memory in virtual reality environments. Memory, 29(8):983-1005. DOI: https://doi.org/10.1080/09658211.2021.1953535.
Snitz, K., Yablonka, A., Weiss, T., Frumin, I., Khan, R. M., and Sobel, N. (2013). Predicting odor perceptual similarity from odor structure. PLoS Comput. Biol., 9(9):e1003184. DOI: https://doi.org/10.1371/journal.pcbi.1003184.
Spangenberg, E. R., Grohmann, B., and Sprott, D. E. (2005). It's beginning to smell (and sound) a lot like christmas: the interactive effects of ambient scent and music in a retail setting. J. Bus. Res., 58(11):1583-1589. DOI: https://doi.org/10.1016/j.jbusres.2004.09.005.
Spence, C., Obrist, M., Velasco, C., and Ranasinghe, N. (2017). Digitizing the chemical senses: Possibilities & pitfalls. Int. J. Hum. Comput. Stud., 107:62-74. DOI: https://doi.org/10.1016/j.ijhcs.2017.06.003.
Stevenson, R. J. (2010). An initial evaluation of the functions of human olfaction. Chem. Senses, 35(1):3-20. DOI: https://doi.org/10.1093/chemse/bjp083.
Stewart, J. (2022). Vr still stinks because it doesn’t smell. Available at: [link].
Sugimoto, S., Noguchi, D., Bannnai, Y., and Okada, K. (2010). Ink jet olfactory display enabling instantaneous switches of scents. In Proceedings of the 18th ACM international conference on Multimedia, New York, NY, USA. ACM. DOI: https://doi.org/10.1145/1873951.1873994.
Technology, O. (2020). Scent is now digital. Available at : [link].Accessed 20-01-2024.
Tewell, J. and Ranasinghe, N. (2024). A review of olfactory display designs for virtual reality environments. ACM Comput. Surv.. DOI: https://doi.org/10.1145/3665243.
the guardian (2022). How AI and brain science are helping perfumiers create fragrances -- theguardian.com. Available at: [link].Accessed 20-04-2024.
Thomas-Danguin, T., Sinding, C., Romagny, S., El Mountassir, F., Atanasova, B., Le Berre, E., Le Bon, A.-M., and Coureaud, G. (2014). The perception of odor objects in everyday life: a review on the processing of odor mixtures. Front. Psychol., 5:504. DOI: https://doi.org/10.3389/fpsyg.2014.00504.
Tomasi, D. (2020). Olfactory virtual reality (ovr) for wellbeing and reduction of stress, anxiety and pain. Journal of Medical Research and Health Sciences, 4(3):1212-1221. DOI: http://dx.doi.org/10.15520/jmrhs.v4i3.322.
Tominaga, K., Honda, S., Ohsawa, T., Shigeno, H., Okada, K., and Matsushita, Y. (2002). ``friend park''-expression of the wind and the scent on virtual space. In Proceedings Seventh International Conference on Virtual Systems and Multimedia. IEEE Comput. Soc. DOI: https://doi.org/10.1109/VSMM.2001.969706.
Verbeurgt, C., Wilkin, F., Tarabichi, M., Gregoire, F., Dumont, J. E., and Chatelain, P. (2014a). Profiling of olfactory receptor gene expression in whole human olfactory mucosa. PLoS One, 9(5):e96333. DOI: https://doi.org/10.1371/journal.pone.0096333.
Verbeurgt, C., Wilkin, F., Tarabichi, M., Gregoire, F., Dumont, J. E., and Chatelain, P. (2014b). Profiling of olfactory receptor gene expression in whole human olfactory mucosa. PLoS One, 9(5):e96333. DOI: https://doi.org/10.1371/journal.pone.0096333.
Wang, Y., Amores, J., and Maes, P. (2020). On-Face olfactory interfaces. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, New York, NY, USA. ACM. DOI: https://doi.org/10.1145/3313831.3376737.
Wen, D., Fan, Y., Hsu, S.-H., Xu, J., Zhou, Y., Tao, J., Lan, X., and Li, F. (2021). Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review. Ann. Phys. Rehabil. Med., 64(1):101404. DOI: https://doi.org/10.1016/j.rehab.2020.03.015.
Yamada, T., Yokoyama, S., Tanikawa, T., Hirota, K., and Hirose, M. (2006). Wearable olfactory display: Using odor in outdoor environment. In IEEE Virtual Reality Conference (VR 2006). IEEE. DOI: https://doi.org/10.1109/VR.2006.147.
Zarzo, M. (2007). The sense of smell: molecular basis of odorant recognition. Biol. Rev. Camb. Philos. Soc., 82(3):455-479. DOI: https://doi.org/10.1111/j.1469-185x.2007.00019.x.
Zavatone-Veth, J. A., Masset, P., Tong, W. L., Zak, J. D., Murthy, V. N., and Pehlevan, C. (2023). Neural circuits for fast poisson compressed sensing in the olfactory bulb. bioRxiv. DOI: 10.1101/2023.06.21.545947.
Zhang, Y., Gao, P., Kang, F., Li, J., Liu, J., Lu, Q., and Xu, Y. (2024). OdorAgent: Generate odor sequences for movies based on large language model. In 2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR). IEEE. DOI: https://doi.org/10.1109/VR58804.2024.00034.
Zhu, J., Snowden, J. C., Verdejo, J., Chen, E., Zhang, P., Ghaednia, H., Schwab, J. H., and Mueller, S. (2021). EIT-kit: An electrical impedance tomography toolkit for health and motion sensing. In The 34th Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA. ACM. DOI: https://doi.org/10.1145/3472749.3474758.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Meryck Felipe Brito da Silva, Igor Henrique Sanches, Joyce Villa Verde Bastos Borba, Ana Carolina de Amorim Barros, Francisco Lucas Feitosa, Rodrigo Mendes de Carvalho, Arlindo Rodrigues Galvão Filho, Carolina Horta Andrade
This work is licensed under a Creative Commons Attribution 4.0 International License.