A baropodometric analysis of postural therapy supported by immersive virtual reality
DOI:
https://doi.org/10.5753/jbcs.2024.4657Keywords:
Virtual Reality, Baropodometry, Scoliosis, Postural Control, Postural AssessmentAbstract
Virtual Reality (VR) can support postural therapies through proprioceptive assistance and engaging interactive features. Plantar pressure measurements are critical for accurate and individualized diagnosis of gait and posture. In a previous work, we developed an immersive VR environment to support postural therapy and conducted a user study. This study expands on previous research and aims to investigate the impact of postural therapy supported by immersive VR technology, compared to a traditional method. Our analysis utilizes unexplored baropodometric data collected during supervised therapy sessions in our prior work. Based on our current understanding, this study represents the pioneering exploration of combining baropodometric analysis with immersive VR technology to support postural therapy. In the experiment, healthy students (n = 22) with an average age of 12 years were randomly assigned to either an experimental or a control group. The experimental group underwent the therapeutic intervention using immersive VR, while the control group followed the same protocol without VR assistance. Baropodometric data were collected before and after the sessions and analyzed using the Wilcoxon test. Both groups showed postural improvements after the intervention, particularly in reducing foot pressure imbalances between the left and right feet; however, a statistical analysis indicated that VR-assisted therapy demonstrated more noticeable improvements in baropodometric parameters regarding weight and rearfoot weight distributions, as well as maximum foot pressure. Our findings reinforce the potential of integrating VR technology and baropodometric parameters to enhance therapeutic outcomes. This combination can serve as a complementary tool in clinical and research contexts, with the aim of improving diagnosis and treatment in postural therapy.
Downloads
References
Alves, R., Borel, W. P., Rossi, B. P., Vicente, E. J. A. D., Chagas, P. S. d. C., and Felício, D. C. (2018). Test-retest reliability of baropodometry in young asyntomatic individuals during semi static and dynamic analysis. Fisioterapia em Movimento, 31(e003114):1-7. DOI: 10.1590/1980-5918.031.ao14.
Azevedo, R., Teixeira, N., Abade, E., and Carvalho, A. (2016). Effects of noise on postural stability when in the standing position. Work (Reading, Mass.), 54(1):87-91. DOI: 10.3233/wor-162280.
Bacha, I. L., Benetti, F. A., and Greve, J. M. D. (2015). Baropodometric analyses of patients before and after bariatric surgery. Clinics, 70(11):743-747. DOI: 10.6061/clinics/2015(11)05.
Baumfeld, D., Baumfeld, T., da Rocha, R. L., Macedo, B., Raduan, F., Zambelli, R., Alves Silva, T. A., and Nery, C. (2017). Reliability of baropodometry on the evaluation of plantar load distribution: a transversal study. BioMed research international, 2017(5925137):1-4. DOI: 10.1155/2017/5925137.
Baumfeld, T., Baumfeld, D., Dias, C., and Nery, C. (2018). Advances of baropodometry in human health. Annals of Musculoskeletal Disorders, 2(2):1011. Available online [link].
Cano-Mañas, M. J., Collado-Vázquez, S., Rodríguez Hernández, J., Muñoz Villena, A. J., and Cano-de-la Cuerda, R. (2020). Effects of video-game based therapy on balance, postural control, functionality, and quality of life of patients with subacute stroke: a randomized controlled trial. Journal of Healthcare Engineering, 2020(5480315):1-11. DOI: 10.1155/2020/5480315.
Casanova, M. S., Muñoz, J. E., Henao, O. A., and Lopez, D. S. (2015). Exergames as a tool for the assessment of postural balance in a patient with multiple sclerosis: The role of biomechanical analysis in the quantification of movement. In 2015 10th Computing Colombian Conference (10CCC), pages 261-268. DOI: 10.1109/ColumbianCC.2015.7333424.
Cavanagh, P. R., Rodgers, M. M., and Liboshi, A. (1987). Pressure distribution under symptom-free feet during barefoot standing. Foot & ankle, 7(5):262-278. DOI: 10.1177/107110078700700502.
Ciccarelli, A., Nobili, C., Mannacio, E., and Ripani, M. (2015). Morphology of spine and footprint in athletes from different sports: an integrate approach to evaluate posture. Italian Journal of Anatomy and Embryology, 119(1):1. Available online [link].
Costa, R. M., da Silva, J. L. V., Marconato, G., Morais, S. C. D. d., and Rocha, M. T. B. (2019). Static electronic baropodometry in patients with metatarsalgia. Scientific Journal of the Foot & Ankle, 13(2):124-128. DOI: 10.30795/scijfootankle.2019.v13.925.
Czerwosz, L., Blaszczyk, J., Mraz, M., and Curzytek, M. (2009). Application of virtual reality in postural stability rehabilitation. In 2009 Virtual Rehabilitation International Conference, pages 214-214. DOI: 10.1109/ICVR.2009.5174252.
de Faria Borges, L. C. L., Filgueiras, L. V. L., Maciel, C., and Pereira, V. C. (2014). The life cycle of a customized communication device for a child with cerebral palsy: contributions toward the PD4CAT method. Journal of the Brazilian Computer Society, 20(10):1-23. DOI: 10.1186/1678-4804-20-10.
de Oliveira Almeida, P., Prudente, G. F. G., de Sá, F. E., Lima, L. A. O., Jesus-Moraleida, F. R., and Viana-Cardoso, K. V. (2015). Postural and load distribution asymmetries in preschoolers. Motricidade, 11(4):58-70. DOI: 10.6063/motricidade.4033.
Dupuis, S., Fortin, C., Caouette, C., Leclair, I., and Aubin, C. (2018). Global postural re-education in pediatric idiopathic scoliosis: a biomechanical modeling and analysis of curve reduction during active and assisted self-correction. BMC Musculoskeletal Disorders, 19(1). DOI: 10.1186/s12891-018-2112-9.
Feka, K., Pomara, F., Russo, G., Piccione, M., Petrucci, M., Giustino, V., Messina, G., Iovane, A., Palma, A., and Bianco, A. (2019). How do sports affect static baropodometry? an observational study among women living in southern italy. Human Movement, 20(1):9-16. DOI: 10.5114/hm.2019.78091.
Fernández-Seguín, L. M., Diaz Mancha, J. A., Sánchez Rodríguez, R., Escamilla Martínez, E., Gómez Martín, B., and Ramos Ortega, J. (2014). Comparison of plantar pressures and contact area between normal and cavus foot. Gait & Posture, 39(2):789-792. DOI: 10.1016/j.gaitpost.2013.10.018.
Giacomozzi, C. (2010). Hardware performance assessment recommendations and tools for baropodometric sensor systems. Annali dell'Istituto superiore di sanità, 46(2):158-167. DOI: 10.4415/ANN_10_02_09.
Giacomozzi, C., Keijsers, N., Pataky, T., and Rosenbaum, D. (2012). International scientific consensus on medical plantar pressure measurement devices: Technical requirements and performance. Annali dell'Istituto Superiore di Sanità, 48(3):259-271. DOI: 10.4415/ANN_12_03_06.
Giardini, M., Nardone, A., Godi, M., Guglielmetti, S., Arcolin, I., Pisano, F., and Schieppati, M. (2018). Instrumental or physical-exercise rehabilitation of balance improves both balance and gait in parkinson’s disease. Neural Plasticity, 2018(5614242):1-18. DOI: 10.1155/2018/5614242.
Grissom, R. J. and Kim, J. J. (2012). Effect Sizes for Research: Univariate and Multivariate Applications. Routledge, New York, 2textsuperscriptnd edition. DOI: 10.4324/9780203803233.
Hoffman, H. G., Chambers, G. T., Meyer III, W. J., Arceneaux, L. L., Russell, W. J., Seibel, E. J., Richards, T. L., Sharar, S. R., and Patterson, D. R. (2011). Virtual Reality as an Adjunctive Non-pharmacologic Analgesic for Acute Burn Pain During Medical Procedures. Annals of Behavioral Medicine, 41(2):183-191. DOI: 10.1007/s12160-010-9248-7.
Howard, M. C. (2017). A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Computers in Human Behavior, 70:317-327. DOI: 10.1016/j.chb.2017.01.013.
Iunes, D. H., Rocha, C. B., Borges, N. C., Marcon, C. O., Pereira, V. M., and Carvalho, L. C. (2014). Self-care associated with home exercises in patients with type 2 diabetes mellitus. PLoS One, 9(12):e114151. DOI: 10.1371/journal.pone.0114151.
Jack, K., McLean, S. M., Moffett, J. K., and Gardiner, E. (2010). Barriers to treatment adherence in physiotherapy outpatient clinics: A systematic review. Manual Therapy, 15(3):220-228. DOI: 10.1016/j.math.2009.12.004.
Janicki, J. A. and Alman, B. (2007). Scoliosis: Review of diagnosis and treatment. Paediatrics & Child Health, 12(9):771-776. DOI: 10.1093/pch/12.9.771.
Janin, M. and Dupui, P. (2009). The effects of unilateral medial arch support stimulation on plantar pressure and center of pressure adjustment in young gymnasts. Neuroscience Letters, 461(3):245-248. DOI: 10.1016/j.neulet.2009.06.043.
Jerald, J. (2015). The VR Book: Human-Centered Design for Virtual Reality. Association for Computing Machinery and Morgan & Claypool Publishers. DOI: 10.1145/2792790.
Kelekis, A., Filippiadis, D. K., Vergadis, C., Tsitskari, M., Nasis, N., Malagari, A., and Kelekis, N. (2014). Comparative prospective study of load distribution projection among patients with vertebral fractures treated with percutaneous vertebroplasty and a control group of healthy volunteers. Cardiovascular and Interventional Radiology, 37(1):186-192. DOI: 10.1007/s00270-013-0614-2.
Koumbourlis, A. C. (2006). Scoliosis and the respiratory system. Paediatric Respiratory Reviews, 7(2):152-160. DOI: 10.1016/j.prrv.2006.04.009.
Lau, K. (2011). Your plan for natural scoliosis prevention and treatment. Createspace Independent Publishing Platform, Scotts Valley, California, 2textsuperscriptnd edition. Book.
LaViola Jr., J. J., Kruijff, E., McMahan, R. P., Bowman, D. A., and Poupyrev, I. (2017). 3D User Interfaces: Theory and Practice. Addison-Wesley Professional, Boston, 2 edition. Book.
Li, A., Monta no, Z., Chen, V. J., and Gold, J. I. (2011). Virtual reality and pain management: current trends and future directions. Pain Management, 1(2):147-157. DOI: 10.2217/pmt.10.15.
Ma, Q., Lin, H., Wang, L., Zhao, L., Chen, M., Wang, S., Rao, Z., and Luo, Y. (2020). Correlation between spinal coronal balance and static baropodometry in children with adolescent idiopathic scoliosis. Gait & Posture, 75:93-97. DOI: 10.1016/j.gaitpost.2019.10.003.
Martins, H. S., Lüdtke, D. D., César de Oliveira Araújo, J., Cidral-Filho, F. J., Inoue Salgado, A. S., Viseux, F., and Martins, D. F. (2019). Effects of core strengthening on balance in university judo athletes. Journal of Bodywork and Movement Therapies, 23(4):758-765. DOI: 10.1016/j.jbmt.2019.05.009.
Matsuda, S. and Demura, S. (2013). Age-related, interindividual, and right/left differences in anterior-posterior foot pressure ratio in preschool children. Journal of Physiological Anthropology, 32(8):1-7. DOI: 10.1186/1880-6805-32-8.
Mendrin, N., Lynn, S. K., Griffith-Merritt, H. K., and Noffal, G. J. (2016). Progressions of isometric core training. Strength and Conditioning Journal, 38(4):50-65. DOI: 10.1519/SSC.0000000000000233.
Menezes, L. T. d., Barbosa, P. H. F. d. A., Costa, A. S., Mundim, A. C., Ramos, G. C., Paz, C. C. d. S. C., and Martins, E. F. (2012). Baropodometric technology used to analyze types of weight-bearing during hemiparetic upright position. Fisioterapia em Movimento, 25(3):583-594. DOI: 10.1590/S0103-51502012000300014.
Moraes, I. A., Cardoso, A., Soares, A. B., de Oliveira, D. A. R., and Júnior, E. L. (2022). Combining immersive virtual reality and postural therapy for scoliosis treatment and prevention in children. Research on Biomedical Engineering, 38(3):1003-1016. DOI: 10.1007/s42600-022-00235-x.
Moraes, I. A., Palmeira, E. G. Q., Andrade, M. F., Lamounier Jr., E. A., and Cardoso, A. (2020). Virtual reality in postural therapy: a systematic review. In 2020 22nd Symposium on Virtual and Augmented Reality (SVR), pages 363-370. DOI: 10.1109/SVR51698.2020.00061.
Moreno, M. A., Catai, A. M., Teodori, R. M., Borges, B. L. A., Cesar, M. d. C., and Silva, E. d. (2007). Effect of a muscle stretching program using the global postural reeducation method on respiratory muscle strength and thoracoabdominal mobility of sedentary young males. Jornal Brasileiro de Pneumologia, 33(6):679-686. DOI: 10.1590/S1806-37132007000600011.
Morlino, P., Balbi, B., Guglielmetti, S., Giardini, M., Grasso, M., Giordano, C., Schieppati, M., and Nardone, A. (2017). Gait abnormalities of COPD are not directly related to respiratory function. Gait & posture, 58:352-357. DOI: 10.1016/j.gaitpost.2017.08.020.
Negrini, A., Negrini, M. G., Donzelli, S., Romano, M., Zaina, F., and Negrini, S. (2015). Scoliosis-specific exercises can reduce the progression of severe curves in adult idiopathic scoliosis: a long-term cohort study. Scoliosis, 10(20):1-7. DOI: 10.1186/s13013-015-0044-9.
Park, J. H., Noh, S. C., Jang, H. S., Yu, W. J., Park, M. K., and Choi, H. H. (2009). The study of correlation between foot-pressure distribution and scoliosis. In Lim, C. T. and Goh, J. C. H., editors, 13th International Conference on Biomedical Engineering, pages 974-978, Berlin, Heidelberg. Springer Berlin Heidelberg. DOI: 10.1007/978-3-540-92841-6_241.
Payne III, W. K., Ogilvie, J. W., Resnick, M. D., Kane, R. L., Transfeldt, E. E., and Blum, R. W. (1997). Does scoliosis have a psychological impact and does gender make a difference? Spine, 22(12):1380-1384. DOI: 10.1097/00007632-199706150-00017.
Postolache, O., Girão, P. S., López, A., Ferrero, F. J., Dias Pereira, J. M., and Postolache, G. (2016). Postural balance analysis using force platform for k-theragame users. In 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pages 1-6. DOI: 10.1109/MeMeA.2016.7533705.
Rosário, J. (2014). A review of the utilization of baropodometry in postural assessment. Journal of bodywork and movement therapies, 18(2):215-219. DOI: 10.1016/j.jbmt.2013.05.016.
San Luis, M. A. V., Atienza, R. O., and San Luis, A. M. (2016). Immersive virtual reality as a supplement in the rehabilitation program of post-stroke patients. In 2016 10th International Conference on Next Generation Mobile Applications, Security and Technologies (NGMAST), pages 47-52. DOI: 10.1109/NGMAST.2016.13.
Saposnik, G., Teasell, R., Mamdani, M., Hall, J., McIlroy, W., Cheung, D., Thorpe, K. E., Cohen, L. G., and Bayley, M. (2010). Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation. Stroke, 41(7):1477-1484. DOI: 10.1161/STROKEAHA.110.584979.
Souchard, P. E. (2003). GPR: Fundamentals of Global Postural Reeducation. 'E Realizações, São Paulo. Book.
Souza, J., Pasinato, F., Correa, E., and Silva, A. (2014). Global body posture and plantar pressure distribution in individuals with and without temporomandibular disorder: A preliminary study. Journal of Manipulative and Physiological Therapeutics, 37(6):407-414. DOI: 10.1016/j.jmpt.2014.04.003.
Tadeus, D. F. (2018). Baropodometry means of quantitative evaluation in postural balance recovery of persons which suffered a stroke. Annals of the ``Ştefan cel Mare'' University: Physical Education and Sport Section - The Science and Art of Movement, 9(2):20-28. Available online [link].
Tavares, G. M. S., do Espírito Santo, C. C., Parizotto, P., Sperandio, F. F., and Santos, G. M. (2015). Treatment of scoliosis by global postural reeducation (gpr) in totally visually impaired individuals: a case series. Scientia Medica, 25(3):1-8. DOI: 10.15448/1980-6108.2015.3.21172.
Teodori, R. M., Negri, J. R., Cruz, M. C., and Marques, A. P. (2011). Global postural re-education: a literature review. Revista Brasileira de Fisioterapia, 15(3):185-189. DOI: 10.1590/S1413-35552011000300003.
Toledo, P. C. V., Mello, D. B. d., Araújo, M. E., Daoud, R., and Dantas, E. H. M. (2011). Global posture reeducation effects in students with scoliosis. Fisioterapia e Pesquisa, 18(4):329-334. DOI: 10.1590/S1809-29502011000400006.
Valentini, F. A., Granger, B., Hennebelle, D. S., Eythrib, N., and Robain, G. (2011). Repeatability and variability of baropodometric and spatio-temporal gait parameters – results in healthy subjects and in stroke patient. Neurophysiologie Clinique/Clinical Neurophysiology, 41(4):181-189. DOI: 10.1016/j.neucli.2011.08.004.
Vie, B., Gomez, N., Brerro-Saby, C., Weber, J. P., and Jammes, Y. (2013). Changes in stationary upright standing and proprioceptive reflex control of foot muscles after fatiguing static foot inversion. Journal of biomechanics, 46(10):1676-1682. DOI: 10.1016/j.jbiomech.2013.04.005.
Virk, S. and McConville, K. M. V. (2006). Virtual reality applications in improving postural control and minimizing falls. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 2694-2697. DOI: 10.1109/IEMBS.2006.260751.
Weinstein, S. L. (1999). Natural history. Spine, 24(24):2592-2600. DOI: 10.1097/00007632-199912150-00006.
Wibmer, C., Groebl, P., Nischelwitzer, A., Salchinger, B., Sperl, M., Wegmann, H., Holzer, H.-P., and Saraph, V. (2016). Video-game-assisted physiotherapeutic scoliosis-specific exercises for idiopathic scoliosis: case series and introduction of a new tool to increase motivation and precision of exercise performance. Scoliosis and Spinal Disorders, 11(44):1-9. DOI: 10.1186/s13013-016-0104-9.
Wilk, B., Karol, L. A., Johnston II, C. E., Colby, S., and Haideri, N. (2006). The effect of scoliosis fusion on spinal motion: A comparison of fused and nonfused patients with idiopathic scoliosis. Spine, 31(3):309-314. DOI: 10.1097/01.brs.0000197168.11815.ec.
Williams, M. A., Heine, P. J., Williamson, E. M., Toye, F., Dritsaki, M., Petrou, S., Crossman, R., Lall, R., Barker, K. L., Fairbank, J., Harding, I., Gardner, A., Slowther, A. M., Coulson, N., and Lamb, S. E. (2015). ACTIvATeS: ACTive Treatment for Idiopathic AdolescenT Scoliosis - a feasibility study. Health Technology Assessment, 19(55). DOI: 10.3310/hta19550.
Wright, W. G. (2013). Using virtual reality to induce cross-axis adaptation of postural control: Implications for rehabilitation. In 2013 International Conference on Virtual Rehabilitation (ICVR), pages 289-294. DOI: 10.1109/ICVR.2013.6662095.
Yi, L., Houwei, L., Lin, W., Lihua, Z., Mengjie, C., Sun, W., Zejiang, R., and Qichao, M. (2021). Evaluation of correlation between sagittal balance and plantar pressure distributions in adolescent idiopathic scoliosis: A pilot study. Clinical Biomechanics, 83:105308. DOI: 10.1016/j.clinbiomech.2021.105308.
Zhang, S. and Li, L. (2013). The differential effects of foot sole sensory on plantar pressure distribution between balance and gait. Gait & posture, 37(4):532-535. DOI: 10.1016/j.gaitpost.2012.09.012.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ígor Andrade Moraes, Eduardo Gabriel Queiroz Palmeira, Raul Matsushita, Alexandre Gomes de Siqueira, Dean A. Rodrigues de Oliveira, Alexandre Cardoso, Edgard Afonso Lamounier Júnior
This work is licensed under a Creative Commons Attribution 4.0 International License.