The Topics of Depression on Social Networking Sites

Authors

DOI:

https://doi.org/10.5753/jbcs.2025.4828

Keywords:

Topic Modeling, Machine Learning, LLM, Depression, Social Networking Sites

Abstract

While depressive linguistic expressions have been extensively studied in traditional clinical contexts, there has been comparatively little attention devoted to modeling how both depressed and non-depressed individuals express their symptoms on social networking sites as a holistic thematic process. This study addresses this gap by examining how depression is expressed linguistically on social networking sites using various topic modeling techniques, including an innovative methodology based on LLMs. We use datasets in the Brazilian Portuguese language gathered from Instagram, Reddit, and X. Our evaluation reveals that while common themes related to depression emerge across different social networking sites, each platform's unique characteristics influence the thematic content. Reddit discussions focus on symptomatology, Instagram on travel and positive emotions, and Twitter on everyday life and media. The LLM-based approach produced more interpretable topics with a higher embedding-based coherence metric, whereas traditional methods often resulted in noisy and less internally coherent topics. This research contributes to a deeper understanding of the holistic online expressions of depression and highlights the potential of advanced topic modeling techniques to reveal subtle aspects of mental health discussions online.

Downloads

Download data is not yet available.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., et al. (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774. DOI: 10.48550/arxiv.2303.08774.

Akandere, M. and Demir, B. (2011). The effect of dance over depression. Collegium antropologicum, 35(3):651-656. Available at:[link].

Andalibi, N., Ozturk, P., and Forte, A. (2017). Sensitive self-disclosures, responses, and social support on instagram: The case of# depression. In Proceedings of the 2017 ACM conference on computer supported cooperative work and social computing, pages 1485-1500. DOI: 10.1145/2998181.2998243.

Association, A. P. et al. (2014). DSM-5: Manual diagnóstico e estatístico de transtornos mentais. Artmed Editora. Book.

Bateman, J. (2014). Text and image: A critical introduction to the visual/verbal divide. Routledge. Book.

Bianchi, F., Terragni, S., and Hovy, D. (2021). Pre-training is a hot topic: Contextualized document embeddings improve topic coherence. In Zong, C., Xia, F., Li, W., and Navigli, R., editors, Proc. of the 59th ACL and the 11th IJCNN, ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual Event, pages 759-766. Association for Computational Linguistics. DOI: 10.18653/v1/2021.acl-short.96.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan):993-1022. DOI: 10.7551/mitpress/1120.003.0082.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33, pages 1877-1901. Curran Associates, Inc.. DOI: 10.48550/arxiv.2005.14165.

Bucur, A.-M., Cosma, A., Rosso, P., and Dinu, L. P. (2023). It's just a matter of time: Detecting depression with time-enriched multimodal transformers. In Kamps, J., Goeuriot, L., Crestani, F., Maistro, M., Joho, H., Davis, B., Gurrin, C., Kruschwitz, U., and Caputo, A., editors, Advances in Information Retrieval, pages 200-215, Cham. Springer Nature Switzerland. DOI: 10.48550/arxiv.2301.05453.

Busch, F. N. (2009). Anger and depression. Advances in psychiatric treatment, 15(4):271-278. DOI: 10.1192/apt.bp.107.004937.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X., Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson, K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V., Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E. H., Dean, J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and Wei, J. (2024). Scaling instruction-finetuned language models. Journal of Machine Learning Research, 25(70):1-53. DOI: 10.48550/arxiv.2210.11416.

Churchill, R. and Singh, L. (2021). Topic-noise models: Modeling topic and noise distributions in social media post collections. In 2021 IEEE International Conference on Data Mining (ICDM), pages 71-80. IEEE. DOI: 10.1109/icdm51629.2021.00017.

Coyne, S. M., Rogers, A. A., Zurcher, J. D., Stockdale, L., and Booth, M. (2020). Does time spent using social media impact mental health?: An eight year longitudinal study. Computers in human behavior, 104:106160. DOI: 10.1016/j.chb.2019.106160.

De Paola, J., Hakoköngäs, E. J., and Hakanen, J. J. (2020). # happy: Constructing and sharing everyday understandings of happiness on instagram. Human Arenas, pages 1-19. DOI: 10.1007/s42087-020-00149-z.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Burstein, J., Doran, C., and Solorio, T., editors, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Association for Computational Linguistics. DOI: 10.18653/v1/N19-1423.

dos Santos, W. R., de Oliveira, R. L., and Paraboni, I. (2024). Setembrobr: a social media corpus for depression and anxiety disorder prediction. Lang. Resour. Evaluation, 58(1):273-300. DOI: 10.1007/S10579-022-09633-0.

dos Santos, W. R., Funabashi, A. M. M., and Paraboni, I. (2020). Searching brazilian twitter for signs of mental health issues. In Proceedings of The 12th Language Resources and Evaluation Conference, LREC 2020, Marseille, France, May 11-16, 2020, pages 6111-6117. European Language Resources Association. Available at:[link].

Eliassen, A. H., Taylor, J., and Lloyd, D. A. (2005). Subjective religiosity and depression in the transition to adulthood. Journal for the Scientific Study of Religion, 44(2):187-199. DOI: 10.1111/j.1468-5906.2005.00275.x.

Eyuboglu, M., Eyuboglu, D., Pala, S. C., Oktar, D., Demirtas, Z., Arslantas, D., and Unsal, A. (2021). Traditional school bullying and cyberbullying: Prevalence, the effect on mental health problems and self-harm behavior. Psychiatry research, 297:113730. DOI: 10.1016/j.psychres.2021.113730.

Gao, X. and Sazara, C. (2023). Discovering mental health research topics with topic modeling. In ICML 3rd Workshop on Interpretable Machine Learning in Healthcare (IMLH). DOI: 10.48550/arxiv.2308.13569.

Garssen, B., Visser, A., and Pool, G. (2021). Does spirituality or religion positively affect mental health? meta-analysis of longitudinal studies. The International Journal for the Psychology of Religion, 31(1):4-20. DOI: 10.1080/10508619.2020.1729570.

Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl 1):5228-5235. DOI: 10.1073/pnas.0307752101.

Grootendorst, M. (2022). Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv preprint arXiv:2203.05794. DOI: 10.48550/arxiv.2203.05794.

Harrison, T. W. (2003). Adolescent homosexuality and concerns regarding disclosure. Journal of School Health, 73(3):107-112. DOI: 10.1111/j.1746-1561.2003.tb03584.x.

Issaka, B., Aidoo, E. A. K., Wood, S. F., and Mohammed, F. (2024). âanxiety is not cuteâ analysis of twitter usersâ discourses on romanticizing mental illness. BMC psychiatry, 24(1):221. DOI: 10.1186/s12888-024-05663-w.

Jansen, K. L., Motley, R., and Hovey, J. (2010). Anxiety, depression and studentsâ religiosity. Mental Health, Religion & Culture, 13(3):267-271. DOI: 10.1080/13674670903352837.

Karkou, V., Aithal, S., Zubala, A., and Meekums, B. (2019). Effectiveness of dance movement therapy in the treatment of adults with depression: A systematic review with meta-analyses. Frontiers in psychology, 10:936. DOI: 10.3389/fpsyg.2019.00936.

Klomek, A. B., Marrocco, F., Kleinman, M., Schonfeld, I. S., and Gould, M. S. (2007). Bullying, depression, and suicidality in adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 46(1):40-49. DOI: 10.1097/01.chi.0000242237.84925.18.

Koltai, J., Kmetty, Z., and Bozsonyi, K. (2021). From Durkheim to Machine Learning: Finding the Relevant Sociological Content in Depression and Suicide-Related Social Media Discourses, pages 237-258. Springer International Publishing, Cham. DOI: 10.1007/978-3-030-54936-7_11.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692. DOI: 10.48550/arXiv.1907.11692.

Mann, P., Matsushima, E. H., and Paes, A. (2022). Detecting depression from social media data as a multiple-instance learning task. In Proc. of the ACII, pages 1-8. IEEE. DOI: 10.1109/acii55700.2022.9953811.

Mann, P., Paes, A., and Matsushima, E. H. (2020). See and read: detecting depression symptoms in higher education students using multimodal social media data. In Proceedings of the International AAAI Conference on Web and Social Media, volume 14, pages 440-451. DOI: 10.1609/icwsm.v14i1.7313.

McInnes, L., Healy, J., and Astels, S. (2017). hdbscan: Hierarchical density based clustering. J. Open Source Softw., 2(11):205. DOI: 10.21105/joss.00205.

McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426. DOI: 10.48550/arxiv.1802.03426.

Mendes, A. R. and Caseli, H. (2024). Identifying fine-grained depression signs in social media posts. In Calzolari, N., Kan, M.-Y., Hoste, V., Lenci, A., Sakti, S., and Xue, N., editors, Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 8594-8604, Torino, Italia. ELRA and ICCL. Available at:[link].

Mikal, J., Hurst, S., and Conway, M. (2016). Ethical issues in using twitter for population-level depression monitoring: A qualitative study. BMC Medical Ethics, 17. DOI: 10.1186/s12910-016-0105-5.

Milintsevich, K., Sirts, K., and Dias, G. (2023). Towards automatic text-based estimation of depression through symptom prediction. Brain Informatics, 10(1):4. DOI: 10.1186/S40708-023-00185-9.

Moore, S. E., Norman, R. E., Suetani, S., Thomas, H. J., Sly, P. D., and Scott, J. G. (2017). Consequences of bullying victimization in childhood and adolescence: A systematic review and meta-analysis. World journal of psychiatry, 7(1):60. DOI: 10.5498/wjp.v7.i1.60.

Oliveira, R. and Paraboni, I. (2024). A bag-of-users approach to mental health prediction from social media data. In Gamallo, P., Claro, D., Teixeira, A., Real, L., Garcia, M., Oliveira, H. G., and Amaro, R., editors, Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 1, pages 509-514, Santiago de Compostela, Galicia/Spain. Association for Computational Lingustics. Available at:[link].

Ostic, D., Qalati, S. A., Barbosa, B., Shah, S. M. M., Galvan Vela, E., Herzallah, A. M., and Liu, F. (2021). Effects of social media use on psychological well-being: a mediated model. Frontiers in psychology, 12:678766. DOI: 10.3389/fpsyg.2021.678766.

Radell, M. L., Abo Hamza, E. G., Daghustani, W. H., Perveen, A., and Moustafa, A. A. (2021). The impact of different types of abuse on depression. Depression research and treatment, 2021(1):6654503. DOI: 10.1155/2021/6654503.

Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3982-3992. DOI: 10.18653/v1/d19-1410.

Resnik, P., Armstrong, W., Claudino, L., Nguyen, T., Nguyen, V.-A., and Boyd-Graber, J. (2015). Beyond LDA: Exploring supervised topic modeling for depression-related language in Twitter. In Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, pages 99-107, Denver, Colorado. Association for Computational Linguistics. DOI: 10.3115/v1/W15-1212.

Resnik, P., Garron, A., and Resnik, R. (2013). Using topic modeling to improve prediction of neuroticism and depression in college students. In Yarowsky, D., Baldwin, T., Korhonen, A., Livescu, K., and Bethard, S., editors, Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1348-1353, Seattle, Washington, USA. Association for Computational Linguistics. DOI: 10.18653/v1/d13-1133.

Röder, M., Both, A., and Hinneburg, A. (2015). Exploring the space of topic coherence measures. In Cheng, X., Li, H., Gabrilovich, E., and Tang, J., editors, Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM 2015, Shanghai, China, February 2-6, 2015, pages 399-408. ACM. DOI: 10.1145/2684822.2685324.

Santini, Z. I., Koyanagi, A., Tyrovolas, S., Mason, C., and Haro, J. M. (2015). The association between social relationships and depression: A systematic review. Journal of affective disorders, 175:53-65. DOI: 10.1016/j.jad.2014.12.049.

Sik, D., Németh, R., and Katona, E. (2023). Topic modelling online depression forums: beyond narratives of self-objectification and self-blaming. Journal of Mental Health, 32(2):386-395. DOI: 10.1080/09638237.2021.1979493.

Terragni, S., Fersini, E., Galuzzi, B. G., Tropeano, P., and Candelieri, A. (2021). OCTIS: Comparing and optimizing topic models is simple! In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 263-270, Online. Association for Computational Linguistics. Available at:[link].

Thoits, P. A. (2011). Mechanisms linking social ties and support to physical and mental health. Journal of health and social behavior, 52(2):145-161. DOI: 10.1177/0022146510395592.

Timakum, T., Xie, Q., and Lee, S. (2023). Identifying mental health discussion topic in social media community: subreddit of bipolar disorder analysis. Frontiers in Research Metrics and Analytics, 8:1243407. DOI: 10.3389/frma.2023.1243407.

Wang, Y., Inkpen, D., and Kirinde Gamaarachchige, P. (2024). Explainable depression detection using large language models on social media data. In Yates, A., Desmet, B., Prud'hommeaux, E., Zirikly, A., Bedrick, S., MacAvaney, S., Bar, K., Ireland, M., and Ophir, Y., editors, Proceedings of the 9th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2024), pages 108-126, St. Julians, Malta. Association for Computational Linguistics. Available at:[link].

Webber, W., Moffat, A., and Zobel, J. (2010). A similarity measure for indefinite rankings. ACM Transactions on Information Systems (TOIS), 28(4):1-38. DOI: 10.1145/1852102.1852106.

Yadav, S., Caragea, C., Zhao, C., Kumari, N., Solberg, M., and Sharma, T. (2023). Towards identifying fine-grained depression symptoms from memes. In Rogers, A., Boyd-Graber, J., and Okazaki, N., editors, Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8890-8905, Toronto, Canada. Association for Computational Linguistics. DOI: 10.18653/v1/2023.acl-long.495.

Yadav, S., Chauhan, J., Sain, J. P., Thirunarayan, K., Sheth, A., and Schumm, J. (2020). Identifying depressive symptoms from tweets: Figurative language enabled multitask learning framework. In Scott, D., Bel, N., and Zong, C., editors, Proceedings of the 28th International Conference on Computational Linguistics, pages 696-709, Barcelona, Spain (Online). International Committee on Computational Linguistics. DOI: 10.18653/v1/2020.coling-main.61.

Yang, K., Ji, S., Zhang, T., Xie, Q., Kuang, Z., and Ananiadou, S. (2023). Towards interpretable mental health analysis with large language models. In Bouamor, H., Pino, J., and Bali, K., editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages 6056-6077. Association for Computational Linguistics. DOI: 10.18653/V1/2023.EMNLP-MAIN.370.

Yang, K., Zhang, T., Kuang, Z., Xie, Q., Huang, J., and Ananiadou, S. (2024). Mentallama: Interpretable mental health analysis on social media with large language models. In Chua, T., Ngo, C., Kumar, R., Lauw, H. W., and Lee, R. K., editors, Proceedings of the ACM on Web Conference 2024, WWW 2024, Singapore, May 13-17, 2024, pages 4489-4500. ACM. DOI: 10.1145/3589334.3648137.

Zahn, R., Lythe, K. E., Gethin, J. A., Green, S., Deakin, J. F. W., Young, A. H., and Moll, J. (2015). The role of self-blame and worthlessness in the psychopathology of major depressive disorder. Journal of affective disorders, 186:337-341. DOI: 10.1016/j.jad.2015.08.001.

Zárate, L. E., do Carmo Santos, A. V., de Carvalho Camelo, J. E., Nobre, C. N., and Song, M. A. J. (2024). Identificando padrões de depressão em idosos por meio de mineração de dados. Journal of Health Informatics, 16. DOI: 10.59681/2175-4411.v16.2024.1020.

Downloads

Published

2025-10-01

How to Cite

Mann, P., Utino, M. Y. R., Matsushima, E. H., & Paes, A. (2025). The Topics of Depression on Social Networking Sites. Journal of the Brazilian Computer Society, 31(1), 772–807. https://doi.org/10.5753/jbcs.2025.4828

Issue

Section

Articles