A Comparative Study of Artificial Intelligence Classification Models for Analyzing Vitiligo Effects in Zebrafish (Danio rerio) Images

Authors

DOI:

https://doi.org/10.5753/jbcs.2025.5177

Keywords:

Artificial Intelligence, Classification, Zebrafish, Vitiligo

Abstract

In recent years, the term Artificial Intelligence (AI) has gained recognition across various fields, such as healthcare, finance, agriculture, and many other sectors due to its versatility and capacity to improve outcome. Within the applications of AI, classification stands out as one of the most prevalent, aiding in optimizing decision-making and efficiently organizing data. In recent years, there has been an increase in the use of zebrafish (Danio rerio) in studies related to human dermatological diseases, such as vitiligo, which involves the autoimmune-mediated destruction of the melanocytes in the epidermal layer. Despite the current interest in studies related to this disease, no papers were found applying Machine Learning (ML) or Deep Learning (DL) models to classify the effects of the disease and its treatments. In this context, this paper uses the challenge of evaluating the effects of vitiligo in zebrafish to compare the performance of different AI approaches. The methodology employed in this paper includes image acquisition, dataset creation, preprocessing, model testing, and evaluation. The ML models applied in this study were Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), and Extreme Gradient Boosting (XGBoost), while the DL models included Visual Geometry Group 16 (VGG16) and GoogLeNet. Following the evaluation, SVM and GoogLeNet achieved the best results, correctly classifying 80% and 71% of the data, respectively. Moreover, the former accurately identified all samples in the healthy and treated classes, with misclassifications occurring only within the sick class. The models performed satisfactorily in relation to the objectives of this study and the results exhibited potential for future applications in treating vitiligo in humans.

Downloads

Download data is not yet available.

References

Anderson, L. S., Armstrong, W. H., Anderson, R. S., and Buri, P. (2021). Debris cover and the thinning of kennicott glacier, alaska: in situ measurements, automated ice cliff delineation and distributed melt estimates. The Cryosphere, 15(1):265-282. DOI: 10.5194/tc-15-265-2021.

Bhavsar, H. and Panchal, M. H. (2012). A review on support vector machine for data classification. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 1(10):185-189. Available online [link].

Breiman, L. (2001). Random forests. Machine learning, 45:5-32. DOI: 10.1023/A:1010933404324.

Cestariolo, L., Luraghi, G., L'Eplattenier, P., and Matas, J. F. R. (2023). A finite element model of the embryonic zebrafish heart electrophysiology. Computer Methods and Programs in Biomedicine, 229:107281. DOI: 10.1016/j.cmpb.2022.107281.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785-794. DOI: 10.1145/2939672.2939785.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1):21-27. DOI: 10.1109/tit.1967.1053964.

Duarte da Silva, K. C., do Carmo Rodrigues Virote, B., de Fátima Santos, M., Dias Castro, T. F., de Azevedo Martins, M. S., Carneiro, W. F., and Solis Murgas, L. D. (2023). Embriotoxic and antioxidant effects of cymbopogon citratus leaf volatile oil on zebrafish. Revista Brasileira de Farmacognosia, 33(4):778-789. DOI: 10.1007/s43450-023-00410-w.

Elkholy, M. and Marzouk, M. A. (2024). Deep learning-based classification of eye diseases using convolutional neural network for oct images. Frontiers in Computer Science, 5:1252295. DOI: 10.3389/fcomp.2023.1252295.

Frantz, W. T. and Ceol, C. J. (2022). Research techniques made simple: zebrafish models for human dermatologic disease. Journal of Investigative Dermatology, 142(3):499-506. DOI: 10.1016/j.jid.2021.10.016.

Garrido, I., Lecube, J., Mzoughi, F., Aboutalebi, P., Ahmad, I., Cayuela, S., and Garrido, A. (2023). A machine-learning approach for prognosis of oscillating water column wave generators. In 2023 27th International Conference on Circuits, Systems, Communications and Computers (CSCC), pages 1-7. IEEE. DOI: 10.1109/CSCC58962.2023.00009.

Gerbrands, J. J. (1981). On the relationships between svd, klt and pca. Pattern recognition, 14(1-6):375-381. DOI: 10.1016/0031-3203(81)90082-0.

Grisola, M. A. C. and Fuentes, R. G. (2017). Phenotype-based screening of selected mangrove methanolic crude extracts with anti-melanogenic activity using zebrafish (danio rerio) as a model. ScienceAsia, 43(3). DOI: 10.2306/scienceasia1513-1874.2017.43.163.

Handelman, G. S., Kok, H. K., Chandra, R. V., Razavi, A. H., Huang, S., Brooks, M., Lee, M. J., and Asadi, H. (2019). Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. American Journal of Roentgenology, 212(1):38-43. DOI: 10.2214/ajr.18.20224.

Ishaq, O., Sadanandan, S. K., and Wählby, C. (2017). Deep fish: deep learning-based classification of zebrafish deformation for high-throughput screening. SLAS Discovery: Advancing Life Sciences R&D, 22(1):102-107. DOI: 10.1177/1087057116667894.

Keleş, S., Günlü, A., and Ercanli, İ. (2021). Estimating aboveground stand carbon by combining sentinel-1 and sentinel-2 satellite data: a case study from turkey. In Forest Resources Resilience and Conflicts, pages 117-126. Elsevier. DOI: 10.1016/b978-0-12-822931-6.00008-3.

Liashchynskyi, P. and Liashchynskyi, P. (2019). Grid search, random search, genetic algorithm: a big comparison for nas. arXiv preprint arXiv:1912.06059. http://dx.doi.org/10.48550/arXiv.1912.06059. DOI: 10.48550/arXiv.1912.06059.

Liu, G., Li, X., Guo, Y., Zhang, L., Liu, H., and Ai, H. (2024). Ensemble multiclassification model for predicting developmental toxicity in zebrafish. Aquatic Toxicology, page 106936. DOI: 10.2139/ssrn.4776693.

Mahoro, E. and Akhloufi, M. A. (2024). Breast cancer classification on thermograms using deep cnn and transformers. Quantitative InfraRed Thermography Journal, 21(1):30-49. DOI: 10.1080/17686733.2022.2129135.

Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C., Forghani, B., Forghani, R., et al. (2020). Brief history of artificial intelligence. Neuroimaging Clinics of North America, 30(4):393-399. DOI: 10.1016/j.nic.2020.07.004.

Ongsulee, P. (2017). Artificial intelligence, machine learning and deep learning. In 2017 15th international conference on ICT and knowledge engineering (ICT&KE), pages 1-6. IEEE. DOI: 10.1109/ICTKE.2017.8259629.

Procopio, A., Cesarelli, G., Donisi, L., Merola, A., Amato, F., and Cosentino, C. (2023). Combined mechanistic modeling and machine-learning approaches in systems biology-a systematic literature review. Computer methods and programs in biomedicine, 240:107681. DOI: 10.1016/j.cmpb.2023.107681.

Santoro, M. M. (2014). Zebrafish as a model to explore cell metabolism. Trends in Endocrinology & Metabolism, 25(10):546-554. DOI: 10.1016/j.tem.2014.06.003.

Sharifani, K. and Amini, M. (2023). Machine learning and deep learning: A review of methods and applications. World Information Technology and Engineering Journal, 10(07):3897-3904. Available online [link].

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. DOI: 10.48550/arXiv.1409.1556.

Sun, M., Yang, X., and Xie, Y. (2020). Deep learning in aquaculture: A review. J. Comput, 31(1):294-319. DOI: 10.3966/199115992020023101028.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1-9. DOI: 10.1109/cvpr.2015.7298594.

Toosi, A., Bottino, A. G., Saboury, B., Siegel, E., and Rahmim, A. (2021). A brief history of ai: how to prevent another winter (a critical review). PET clinics, 16(4):449-469. DOI: 10.1016/j.cpet.2021.07.001.

van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., Yu, T., and the scikit-image contributors (2014). scikit-image: image processing in python. PeerJ, 2:e453. DOI: 10.7287/peerj.preprints.336v1.

Wang, J., Perez, L., et al. (2017). The effectiveness of data augmentation in image classification using deep learning. Convolutional Neural Networks Vis. Recognit, 11(2017):1-8. DOI: 10.48550/arxiv.1712.04621.

Wang, L., Han, M., Li, X., Zhang, N., and Cheng, H. (2021). Review of classification methods on unbalanced data sets. IEEE Access, 9:64606-64628. DOI: 10.1109/access.2021.3074243.

Zhao, S., Blaabjerg, F., and Wang, H. (2020). An overview of artificial intelligence applications for power electronics. IEEE Transactions on Power Electronics, 36(4):4633-4658. DOI: 10.36227/techrxiv.12431081.

Downloads

Published

2025-08-11

How to Cite

Fagundes, P. N., Silva, P. V. C., Guilarducci, J. de S., Pimenta, L. C. J. P., Murgas, L. D. S., Resende, L. V., Fernandes, H., & Malheiros, F. C. (2025). A Comparative Study of Artificial Intelligence Classification Models for Analyzing Vitiligo Effects in Zebrafish (Danio rerio) Images. Journal of the Brazilian Computer Society, 31(1), 629–639. https://doi.org/10.5753/jbcs.2025.5177

Issue

Section

Articles