L-PRISM: A Domain-Specific Language for Describing Multimedia Service Function Chains
DOI:
https://doi.org/10.5753/jbcs.2025.5453Keywords:
IoMT, IoT, VNF, SFC, DSL, M-PRISM, L-PRISMAbstract
Virtualization has emerged as a key technology for handling the complexity of heterogeneous environments, such as the Internet of Things (IoT) and multimedia systems. In this context, multimedia sensors represent an important data source that contributes to the development of the Internet of Media Things (IoMT) paradigm. Using the concepts of virtualization and IoMT, a multimedia Virtual Network Function (multimedia VNF) has been introduced to encapsulate virtualized devices and software components for processing multimedia streams. Frequently, multimedia streams require a sequence of processing steps, forming what is known as multimedia Service Function Chains (multimedia SFCs). With the advancement of technologies like augmented reality and autonomous vehicles, which require processing complex multimedia streams, often handled by multimedia SFCs, the deployment continues to be highly challenging. Currently, the execution of multimedia SFCs is performed by creating and binding components individually, requiring manual configuration and low-level integration. This increases the development time and probability of errors. Moreover, existing approaches lack a standardized mechanism for describing multimedia SFCs, resulting in ad hoc solutions with low interoperability. Despite the importance of describing multimedia SFCs, there has been limited research on this topic. To bridge this gap, we propose a novel metamodel named M-PRISM, designed to serve as the conceptual foundation for describing multimedia stream processing. Using this metamodel, we create a new Domain-Specific Language (DSL) named L-PRISM, tailored to describe multimedia SFCs. Additionally, we introduce a novel architecture for executing multimedia SFCs, demonstrated through a Proof-of-Concept (PoC) which follows the proposed architecture and executes multimedia SFCs described in L-PRISM. Our approach was evaluated through experiments with software developers, focusing on aspects such as expressiveness, ease of adoption, and reduction of configuration complexity.In the experiments we adopted the Goal Question Metric (GQM), Technology Acceptance Model (TAM) and Cognitive Dimensions of Notations (CDN) approaches, and the results indicate that L-PRISM and its PoC facilitate the definition and deployment of multimedia SFCs based on multimedia VNFs.
Downloads
References
, E. G. N.-I. (2023). Network functions virtualisation (nfv) release 4; management and orchestration; vnf descriptor and packaging specification. Available at: [link].
, E. G. N.-I. (2021). Network functions virtualisation (nfv) release 4; management and orchestration; network service templates specification. Available at:[link].
Alam, I., Sharif, K., Li, F., Latif, Z., Karim, M. M., Biswas, S., Nour, B., and Wang, Y. (2021). A Survey of Network Virtualization Techniques for Internet of Things Using SDN and NFV. ACM Computing Surveys, 53(2):1-40. DOI: 10.1145/3379444.
Allouche, M., Mitrea, M., Moreaux, A., and Kim, S.-K. (2021). Automatic smart contract generation for internet of media things. ICT Express, 7(3):274-277. DOI: 10.1016/j.icte.2021.08.009.
Alvarez, F., Breitgand, D., Griffin, D., Andriani, P., Rizou, S., Zioulis, N., Moscatelli, F., Serrano, J., Keltsch, M., Trakadas, P., Phan, T. K., Weit, A., Acar, U., Prieto, O., Iadanza, F., Carrozzo, G., Koumaras, H., Zarpalas, D., and Jimenez, D. (2019). An edge-to-cloud virtualized multimedia service platform for 5g networks. IEEE Transactions on Broadcasting, 65(2):369-380. DOI: 10.1109/TBC.2019.2901400.
Battisti, A., Muchaluat-Saade, D. C., and Delicato, F. C. (2020a). Uma proposta de arquitetura para virtualização de sensores multimídia na borda da rede. In Anais do XXV Workshop de Gerência e Operação de Redes e Serviços (WGRS 2020), WGRS 2020, page 235â248. Sociedade Brasileira de Computação - SBC. DOI: 10.5753/wgrs.2020.12464.
Battisti, A. L. E., Macedo, E. L. C., Josué, M. I. P., Barbalho, H., Delicato, F. C., Muchaluat-Saade, D. C., Pires, P. F., Mattos, D. P. d., and Oliveira, A. C. B. d. (2022). A novel strategy for vnf placement in edge computing environments. Future Internet, 14(12):361. DOI: 10.3390/fi14120361.
Battisti, A. L. E., Muchaluat-Saade, D. C., and Delicato, F. C. (2020b). V-PRISM: An Edge-based Architecture to Virtualize Multimedia Sensors in the Internet of Media Things. Master dissertation, Universidade Federal Fluminense. Available at:[link].
Battisti, A. L. E., Muchaluat-Saade, D. C., and Delicato, F. C. (2020c). V-prism: An edge-based iot architecture to virtualize multimedia sensors. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pages 1-6. DOI: 10.1109/WF-IoT48130.2020.9221199.
Battisti, A. L. E., Muchaluat-Saade, D. C., and Delicato, F. C. (2021). Enabling internet of media things with edge-based virtual multimedia sensors. IEEE Access, 9:59255-59269. DOI: 10.1109/ACCESS.2021.3073240.
Bhamare, D., Jain, R., Samaka, M., and Erbad, A. (2016). A survey on service function chaining. Journal of Network and Computer Applications, 75:138-155. DOI: 10.1016/j.jnca.2016.09.001.
Björklund, M. (2010). YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF). (6020). DOI: 10.17487/RFC6020.
Blackwell, A. F. and Green, T. R. (2000). A cognitive dimensions questionnaire optimised for users. In PPIG, volume 13. Citeseer. Available at:[link].
Borum, H. S. and Seidl, C. (2022). Survey of established practices in the life cycle of domain-specific languages. In Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems, MODELS '22, page 266â277, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3550355.3552413.
Brambilla, M., Cabot, J., and Wimmer, M. (2017). Model-driven software engineering in practice. Morgan & Claypool Publishers. DOI: 10.1007/978-3-031-02549-5.
Briand, L., Morasca, S., and Basili, V. (1996). Property-based software engineering measurement. IEEE Transactions on Software Engineering, 22(1):68-86. DOI: 10.1109/32.481535.
Castillo-Lema, J., Venãncio Neto, A., de Oliveira, F., and Takeo Kofuji, S. (2019). Mininet-nfv: Evolving mininet with oasis tosca nvf profiles towards reproducible nfv prototyping. In 2019 IEEE Conference on Network Softwarization (NetSoft), pages 506-512. DOI: 10.1109/NETSOFT.2019.8806686.
Coêlho, R. W., Silva, R. A., Martimiano, L. A. F., and Leonardo, E. J. (2024). Iot and 5g networks: A discussion of sdn, nfv and information security. Journal of the Brazilian Computer Society, 30(1):212â227. DOI: 10.5753/jbcs.2024.3021.
Das, H., Naik, B., Pati, B., and Panigrahi, C. R. (2014). A survey on virtual sensor networks framework. International Journal of Grid Distribution Computing, 7(5):121-130. DOI: http://dx.doi.org/10.14257/ijgdc.2014.7.5.11.
Di Mauro, M., Galatro, G., Longo, M., Postiglione, F., and Tambasco, M. (2021a). Comparative performability assessment of sfcs: The case of containerized ip multimedia subsystem. IEEE Transactions on Network and Service Management, 18(1):258-272. DOI: 10.1109/TNSM.2020.3044232.
Di Mauro, M., Galatro, G., Longo, M., Postiglione, F., and Tambasco, M. (2021b). Hasfc: A mano-compliant framework for availability management of service chains. IEEE Communications Magazine, 59(6):52-58. DOI: 10.1109/MCOM.001.2000939.
ETSI, G. N.-S. . (2022). Network functions virtualisation (nfv) release 4; protocols and data models; nfv descriptors based on tosca specification.
Farahani, R., Bentaleb, A., Timmerer, C., Shojafar, M., Prodan, R., and Hellwagner, H. (2023). Sarena: Sfc-enabled architecture for adaptive video streaming applications. In ICC 2023 - IEEE International Conference on Communications, pages 864-870. DOI: 10.1109/ICC45041.2023.10279262.
Garcia, B., Lopez-Fernandez, L., Gallego, M., and Gortazar, F. (2017). Kurento: The swiss army knife of webrtc media servers. IEEE Communications Standards Magazine, 1(2):44-51. DOI: 10.1109/MCOMSTD.2017.1700006.
Ghorab, A., Kusedghi, A., Nourian, M. A., and Akbari, A. (2020). Joint vnf load balancing and service auto-scaling in nfv with multimedia case study. In 2020 25th International Computer Conference, Computer Society of Iran (CSICC), pages 1-7. DOI: 10.1109/CSICC49403.2020.9050122.
Huff, Huff, A., Venâncio, G., and Duarte Jr., E. P. (2019). Multi-SFC: Orquestração de SFCs Distribuídas sobre Múltiplas Nuvens em Múltiplos Domínios com Múltiplas Plataformas NFV. In Anais do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2019), SBRC 2019, page 777-790. Sociedade Brasileira de Computação. DOI: 10.5753/sbrc.2019.7402.
Imagane, K., Kanai, K., Katto, J., Tsuda, T., and Nakazato, H. (2018). Performance evaluations of multimedia service function chaining in edge clouds. In CCNC, pages 1-4. DOI: 10.1109/CCNC.2018.8319249.
Kalan, R. and Dulger (2024). A survey on qoe management schemes for http adaptive video streaming: Challenges, solutions, and opportunities. IEEE Access, 12:170803-170839. DOI: 10.1109/ACCESS.2024.3491613.
Khan, A. A., Laghari, A. A., Shaikh, A. A., Shaikh, Z. A., and Jumani, A. K. (2022). Innovation in multimedia using iot systems. Multimedia computing systems and virtual reality, pages 171-187. DOI: 10.1201/9781003196686-8.
Koziolek, H. (2008). Goal, Question, Metric, pages 39-42. Springer Berlin Heidelberg, Berlin, Heidelberg. DOI: 10.1007/978-3-540-68947-8_6.
Macedo, E. L. C., Battisti, A. L. E., Vieira, J. L., Noce, J., Pires, P. F., Muchaluat-Saade, D. C., Oliveira, A. C. B., and Delicato, F. C. (2023). Distributed auction-based sfc placement in a multi-domain 5g environment. SN Computer Science, 5(1). DOI: 10.1007/s42979-023-02291-1.
Maia, A., Boutouchent, A., Kardjadja, Y., Gherari, M., Soyak, E. G., Saqib, M., Boussekar, K., Cilbir, I., Habibi, S., Ali, S. O., Ajib, W., Elbiaze, H., Erçetin, O., Ghamri-Doudane, Y., and Glitho, R. (2024). A survey on integrated computing, caching, and communication in the cloud-to-edge continuum. Computer Communications, 219:128-152. DOI: 10.1016/j.comcom.2024.03.005.
Manias, D. M., Shaer, I., Naoum-Sawaya, J., and Shami, A. (2024). Robust and reliable sfc placement in resource-constrained multi-tenant mec-enabled networks. IEEE Transactions on Network and Service Management, 21(1):187-199. DOI: 10.1109/TNSM.2023.3293027.
Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. (2017). A Survey on Mobile Edge Computing: The Communication Perspective. IEEE Comm. Surveys and Tutorials, 19(4):2322-2358. DOI: 10.1109/COMST.2017.2745201.
Mijumbi, R., Serrat, J., Gorricho, J. L., Bouten, N., De Turck, F., and Boutaba, R. (2016). Network function virtualization: State-of-the-art and research challenges. IEEE Communications Surveys and Tutorials, 18(1):236-262. DOI: 10.1109/COMST.2015.2477041.
Nauman, A., Qadri, Y. A., Amjad, M., Zikria, Y. B., Afzal, M. K., and Kim, S. W. (2020). Multimedia internet of things: A comprehensive survey. IEEE Access, 8:8202-8250. DOI: 10.1109/ACCESS.2020.2964280.
Negm, E., Makady, S., and Salah, A. (2019). Survey on domain specific languages implementation aspects. International Journal of Advanced Computer Science and Applications, 10(11). DOI: 10.14569/IJACSA.2019.0101183.
Neto, M. C., Andrade, S. S., and Novais, R. L. (2017). Cross-platform multimedia application development: for mobile, web, embedded and iot with qt/qml. In Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web, pages 23-26. DOI: 10.1145/3126858.3131627.
Poltronieri, I., Zorzo, A. F., Bernardino, M., and de Borba Campos, M. (2018). Usa-dsl: usability evaluation framework for domain-specific languages. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC '18, page 2013-2021, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3167132.3167348.
Poltronieri, I., Zorzo, A. F., Bernardino, M., and OliveiraJr, E. (2024). Usa-dsl: a process for usability evaluation of domain-specific languages. Journal of Universal Computer Science, 30(8):1023. DOI: 10.3897/jucs.103264.
Quico, F. J. V., Battisti, A. L. E., Muchaluat-Saade, D., and Delicato, F. C. (2024). A domain-specific language for multimedia service function chains based on virtualization of sensors. In Proceedings of the 30th Brazilian Symposium on Multimedia and the Web (WebMedia 2024), WebMedia 2024, page 11-19. Sociedade Brasileira de Computação - SBC. DOI: 10.5753/webmedia.2024.243129.
Quico, F. J. V., Muchaluat-Saade, D. C., and Delicato, F. C. (2023). L-PRISM: A Specification Language for Multimedia Service Chains Based on Virtualization of Sensors. Master dissertation, Universidade Federal Fluminense. Available at:[link].
Rodrigues, D. O., De Souza, A. M., Braun, T., Maia, G., Loureiro, A. A. F., and Villas, L. A. (2023). Service provisioning in edge-cloud continuum: Emerging applications for mobile devices. Journal of Internet Services and Applications, 14(1):47-83. DOI: 10.5753/jisa.2023.2913.
Rodrigues, I. P., Zorzo, A. F., and da Silveira, M. B. (2019). Uma proposta de processo de avaliação de usabilidade para dsls. ERES-Escolar Regional de Engenharia de Software-Trilha Pós-graduação, 2019, Brasil.. DOI: 10.5753/eres.2021.18455.
Roges, L. and Ferreto, T. (2025). Multi-objective dynamic registry provisioning in edge computing infrastructures. Concurrency and Computation: Practice and Experience, 37(4-5):e70006. DOI: 10.1002/cpe.70006.
Santos, G. L., Bezerra, D. d. F., Rocha, Ã. d. S., Ferreira, L., Moreira, A. L. C., Gonçalves, G. E., Marquezini, M. V., Recse, a., Mehta, A., Kelner, J., Sadok, D., and Endo, P. T. (2022a). Service Function Chain Placement in Distributed Scenarios: A Systematic Review. Journal of Network and Systems Management, 30(1):1-39. DOI: 10.1007/s10922-021-09626-4.
Santos, H., Rosario, D., Cerqueira, E., and Braun, T. (2022b). Multi-criteria service function chaining orchestration for multi-user virtual reality services. In GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pages 6360-6365. DOI: 10.1109/GLOBECOM48099.2022.10000827.
Schönwälder, J., Björklund, M., and Shafer, P. (2010). Network configuration management using netconf and yang. IEEE Communications Magazine, 48(9):166-173. DOI: 10.1109/MCOM.2010.5560601.
Sisinni, E., Flammini, A., Gaffurini, M., Pasetti, M., Rinaldi, S., and Ferrari, P. (2024). Lorawan end device disaggregation and decomposition by means of lightweight virtualization. Internet of Things, 25:101033. DOI: 10.1016/j.iot.2023.101033.
Surendran, P. (2012). Technology Acceptance Model: A Survey of Literature. International Journal of Business and Social Research, 2(4):175-178. Available at:[link].
TOSCA, O. (2017). Tosca simple profile for network functions virtualization (nfv) version 1.0, committee specification draft 04. Available at:[link].
YAML (2021). YAML Ain't Markup Language (YAML™) Version 1.2. Available at:[link] Accessed: Jun 29, 2024.
Yi, B., Wang, X., Li, K., Das, S. k., and Huang, M. (2018). A comprehensive survey of Network Function Virtualization. Computer Networks, 133:212-262. DOI: 10.1016/j.comnet.2018.01.021.
Zerifi, M., Ezzouhairi, A., Boulaalam, A., and Baghrous, M. (2025). Iot challenges and issues: A comprehensive review of software defined networking and network function virtualization solutions. International Journal of Interactive Mobile Technologies (iJIM), 19(03):pp. 209-226. DOI: 10.3991/ijim.v19i03.49791.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Franklin J. V. Quico, Anselmo L. E. Battisti, Débora Muchaluat-Saade, Flavia C. Delicato

This work is licensed under a Creative Commons Attribution 4.0 International License.

