Harnessing Foveated Rendering and AI to Tackle VR Cybersickness: A Feature-Centric Perspective

Authors

DOI:

https://doi.org/10.5753/jbcs.2025.5870

Keywords:

Virtual Reality, Cybersickness, Foveated Rendering, Artificial Intelligence, Adaptive Systems

Abstract

As virtual reality becomes increasingly immersive, issues related to cybersickness pose a major challenge. This review investigates how foveated rendering techniques, powered by artificial intelligence, are transforming our response to this topic. We analyze the primary factors that lead to cybersickness, including latency, field of view, vergence-accommodation mismatch, and unnatural locomotion, while demonstrating how adaptive visual strategies can significantly alleviate user discomfort. By considering individual traits like age, previous virtual reality experience, and real-time physiological indicators, including heart rate and skin conductance, modern rendering systems are evolving to be more intelligent and user-specific. We emphasize the role of advanced machine learning models, from interpretable symbolic frameworks to deep neural networks, along with gaze prediction systems that enable real-time adjustments through predictive rendering and user-context-specific optimization. Our findings highlight the promise of closed-loop rendering systems, which aim to preserve visual fidelity while enhancing comfort and engagement, steering to toward safer, more personalized virtual reality experiences.

Downloads

Download data is not yet available.

References

Almeida, A., Rebelo, F., Noriega, P., and Vilar, E. (2018). Virtual reality self induced cybersickness: an exploratory study. In Advances in Ergonomics in Design: Proceedings of the AHFE 2017 International Conference on Ergonomics in Design, July 17- 21, 2017, The Westin Bonaventure Hotel, Los Angeles, California, USA 8, pages 26-33. Springer. DOI: 10.1007/978-3-319-60582-1_3.

Bala, P., Oakley, I., Nisi, V., and Nunes, N. J. (2021). Dynamic field of view restriction in 360 video: Aligning optical flow and visual slam to mitigate vims. In Proceedings of the 2021 CHI conference on human factors in computing systems, pages 1-18. DOI: 10.1145/3411764.3445499.

Bauer, D., Wu, Q., and Ma, K.-L. (2022). Fovolnet: Fast volume rendering using foveated deep neural networks. IEEE transactions on visualization and computer graphics, 29(1):515-525. DOI: 10.1109/tvcg.2022.3209498.

Biswas, N., Mukherjee, A., and Bhattacharya, S. (2024). “are you feeling sick?”-a systematic literature review of cybersickness in virtual reality. ACM Computing Surveys, 56(11):1-38. DOI: 10.1145/3670008.

Brunnström, K., Dima, E., Qureshi, T., Johanson, M., Andersson, M., and Sjöström, M. (2020). Latency impact on quality of experience in a virtual reality simulator for remote control of machines. Signal Processing: Image Communication, 89:116005. DOI: 10.1016/j.image.2020.116005.

Chang, E., Billinghurst, M., and Yoo, B. (2023). Brain activity during cybersickness: a scoping review. Virtual reality, 27(3):2073-2097. DOI: 10.1007/s10055-023-00795-y.

Davis, J., Hsieh, Y.-H., and Lee, H.-C. (2015). Humans perceive flicker artifacts at 500 hz. Scientific reports, 5(1):7861. DOI: 10.1038/srep07861.

Deng, N., He, Z., Ye, J., Duinkharjav, B., Chakravarthula, P., Yang, X., and Sun, Q. (2022). Fov-nerf: Foveated neural radiance fields for virtual reality. IEEE Transactions on Visualization and Computer Graphics, 28(11):3854-3864. DOI: 10.1109/tvcg.2022.3203102.

Dilanchian, A. T., Andringa, R., and Boot, W. R. (2021). A pilot study exploring age differences in presence, workload, and cybersickness in the experience of immersive virtual reality environments. Frontiers in Virtual Reality, 2:736793. DOI: 10.3389/frvir.2021.736793.

Ding, D., Cao, Z., Gu, Z., Chen, H., Qi, C., and Dong, F. (2025). Foanet: Focus of attention prediction for foveated pre-rendering to enable high-quality edge vr. ACM Transactions on Sensor Networks. DOI: 10.1145/3722222.

Drazich, B. F., McPherson, R., Gorman, E. F., Chan, T., Teleb, J., Galik, E., and Resnick, B. (2023). In too deep? a systematic literature review of fully-immersive virtual reality and cybersickness among older adults. Journal of the American Geriatrics Society, 71(12):3906-3915. DOI: 10.1111/jgs.18553.

Duchowski, A. T., Cournia, N., and Murphy, H. (2003). Gaze-contingent displays: Review and current trends. Available online [link].

Emery, K. J., Zannoli, M., Warren, J., Xiao, L., and Talathi, S. S. (2021). Openneeds: A dataset of gaze, head, hand, and scene signals during exploration in open-ended vr environments. In ACM Symposium on Eye Tracking Research and Applications, pages 1-7. DOI: 10.1145/3448018.3457996.

Fan, R., Wu, J., Shi, X., Zhao, L., Ma, Q., and Wang, L. (2025). Fov-gs: Foveated 3d gaussian splatting for dynamic scenes. IEEE Transactions on Visualization and Computer Graphics. DOI: 10.1109/tvcg.2025.3549576.

Feldstein, I. T. and Ellis, S. R. (2020). A simple video-based technique for measuring latency in virtual reality or teleoperation. IEEE Transactions on Visualization and Computer Graphics, 27(9):3611-3625. DOI: 10.1109/tvcg.2020.2980527.

Garbin, S. J., Kowalski, M., Johnson, M., Shotton, J., and Valentin, J. (2021). Fastnerf: High-fidelity neural rendering at 200fps. In Proceedings of the IEEE/CVF international conference on computer vision, pages 14346-14355. DOI: 10.1109/iccv48922.2021.01408.

Garcia-Agundez, A., Reuter, C., Caserman, P., Konrad, R., and Göbel, S. (2019). Identifying cybersickness through heart rate variability alterations. International Journal of Virtual Reality, 19(1):1-10. DOI: 10.20870/ijvr.2019.19.1.2907.

Henriques, H., de Oliveira, A., Oliveira, E., Trevisan, D., and Clua, E. (2024). Foveated path culling: A mixed path tracing and radiance field approach for optimizing rendering in xr displays. Journal on Interactive Systems, 15(1):576-590. DOI: 10.5753/jis.2024.4352.

Hussain, R., Chessa, M., and Solari, F. (2021). Mitigating cybersickness in virtual reality systems through foveated depth-of-field blur. Sensors, 21(12):4006. DOI: 10.3390/s21124006.

Illahi, G. K., Siekkinen, M., Kämäräinen, T., and Ylä-Jääski, A. (2022). Real-time gaze prediction in virtual reality. In Proceedings of the 14th international workshop on immersive mixed and virtual environment systems, pages 12-18. DOI: 10.1145/3534086.3534331.

Islam, M. S., Hussain, I., Rahman, M. M., Park, S. J., and Hossain, M. A. (2022). Explainable artificial intelligence model for stroke prediction using eeg signal. Sensors, 22(24):9859. DOI: 10.3390/s22249859.

Islam, R., Lee, Y., Jaloli, M., Muhammad, I., Zhu, D., Rad, P., Huang, Y., and Quarles, J. (2020). Automatic detection and prediction of cybersickness severity using deep neural networks from user’s physiological signals. In 2020 IEEE international symposium on mixed and augmented reality (ISMAR), pages 400-411. IEEE. DOI: 10.1109/ismar50242.2020.00066.

Jabbireddy, S., Sun, X., Meng, X., and Varshney, A. (2022). Foveated rendering: Motivation, taxonomy, and research directions. arXiv preprint arXiv:2205.04529. DOI: 10.48550/arXiv.2205.04529.

Kelly, J. W., Doty, T. A., Gilbert, S. B., and Dorneich, M. C. (2024). Field of view restriction and snap turning as cybersickness mitigation tools. IEEE Transactions on Visualization and Computer Graphics. DOI: 10.31234/osf.io/ksw63.

Kelly, J. W., Gilbert, S. B., Dorneich, M. C., and Costabile, K. A. (2023). Gender differences in cybersickness: Clarifying confusion and identifying paths forward. In 2023 IEEE conference on virtual reality and 3D user interfaces abstracts and workshops (VRW), pages 283-288. IEEE. DOI: 10.31234/osf.io/qrkdx.

Kemeny, A., Chardonnet, J.-R., and Colombet, F. (2020). Getting rid of cybersickness. Virtual reality, augmented reality, and simulators, 12:15. DOI: 10.1007/978-3-030-59342-1.

Kerbl, B., Kopanas, G., Leimkühler, T., and Drettakis, G. (2023). 3d gaussian splatting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139-1. Available online [link].

Krokos, E. and Varshney, A. (2022). Quantifying vr cybersickness using eeg. Virtual Reality, 26(1):77-89. DOI: 10.1007/s10055-021-00517-2.

Kumar, N., Lim, C. H., Sardar, S. K., Park, S. H., and Lee, S. C. (2024). Effects of posture and locomotion methods on postural stability, cybersickness, and presence in a virtual environment. International Journal of Human-Computer Interaction, 40(20):6314-6326. DOI: 10.1080/10447318.2023.2250611.

Kundu, R. K., Rahman, A., and Paul, S. (2021). A study on sensor system latency in vr motion sickness. Journal of Sensor and Actuator Networks, 10(3):53. DOI: 10.3390/jsan10030053.

Lei, Z., Ren, S., Hu, Y., Zhang, W., and Chen, S. (2022). Latency-aware collaborative perception. In European Conference on Computer Vision, pages 316-332. Springer. DOI: 10.1007/978-3-031-19824-3_19.

Li, X., Ren, X., Suzuki, X., Yamaji, N., Fung, K. W., and Gondo, Y. (2024). Designing a multisensory vr game prototype for older adults-the acceptability and design implications. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, pages 1-18. DOI: 10.1145/3613904.3642948.

Lisboa, T., Macêdo, H., Porcino, T., Oliveira, E., Trevisan, D., and Clua, E. (2023). Is foveated rendering perception affected by users’ motion? In 2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages 1104-1112. IEEE. DOI: 10.1109/ismar59233.2023.00127.

Liu, W., Duinkharjav, B., Sun, Q., and Zhang, S. Q. (2025). Fovealnet: Advancing ai-driven gaze tracking solutions for efficient foveated rendering in virtual reality. IEEE Transactions on Visualization and Computer Graphics. DOI: 10.1109/tvcg.2025.3549577.

Luu, W., Zangerl, B., Kalloniatis, M., Palmisano, S., and Kim, J. (2021). Vision impairment provides new insight into self-motion perception. Investigative Ophthalmology & Visual Science, 62(2):4-4. DOI: 10.1167/iovs.62.2.4.

MacArthur, C., Grinberg, A., Harley, D., and Hancock, M. (2021). You’re making me sick: A systematic review of how virtual reality research considers gender & cybersickness. In Proceedings of the 2021 CHI conference on human factors in computing systems, pages 1-15. DOI: 10.1145/3411764.3445701.

Market.us (2024). Ai in virtual reality market size, growth, trends, and forecast 2024–2033. Available online [link].

Mazloumi Gavgani, A., Walker, F. R., Hodgson, D. M., and Nalivaiko, E. (2018). A comparative study of cybersickness during exposure to virtual reality and “classic” motion sickness: are they different? Journal of Applied Physiology, 125(6):1670-1680. DOI: 10.1152/japplphysiol.00338.2018.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng, R. (2021). Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65(1):99-106. DOI: h10.1007/978-3-030-58452-8_24.

Mohanto, B., Islam, A. T., Gobbetti, E., and Staadt, O. (2022). An integrative view of foveated rendering. Computers & Graphics, 102:474-501. DOI: 10.1016/j.cag.2021.10.010.

Nie, T., Pospick, C. H., Cantory, V., Zhang, D., DeGuzman, J. J., Interrante, V., Adhanom, I. B., and Rosenberg, E. S. (2025). Peripheral teleportation: A rest frame design to mitigate cybersickness during virtual locomotion. IEEE Transactions on Visualization and Computer Graphics. DOI: 10.1109/tvcg.2025.3549568.

Nunes da Silva, W., Porcino, T. M., Castanho, C. D., and Jacobi, R. P. (2024). Analysis of cybersickness through biosignals: an approach with symbolic machine learning. In Proceedings of the 26th Symposium on Virtual and Augmented Reality, pages 11-20. DOI: 10.1145/3691573.3691582.

Oh, H. and Son, W. (2022). Cybersickness and its severity arising from virtual reality content: A comprehensive study. Sensors, 22(4):1314. DOI: 10.3390/s22041314..

Patney, A., Salvi, M., Kim, J., Kaplanyan, A., Wyman, C., Benty, N., Luebke, D., and Lefohn, A. (2016). Towards foveated rendering for gaze-tracked virtual reality. ACM Transactions on Graphics (TOG), 35(6):1-12. DOI: 10.1145/2980179.2980246.

Petri, K., Feuerstein, K., Folster, S., Bariszlovich, F., and Witte, K. (2020). Effects of age, gender, familiarity with the content, and exposure time on cybersickness in immersive head-mounted display based virtual reality. American Journal of Biomedical Sciences, 12(2). Available online [link].

Plouzeau, J., Chardonnet, J.-R., and Merienne, F. (2018). Using cybersickness indicators to adapt navigation in virtual reality: A pre-study. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 661-662. IEEE. DOI: 10.1109/vr.2018.8446192.

Pöhlmann, K. M., Li, G., Wilson, G., McGill, M., Pollick, F., and Brewster, S. (2024). Is video gaming a cure for cybersickness? gamers experience less cybersickness than non-gamers in a vr self-motion task. IEEE Transactions on Visualization and Computer Graphics. DOI: 10.1109/tvcg.2024.3456176.

Porcino, T., Trevisan, D., and Clua, E. (2021). A cybersickness review: causes, strategies, and classification methods. Journal on Interactive Systems, 12(1):269-282. DOI: 10.5753/jis.2021.2058.

Ramaseri-Chandra, A. N., Reza, H., and Pothana, P. (2025). Exploring the feasibility of head-tracking data for cybersickness prediction in virtual reality. Electronics, 14(3):502. DOI: 10.3390/electronics14030502.

Rebenitsch, L. R. (2015). Cybersickness prioritization and modeling. Michigan State University. DOI: doi:10.25335/nw4q-va87.

Reingold, E. M., Loschky, L. C., McConkie, G. W., and Stampe, D. M. (2003). Gaze-contingent multiresolutional displays: An integrative review. Human factors, 45(2):307-328. DOI: 10.1518/hfes.45.2.307.27235.

Salehi, M., Javadpour, N., Beisner, B., Sanaei, M., and Gilbert, S. B. (2024). Cybersickness detection through head movement patterns: A promising approach. In International Conference on Human-Computer Interaction, pages 239-254. Springer. DOI: 10.1007/978-3-031-60611-3_18.

Sanaei, M., Gilbert, S. B., Javadpour, N., Sabouni, H., Dorneich, M. C., and Kelly, J. W. (2024). The correlations of scene complexity, workload, presence, and cybersickness in a task-based vr game. In International Conference on Human-Computer Interaction, pages 277-289. Springer. DOI: 10.1007/978-3-031-61041-7_18.

Sepich, N. C., Jasper, A., Fieffer, S., Gilbert, S. B., Dorneich, M. C., and Kelly, J. W. (2022). The impact of task workload on cybersickness. Frontiers in Virtual Reality, 3:943409. DOI: 10.3389/frvir.2022.943409.

Sin, Z. P., Jia, Y., Li, R. C., Leong, H. V., Li, Q., and Ng, P. H. (2024). illumotion: An optical-illusion-based vr locomotion technique for long-distance 3d movement. In 2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR), pages 924-934. IEEE. DOI: 10.1109/vr58804.2024.00111.

Spjut, J. and Boudaoud, B. (2019). Foveated displays: toward classification of the emerging field. In ACM SIGGRAPH 2019 Talks, pages 1-2, Los Angeles California. ACM. DOI: 10.1145/3306307.3328145.

Stanney, K., Lawson, B. D., Rokers, B., Dennison, M., Fidopiastis, C., Stoffregen, T., Weech, S., and Fulvio, J. M. (2020). Identifying causes of and solutions for cybersickness in immersive technology: reformulation of a research and development agenda. International Journal of Human-Computer Interaction, 36(19):1783-1803. DOI: 10.1080/10447318.2020.1828535.

Valmorisco, S., Raya, L., and Sanchez, A. (2024). Enabling personalized vr experiences: a framework for real-time adaptation and recommendations in vr environments. Virtual Reality, 28(3):128. DOI: 10.1007/s10055-024-01020-0.

Vlahovic, S., Suznjevic, M., and Skorin-Kapov, L. (2019). The impact of network latency on gaming qoe for an fps vr game. In 2019 Eleventh international conference on quality of multimedia experience (QoMEX), pages 1-3. IEEE. DOI: 10.1109/qomex.2019.8743193.

Wang, J., Shi, R., Zheng, W., Xie, W., Kao, D., and Liang, H.-N. (2023a). Effect of frame rate on user experience, performance, and simulator sickness in virtual reality. IEEE Transactions on Visualization and Computer Graphics, 29(5):2478-2488. DOI: 10.1109/tvcg.2023.3247057.

Wang, L., Hajiesmaili, M., and Sitaraman, R. K. (2021). Focas: Practical video super resolution using foveated rendering. In Proceedings of the 29th ACM International Conference on Multimedia, pages 5454-5462. DOI: 10.1145/3474085.3475673.

Wang, L., Shi, X., and Liu, Y. (2023b). Foveated rendering: A state-of-the-art survey. Computational Visual Media, 9(2):195-228. DOI: 10.1007/s41095-022-0306-4.

Wu, F. and Suma Rosenberg, E. (2022). Adaptive field-of-view restriction: Limiting optical flow to mitigate cybersickness in virtual reality. In Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology, pages 1-11. DOI: 10.1145/3562939.3565611.

Xiao, R. and Benko, H. (2016). Augmenting the field-of-view of head-mounted displays with sparse peripheral displays. In Proceedings of the 2016 CHI conference on human factors in computing systems, pages 1221-1232. DOI: 10.1145/2858036.2858212.

Ye, J., Meng, X., Guo, D., Shang, C., Mao, H., and Yang, X. (2024). Neural foveated super-resolution for real-time vr rendering. Computer Animation and Virtual Worlds, 35(4):e2287. DOI: 10.22541/au.169955755.52710616/v1.

Downloads

Published

2025-08-21

How to Cite

Porcino, T. M., de Oliveira, J. C., Rodrigues, Érick O., Macêdo, H., Sassi, V. F., Trevisan, D., & Clua, E. (2025). Harnessing Foveated Rendering and AI to Tackle VR Cybersickness: A Feature-Centric Perspective. Journal of the Brazilian Computer Society, 31(1), 674–689. https://doi.org/10.5753/jbcs.2025.5870

Issue

Section

Articles