Exploring Geostatistical Modeling and VisualizationTechniques of Uncertainties for Categorical Spatial Data
DOI:
https://doi.org/10.5753/jidm.2021.1786Keywords:
Indicator Geostatistics, Spatial Modeling of Categorical Attributes, Uncertainty VisualizationAbstract
This article presents and analyzes the indicator geostatistical modeling and some visualization techniques of uncertainty models for categorical spatial attributes. A set of sample points of some categorical attribute is used as input information. The indicator approach requires a transformation of sample points on fields of indicator samples according to the classes of interest. Experimental and theoretical semivariograms of the indicator fields are defined representing the spatial variation of the indicator information. The indicator fields, along with their semivariograms, are used to determine the uncertainty model, the conditioned probability distribution function, of the attribute at any location inside the geographic region delimited by the samples. The probability functions are considered for producing prediction and probability maps based on the maximum class probability criterion. These maps can be visualized using different techniques. In this work, it is considered individual visualization of the predicted and probability maps and a combination of them. The predicted maps can also be visualized with or without constraints related to the uncertainty probabilities. The combined visualizations are based on three-dimensional (3D) planar projection and on the Red-Green-Blue to Intensity-Hue-Saturation (RGB-IHS) fusion transformation techniques. The methodology of this article is illustrated by a case study with real data, a sample set of soil textures observed in an experimental farm located in the region of São Carlos city in São Paulo State, Brazil. The resulting maps of this case study are presented and the advantages and the drawbacks of the visualization options are analyzed and discussed.
Downloads
References
Camara, G., Souza, R. C. M., Freitas, U. M., and Garrido, J. SPRING: Integrating Remote Sensing and GIS by Object-Oriented Data Modelling. Computer & Graphics 20 (3): 395–403, 1996.
Deitrick, S. and Wentz, E. A. Developing Implicit Uncertainty Visualization Methods Motivated by Theories in Decision Science. Association of American Geographers 105 (3): 531–551, 2015.
Deutsch, C. V. and Journel, A. G. GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press, Oxford, New York, 1998.
Felgueiras, C. A., Monteiro, A. M. V., Ortiz, J. O., and Camargo, E. C. G. Improving Accuracy of Categorical Attribute Modelling with Indicator Simulation and Soft Information. In Proceedings of International Conference on GeoComputation. Springer International Publishing, Richardson, Texas, USA, pp. 25–31, 2015.
Felgueiras, C. A., Ortiz, J. O., and Camargo, E. C. G. Spatial Predictions of Categorical Attributes Constrained to Uncertainty Assessments. In Libro de Actas del Simposio Internacional en Percepción Remota y Sistemas de Información Geográfica. EdUnLu - Editorial Universidad Nacional de Luján, Puerto Iguazú, Misiones, Argentina, pp. 1731–1740, 2016.
Felgueiras, C. A., Ortiz, J. O., and Camargo, E. C. G. An User-friendly Python Application for Exploratory and Structural Spatial Dependence Analysis for Sample Points of Spatial Attributes. In GeoInfo 2019 - XVIII Brazilian Symposium on GeoInformatics. Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, São Paulo, Brazil, pp. 25–35, 2019.
Felgueiras, C. A., Ortiz, J. O., Camargo, E. C. G., Namikawa, L. M., and Körting, T. S. Modeling and Visualization of Uncertainties of Categorical Spatial Data using Geostatistics, 3D Planar Projections and Color Fusion Techniques. In GeoInfo 2017 - XVIII Brazilian Symposium on GeoInformatics. Instituto Nacional de Pesquisas Espaciais (INPE), Salvador, Bahia, Brazil, pp. 152–163, 2017.
Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. Computer Graphics: Principles and Practice. Addison Wesley Longman, MA, United States, 1995.
Foody, G. M. and Atkinson, P. M. Uncertainty in Remote Sensing and GIS. John Wiley & Sons, Ltd, West Sussex, England, 2002.
Goodchild, M. How well do we really know the world? uncertainty in giscience. Journal of Spatial Information Science vol. 20, pp. 97–102, 2020. Publisher Copyright: © by the author(s). Goovaerts, P. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, USA, 1997.
Goovaerts, P. Geostatistical Modelling of Uncertainty in Soil Science. Geoderma 103 (1-2): 3–26, 2001.
Hengl, T. Visualization of Uncertainty using the HSI Color Model: Computations with Colors. In Proceedings of International Conference on GeoComputation. Taylor and Francis, Southhampton, United kingdom, 2003.
Isaaks, E. H. and Srivastava, R. M. An Introduction to Applied Geostatistics. Addison-Wesley, Massachussets, USA, 1989.
Kinkeldey, C. and Hensi, S. Representing uncertainty. the geographic information science & technology body of knowledge (2nd quarter 2018 edition). https://doi.org/10.22224/gistbok/2018.2.3, 2018.
Koo, H., Chun, Y., and Griffith, D. A. Geovisualization of Attribute Uncertainty. In Proceedings of International Conference on GeoComputation. Springer International Publishing, Richardson, Texas, USA, pp. 230–236, 2015.
Koo, H., Chun, Y., and Griffith, D. A. Geovisualizing Attribute Uncertainty of Interval and Ratio Variables: a Framework and an Implementation for Vector Data. Journal of Visual Language Computation vol. 44, pp. 89–96, 2018.
Newman, W. M. and Sproul, R. F. Principles of Interactive Computer Graphics. McGraw-Hill College, New York, USA, 1978.
Pebesma, E. J., de Jonga, K., and Briggs, D. Interactive Visualization of Uncertain Spatial and Spatio-Temporal Data Under Different Scenarios: an Air Quality Example. International Journal of Geographical Information Science 21 (5): 515–527, 2007.
Pérez-Díaz, L., Alcalde, J., and Bond, C. E. Introduction: Handling uncertainty in the geosciences: identification, mitigation and communication. Solid Earth 11 (3): 889–897, 2020.
Senaratne, H., Gerharz, L., Pebesma, E., and Schwering, A. Usability of Spatio-Temporal Uncertainty Visualization Methods. In J. Gensel, D. Josselin, and D. Vandenbroucke (Eds.), Bridging the Geographic Information Sciences. Springer, Heidelberg, Berlin, pp. 3–23, 2012.
Sun, M. and Wong, D. W. S. Incorporating Data Quality Information in Mapping American Community Survey Data. Cartography and Geographic Information Science 37 (4): 285–299, 2010.
Tan, M. Z. and Chen, J. Visualization of Uncertainty Associated with Spatial Prediction of Continuous Variables using HSI Color Model: a Case Study of Prediction of pH for Topsoil in Peri-Urban Beijing, China. Journal of Forestry Research 19 (4): 319–322, 2008.
Ślusarski, M. and Jurkiewicz, M. Visualisation of spatial data uncertainty. a case study of a database of topographic objects. ISPRS International Journal of Geo-Information 9 (1): 1–15, 2020.