Analysing Spatio-Temporal Voting Patterns in Brazilian Elections Through a Simple Data Science Pipeline

Authors

  • L. H. M. Jacintho University of Sao Paulo
  • T. P. da Silva University of São Paulo
  • A. R. S. Parmezan University of São Paulo
  • G. E. A. P. A. Batista University of New South Wales

DOI:

https://doi.org/10.5753/jidm.2021.1932

Keywords:

data mining, machine learning, preferential voting, spatio-temporal patterns, voting behavior

Abstract

Since 1989, the first year of the democratic presidential election after a long period of a dictatorship regime, Brazil conducted eight presidential elections. Short and long-term shifts of power and two impeachment processes marked such a period. This instability is a research case in electoral studies, mainly regarding the understanding of citizens' voting behavior. Comprehending patterns in the population behavior can give us insight into phenomena and processes that affect democratic political decisions. In light of this, our paper analyses Brazilian electoral data at the municipal level from 1998 to 2018 using a simple data science pipeline, which consists of five steps: (i) data selection; (ii) data preprocessing; (iii) identification of spatial patterns, in which we seek to understand the role of space in the election results employing spatial auto-correlation techniques; (iv) identification of temporal patterns, where we investigate similar trends of votes over the years applying a hierarchical clustering method; and (v) evaluation of results. We study the presidential elections focusing on the right and left-wing parties most relevant for the period: the Brazilian Social Democracy Party~(PSDB) and the Workers' Party~(PT). We also analyse the congressman election data regarding parties ideologically to the right and left in the political spectrum. Through the obtained results, we found the existence of spatial dependence in every electoral year investigated. Moreover, despite the changes in the political-economic context over the years, neighboring cities seem to present similar voting behavior trends.

Downloads

References

Agnew, J. Maps and models in political studies: a reply to comments. Political Geography 15 (2): 165–167, 1996.

Anselin, L. Local indicators of spatial association–LISA. Geographical Analysis 27 (2): 93–115, 1995.

Anselin, L. and Getis, A. Spatial statistical analysis and geographic information systems. The Annals of Regional Science 26 (1): 19–33, 1992.

Caliński, T. and Harabasz, J. A dendrite method for cluster analysis. Communications in Statistics 3 (1): 1–27, 1974.

Campello, R. J., Moulavi, D., Zimek, A., and Sander, J. A framework for semi-supervised and unsupervised optimal extraction of clusters from hierarchies. Data Mining and Knowledge Discovery 27 (3): 344–371, 2013.

Carvalho, R. and Menezes, T. Uma análise espacial das eleições presidenciais brasileiras de 2010. Pesquisa e Planejamento Econômico 45 (3): 436–495, 02, 2015.

Cliff, A. and Ord, K. Testing for spatial autocorrelation among regression residuals. Geographical Analysis 4 (3): 267–284, 1972.

Corrêa, D. S. Os custos eleitorais do bolsa família: Reavaliando seu impacto sobre a eleição presidencial de 2006. Opinião Pública 21 (3): 514–534, 2015.

Davies, D. L. and Bouldin, D. W. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1 (2): 224–227, 1979.

Faustino, J., Barbosa, H., Ribeiro, E., and Menezes, R. A data-driven network approach for characterization of political parties’ ideology dynamics. Applied Network Science 4 (1): 1–15, 2019.

Han, J., Kamber, M., and Pei, J. Data mining: Concepts and techniques. Morgan Kaufmann, California, 2011.

Hand, D. J. and Adams, N. M. Data mining. Wiley StatsRef: Statistics Reference Online, 2014.

Hernández, V. and León, L. Geografía de la participación electoral y diferenciación socioespacial en Ciudad Juárez, Chihuahua (México). Geopolítica(s). Revista de Estudios sobre Espacio y Poder vol. 11, pp. 145–172, 06, 2020.

Jacintho, L. H. M., da Silva, T. P., Parmezan, A. R. S., and Batista, G. E. A. P. A. Brazilian presidential elections: Analysing voting patterns in time and space using a simple data science pipeline. In Anais do VIII Symposium on Knowledge Discovery, Mining and Learning. SBC, Porto Alegre, pp. 217–224, 2020.

Li, H., Calder, C. A., and Cressie, N. Beyond Moran’s I: Testing for spatial dependence based on the spatial autoregressive model. Geographical Analysis 39 (4): 357–375, 2007.

Magalhães, A. M., Silva, M. E. A. d., and Dias, F. d. M. Eleição de Dilma ou segunda reeleição de Lula? Uma análise espacial do pleito de 2010. Opinião Pública 21 (3): 535–573, 2015.

Mansley, E. and Demšar, U. Space matters: Geographic variability of electoral turnout determinants in the 2012 london mayoral election. Electoral Studies vol. 40, pp. 322–334, 2015.

Martins, D. J. D., Mansano, F. H., Parré, J. L., and Plassa, W. Fatores que contribuíram para a reeleição da presidente Dilma Rousseff. Política & Sociedade 15 (32): 145–170, 2016.

Marzagão, T. A dimensão geográfica das eleições brasileiras. Opinião Pública 19 (2): 270–290, 2013.

Mota, A. M. S. Modelling abstention rate using spatial regression. M.S. thesis, NOVA Information Management School, 2019.

Norris, P. and Grömping, M. Electoral integrity worldwide, 2019. Sydney: Electoral Integrity Project. Available at https://www.electoralintegrityproject.com/.

Okunev, I. Y., Gorelova, J. S., and Gruzdeva, E. Regional disparities of electoral behaviour in poland: Comparative spatial analysis. Comparative Politics Russia 12 (1): 149–160, 2020.

Power, T. J. and Rodrigues-Silveira, R. Mapping ideological preferences in Brazilian elections, 1994–2018: a municipal-level study. Brazilian Political Science Review 13 (1): e0001–1–27, 2019.

Praciano, B. J. G., da Costa, J. P. C. L., Maranhão, J. P. A., de Mendonça, F. L. L., de Sousa Júnior, R. T., and Prettz, J. B. Spatio-temporal trend analysis of the Brazilian elections based on twitter data. In Proceedings of the IEEE International Conference on Data Mining Workshops. IEEE, Singapore, pp. 1355–1360,

Recuero, R., Soares, F. B., and Gruzd, A. Hyperpartisanship, disinformation and political conversations on twitter: the Brazilian presidential election of 2018. Proceedings of the International AAAI Conference on Web and Social Media 14 (1): 569–578, May, 2020.

Reid, B. and Liu, G.-J. One nation and the heartland’s cleavage: an exploratory spatial data analysis. In The Rise of Right-Populism: Pauline Hanson’s One Nation and Australian Politics, B. Grant, T. Moore, and T. Lynch (Eds.). Springer, Singapore, pp. 79–102, 2019.

Rokach, L. and Maimon, O. Clustering methods. In Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach (Eds.). Springer, Boston, pp. 321–352, 2005.

Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics vol. 20, pp. 53 – 65, 1987.

Schuhli, G. T. O Partido dos Trabalhadores e o voto católico no segundo turno da eleição presidencial de 2010: uma análise espacial a nível municipal. Revista da FAE 21 (1): 156–167, 2018.

Terron, S. L. and Soares, G. A. D. As bases eleitorais de lula e do pt: do distanciamento ao divórcio. Opinião Pública 16 (2): 310–337, 2010.

Tobler, W. R. A computer movie simulating urban growth in the detroit region. Economic Geography 46 (sup1): 234–240, 1970.

Ward Jr, J. H. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58 (301): 236–244, 1963.

Zucco, C. and Power, T. Fragmentation without cleavages? Endogenous fractionalization in the Brazilian party system. Comparative Politics, 01, 2020.

Downloads

Published

2021-08-05

How to Cite

M. Jacintho, L. H., P. da Silva, T., S. Parmezan, A. R., & A. P. A. Batista, G. E. (2021). Analysing Spatio-Temporal Voting Patterns in Brazilian Elections Through a Simple Data Science Pipeline. Journal of Information and Data Management, 12(1). https://doi.org/10.5753/jidm.2021.1932

Issue

Section

KDMILe 2020