QualiOSM: An Architecture to Improve Data Completeness on OpenStreetMap


  • Gabriel F. B. de Medeiros Universidade de Brasília (UnB)
  • Lívia C. Degrossi Fundação Getúlio Vargas (FGV)
  • Maristela Holanda Universidade de Brasília (UnB)




Geographic Data, Geographic Information Systems, Volunteered Geographic Information, Quality Dimensions, Completeness, OpenStreetMap



OpenStreetMap (OSM) is a large spatial database in which geographic information is voluntarily contributed by thousands of users. In Geographic Information Systems (GIS), and more specifically, in Volunteered Geographic Information (VGI), as in the case of OSM, the issue of data completeness is a constant concern, since users without technical knowledge actively participate in the processes of including, editing and excluding data. Also in the
case of OSM, users can add information to the objects assigning special labels for them. These labels are popularly called tags, and the process of assigning them to objects contributes to improving the attribute completeness, an important metric of data quality. In this context, this article proposes the QualiOSM architecture, which generates an automatic tag adder with the purpose of improving the completeness of address information for OSM objects in Brazil, using the reverse geocoding tools Nominatim, CEP Aberto and the database from Correios. The QualiOSM architecture showed good results for improving the completeness of city, neighborhood and street information in OSM objects, especially in scenarios of large urban centers, where the level of mapping is usually better compared to scenarios in rural or peripheral environments.


Download data is not yet available.


Ames, M. and Naaman, M. Why we tag: Motivations for annotation in mobile and online media. ACM SIGCHI Conf. Human Factors in Computing Systems, 2007.

Bennett, J. OpenStreetMap: Be your own cartographer. Packt Publishing, 2010.

Codescu, M., Horsinka, G., Kutz, O., Mossakowski, T., and Rau, R. Osmonto-an ontology of OpenStreetMap tags. State of the map Europe (SOTM-EU) vol. 2011, 2011.

Davidovic, N., Mooney, P., Stoimenov, L., and Minghini, M. Tagging in volunteered geographic information: an analysis of tagging practices for cities and urban regions in OpenStreetMap. ISPRS International Journal of Geo-Information 5 (12): 232, 2016.

de Medeiros, G. F., Degrossi, L. C., and Holanda, M. Qualiosm: Melhorando a qualidade dos dados na ferramenta de mapeamento colaborativo OpenStreetMap. Simpósio Brasileiro de Banco de Dados (SBBD), 2020.

de Oliveira, M. G., de Souza Baptista, C., Campelo, C. E., Acioli Filho, J. A. M., and Falcão, A. G. R. Producing volunteered geographic information from social media for lbsn improvement. Journal of Information and Data Management 6 (1): 81–81, 2015.

Doan, A., Ramakrishnan, R., and Halevy, A. Y. Crowdsourcing systems on the world-wide web. Communications of the ACM 54 (4): 86–96, 2011.

Fowler, M. Patterns of enterprise application architecture. Addison-Wesley Longman Publishing Co., Inc., 2002.

Goodchild, M. F. Citizens as sensors: The world of volunteered geography. GeoJournal 69 (4): 211 – 221, 2007.

ISO, I. 19157: 2013: Geographic information—data quality. International Organization for Standardization: Geneva, Switzerland, 2013.

Kennedy, L., Chang, S.-F., and Kozintsev, I. To search or to label? predicting the performance of search-based automatic image classifiers. ACM Workshop Multimedia Information Retrieval, 2006.

Kounadi, O., Lampoltshammer, T. J., L., M., and Heistracher, T. Accuracy and privacy aspects in free online reverse geocoding services. Cartography and Geographic Information Science 40 (2): 140–153, 2013.

Monteiro, A. M., Camara, G., Fucks, S., and Carvalho, M. Spatial analysis and GIS: A primer. National Institute for Space Research, 2001.

Mooney, P. and Corcoran, P. The annotation process in OpenStreetMap. Transactions in GIS vol. 16, pp. 561–579, 2012.

Nielsen, J. The 90-9-1 rule for participation inequality in social media and online communities, 2006.

Ramm, F., Topf, J., and Chilton, S. OpenStreetMap: Using and enhancing the free map of the world. UIT Cambridge, 2010.

Ruta, M., S. F. I. S. L. G. and Di Sciascio, E. Semantic annotation of OpenStreetMap points of interest for mobile discovery and navigation. IEEE First International Conference on Mobile Services, 2012.

See, L., Estima, J., Pődör, A., Arsanjani, J., Bayas, J., and Vatseva, R. Sources of VGI for mapping. Citizen Sensor , 2017.

Senaratne, H., Mobasheri, A., Ali, A. L., Capineri, C., and Haklay, M. A review of volunteered geographic information quality assessment methods. International Journal of Geographical Information Science 31 (1): 139 – 167, 2017.

Sui, D., Elwood, S., and Goodchild, M. Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice. Springer, 2013.

Tomlinson, R. F. Thinking about GIS: geographic information system planning for managers. Vol. 1. ESRI, Inc., 2007.

Tong, Y., Zhou, Z., Zeng, Y., Chen, L., and Shahabi, C. Spatial crowdsourcing: a survey. The VLDB Journal 29 (1): 217–250, 2020.

Yeung, A. K. W. and Hall, G. B. Spatial Database Systems: Design, Implementation and Project Management. Springer, 2007.




How to Cite

B. de Medeiros, G. F., C. Degrossi, L., & Holanda, M. (2021). QualiOSM: An Architecture to Improve Data Completeness on OpenStreetMap . Journal of Information and Data Management, 12(2). https://doi.org/10.5753/jidm.2021.2092



SBBD 2020 - Demonstrations and Applications