MediBot: An Ontology-Based Chatbot to Retrieve Drug Information and Compare its Prices


  • Caio Viktor S. Avila Federal University of Ceará
  • Wellington Franco Federal Universiy of Ceará
  • Amanda D. P. Venceslau Federal University of Ceará
  • Tulio Vidal Rolim Federal University of Ceará
  • Vania M. P. Vidal Federal University of Ceará
  • Valéria M. Pequeno Universidade Autónoma de Lisboa



Chatbots, Data Integration Systems, Semantic Web, Medical Informatics, Drugs


In this article, we present the MediBot. MediBot is a chatbot for querying drugs information. The presented system acted as a single access point for natural and simplified information retrieval of drugs, prices, and its risks. The chatbot has two modes of operation: Quick Response and Interactive modes. The first answers questions asked in natural language, while the second has three interactive tasks, namely Browser, Query, and Price Comparison. We present here the system architecture, the Linked Data Mashup’s construction process, and Chatbot MediBot’s activities modes, focusing on the new Price Comparison’s task. This task presents the best prices for medicines and their best potential substitutes extracted in real-time from the Web with the help of the information obtained from a linked data mashup.


Download data is not yet available.


ANVISA. gravidezconsulta pública nº 116, de 23 de dezembro de 2010., 2010a. Accessed: 2018-09-17.

ANVISA. O que devemos saber sobre medicamentos.,2010b. Accessed: 2018-09-17.

ANVISA. Preços medicamentoslistas de preços de medicamentos., 2018. Accessed: 2018-09-17.

Aquino, D. S. Por que o uso racional de medicamentos deve ser uma prioridade?. Ciência & Saúde Coletiva vol. 13, pp. 733–736, 2008.

Avila, C., Calixto, A., Rolim, T., Franco, W., Venceslau, A., Vidal, V., P. V., and Moura, F. Medibot: An ontology based chatbot for portuguese speakers drug’s users. In Proceedings of the 21st International Conference on Enterprise Information Systems - Volume 1: ICEIS,. INSTICC, SciTePress, pp. 25–36, 2019.

Avila, C. V. S., Rolim, T. V., da Silva, J. W. F., and Vidal, V. M. P. Medibot: Um chatbot para consulta de riscos e informações sobre medicamentos. In Anais Estendidos do XIX Simpósio Brasileiro de Computação Aplicada à Saúde. SBC, pp. 1–6, 2019.

Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., and Morissette, J. Bio2rdf: towards a mashup to build bioinformatics knowledge systems. Journal of biomedical informatics 41 (5): 706–716, 2008.

Berners-Lee, T., Hendler, J., and Lassila, O. The semantic web. Scientific american 284 (5): 34–43, 2001.

Bizer, C., Heath, T., and Berners-Lee, T. Linked data: The story so far. In Semantic services, interoperability and web applications: emerging concepts. IGI Global, pp. 205–227, 2011.

Bizer, C. and Seaborne, A. D2rq-treating non-rdf databases as virtual rdf graphs. In Proceedings of the 3rd international semantic web conference (ISWC2004). Vol. 2004. Proceedings of ISWC2004, 2004.

Chowdhury, G. G. Natural language processing. annual review of information science and technology, 2003.

Da Costa, R. P., Canedo, E. D., De Sousa, R. T., Albuquerque, R. D. O., and Villalba, L. J. G. Set of usability heuristics for quality assessment of mobile applications on smartphones. IEEE Access vol. 7, pp. 116145–116161, 2019.

Dale, R. The return of the chatbots, 2016.

DataHub. Datahub datahub medicamentos., 2018. Accessed: 2018-09-18.

G1. Remédios têm diferença de preços que pode passar de 5.000%., 2016. Accessed: 2019-07-18.

Hendrix, G. G., Sacerdoti, E. D., Sagalowicz, D., and Slocum, J. Developing a natural language interface to complex data, 1978.

Hoang, H. H., Cung, T. N.-P., Truong, D. K., Hwang, D., and Jung, J. J. Retracted: Semantic information integration with linked data mashups approaches. International Journal of Distributed Sensor Networks 10 (4): 813875, 2014.

Jovanovik. Consolidating drug data on a global scale using linked data. Journal of Biomedical Semantics 8 (1): 3, 2017.

Kazi, H., Chowdhry, B., and Memon, Z. Medchatbot: An umls based chatbot for medical students. International Journal of Computer Applications 55 (17), 2012.

Konstantinova, N. and Orasan, C. Interactive question answering. In Emerging Applications of Natural Language Processing: Concepts and New Research. IGI Global, pp. 149–169, 2013.

Mendes, P. N., Muhleisen, H., and Bizer, C. Sieve: linked data quality assessment and fusion. In Proceedings of the 2012 Joint EDBT/ICDT Workshops. ACM, pp. 116–123, 2012.

Natsiavas, P., Maglaveras, N., and Koutkias, V. Evaluation of linked, open data sources for mining adverse drug reaction signals. In International Conference on Internet Science. Springer, pp. 310–328, 2017.

Neto, L. E. T., Vidal, V. M. P., Casanova, M. A., and Monteiro, J. M. R2rml by assertion: A semi-automatic tool for generating customised r2rml mappings. In Extended Semantic Web Conference. Springer, pp. 248–252, 2013.

Nováček, V., Vandenbussche, P.-Y., and Muñoz, E. Using drug similarities for discovery of possible adverse reactions. In AMIA Annual Symposium Proceedings. AMIA, 2017.

Petherbridge, N. Rivescript what is rivescript, 2019. Accessed: 2019-01-29.

PostgreSQL, G. D. G. PostgreSQL the world’s most advanced open source relational database., 1996. Accessed: 2018-09-30.

Radesko, L.; Mladenic, D. A survey of chatbot systems through a loebner prize competition, 2012.

Radesko, L. and Mladenic, D. Natural language tool/dialog manager, 2018. Accessed: 2018-12-12.

Schultz, A., Matteini, A., Isele, R., Mendes, P. N., Bizer, C., and Becker, C. LDIF - A Framework for Large-Scale Linked Data Integration. In 21st WWW, Developers Track. pp. to appear, 2012.

Schyve, P. M. Language differences as a barrier to quality and safety in health care: the joint commission perspective. Journal of general internal medicine 22 (2): 360–361, 2007.

Vega-Gorgojo, G. and Slaughter, L. Easy-to-use semantic search of pharmacological data. In Proceedings of the 9th International Semantic Web Applications and Tools for the Life Sciences Conference, 2016.

Volz, J., Bizer, C., Gaedke, M., and Kobilarov, G. Silk-a link discovery framework for the web of data. LDOW vol. 538, 2009.

W3C. R2rml: Rdb to rdf mapping language, 2011.

W3C. OWL web ontology language., 2012. Accessed: 2018-09-21.

WHO. The rational use of drugs: report of the conference of experts. World Health Organization, 1987.




How to Cite

S. Avila, C. V., Franco, W., D. P. Venceslau, A., Vidal Rolim, T., M. P. Vidal, V., & M. Pequeno, V. (2021). MediBot: An Ontology-Based Chatbot to Retrieve Drug Information and Compare its Prices. Journal of Information and Data Management, 12(2).



Regular Papers