A Visualization Approach for Simulating and Analyzing Infection Spread Dynamics Using Temporal Networks
DOI:
https://doi.org/10.5753/jidm.2022.2456Keywords:
Infection propagation, Visualization, Temporal networks, Dynamic networks, Community detectionAbstract
Temporal networks have been widely used to model instances of a domain of interest and their time-evolving interaction, including modeling individuals and face-to-face contacts throughout time. In the context of infection spread, such individuals can, e.g., remain susceptible, recovered, or be infected at a particular time. Understanding the infection spread behavior (its speed and magnitude, for instance) is crucial for quick and reliable decision making. Network visualization strategies can help in this task as they allow easy identification of who infected whom and when, epidemics outbreak, and other relevant aspects. This paper presents a visualization approach for the simulation and analysis of infection spread dynamics that considers different infection probabilities and different levels of social distancing (inter-group interaction). We performed quantitative and visual experiments using three real-world social networks with distinct characteristics and from two different environments. Our findings reveal the overall influence of different levels of inter-group interaction and infection probabilities in the infection spread dynamics and also demonstrate the usefulness of our approach for enhanced local (individual- or group-level) investigations.
Downloads
References
Ahmed, N. K., Neville, J., and Kompella, R. Network sampling: From static to streaming graphs. ACM Trans. Knowl. Discov. Data 8 (2): 7:1–7:56, June, 2013.
Barrat, A., Barthélemy, M., and Vespignani, A. Dynamical Processes on Complex Networks. Cambridge University Press, 2008.
Battista, G. D., Eades, P., Tamassia, R., and Tollis, I. G. Algorithms for drawing graphs: an annotated bibliography. Computational Geometry 4 (5): 235 – 282, 1994.
Beck, F., Burch, M., Diehl, S., and Weiskopf, D. A taxonomy and survey of dynamic graph visualization. Computer Graphics Forum 36 (1): 133–159, 2016.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment vol. 2008, pp. P10008, 2008.
Brandes, U. pp. 1–6. In M.-Y. Kao (Ed.), Force-Directed Graph Drawing. Springer US, Boston, MA, pp. 1–6, 2008.
Canabarro, A., Tenorio, E., Martins, R., Martins, L., Brito, S., and Chaves, R. Data-driven study of the covid-19 pandemic via age-structured modelling and prediction of the health system failure in brazil amid diverse intervention strategies. medRxiv , 2020.
Carroll, L. N., Au, A. P., Detwiler, L. T., Fu, T.-c., Painter, I. S., and Abernethy, N. F. Visualization and analytics tools for infectious disease epidemiology: a systematic review. Journal of biomedical informatics vol. 51, pp. 287–298, 2014.
Chang, S., Harding, N., Zachreson, C., Cliff, O. M., and Prokopenko, M. Modelling transmission and control of the covid-19 pandemic in australia. ArXiv vol. abs/2003.10218, 2020.
Daghriri, T. and Ozmen, O. Quantifying the effects of social distancing on the spread of covid-19. Journal of Vaccines & Vaccination, 2020.
Dong, E., Du, H., and Gardner, L. An interactive web-based dashboard to track covid-19 in real time. The Lancet infectious diseases 20 (5): 533–534, 2020.
Dunne, C., Muller, M., Perra, N., and Martino, M. Vorograph: Visualization tools for epidemic analysis. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems. CHI EA ’15. Association for Computing Machinery, New York, NY, USA, pp. 255–258, 2015.
Fortunato, S. and Hric, D. Community detection in networks: A user guide. Physics Reports 659 (Supplement C): 1 – 44, 2016.
Gemmetto, V., Barrat, A., and Cattuto, C. Mitigation of infectious disease at school: targeted class closure vs school closure. BMC infectious diseases 14 (1): 695, Dec., 2014.
Génois, M., Vestergaard, C. L., Fournet, J., Panisson, A., Bonmarin, I., and Barrat, A. Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Network Science 3 (3): 326–347, 2015.
Ghalmane, Z., El Hassouni, M., and Cherifi, H. Immunization of networks with non-overlapping community structure. Social Network Analysis and Mining 9 (1): 45, 2019.
Hassani, H. and Silva, E. A kolmogorov-smirnov based test for comparing the predictive accuracy of two sets of forecasts. Econometrics vol. 3, pp. 590–609, 08, 2015.
Holme, P. and Saramäki, J. Temporal networks. Physics Reports 519 (3): 97–125, October, 2012.
Jr., L. G. and Frizzon, G. Fake news and brazilian politics – temporal investigation based on semantic annotations and graph analysis. In Anais do XXXIV SBBD. SBC, Porto Alegre, RS, Brasil, pp. 169–174, 2019.
Kitchovitch, S. and Liò, P. Risk perception and disease spread on social networks. Procedia Computer Science 1 (1): 2345 – 2354, 2010. ICCS 2010.
Leão, J., Laender, A., and de Melo, P. A multi-strategy approach to overcoming bias in community detection evaluation. In Anais do XXXIV SBBD. SBC, Porto Alegre, RS, Brasil, pp. 13–24, 2019.
Linhares, C., Ponciano, J., Pereira, F., Rocha, L., Paiva, J., and Travençolo, B. Visual analysis for evaluation of community detection algorithms. Multimedia Tools and Applications 79 (25): 17645–17667, 2020.
Linhares, C. D. G., Lima, D. M., Bones, C. C., Rebelo, M. F. S., Gutierrez, M. A., Traina, C., and Traina, A. J. M. I-covidvis – a visual analytics tool for interoperable healthcare databases using graphs. In 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS). pp. 125–130, 2021.
Linhares, C. D. G., Lima, D. M., Ponciano, J. R., Olivatto, M. M., Gutierrez, M. A., Poco, J., Traina, C., and Traina, A. J. M. ClinicalPath: a visualization tool to improve the evaluation of electronic health records in clinical decision-making. IEEE Transactions on Visualization and Computer Graphics, 2022.
Linhares, C. D. G., Ponciano, J. R., Paiva, J. G. S., Rocha, L. E. C., and Travençolo, B. A. N. DyNetVis - an interactive software to visualize structure and epidemics on temporal networks. In 2020 IEEE/ACM ASONAM. pp. 933–936, 2020.
Linhares, C. D. G., Ponciano, J. R., Paiva, J. G. S., Travençolo, B. A. N., and Rocha, L. E. C. pp. 83–105. In , Visualisation of Structure and Processes on Temporal Networks. Springer International Publishing, Cham, pp. 83–105, 2019.
Linhares, C. D. G., Ponciano, J. R., Paiva, J. G. S., Travençolo, B. A. N., and Rocha, L. E. C. A comparative analysis for visualizing the temporal evolution of contact networks: a user study. Journal of Visualization 24 (5): 1011–1031, Oct, 2021.
Linhares, C. D. G., Ponciano, J. R., Pereira, F. S. F., Rocha, L. E. C., Paiva, J. G. S., and Travençolo, B. A. A scalable node ordering strategy based on community structure for enhanced temporal network visualization. Computers & Graphics vol. 84, pp. 185 – 198, 2019.
Linhares, C. D. G., Travençolo, B. A. N., Paiva, J. G. S., and Rocha, L. E. C. DyNetVis: a system for visualization of dynamic networks. In Proceedings of the Symposium on Applied Computing. SAC ’17. ACM, Marrakech, Morocco, pp. 187–194, 2017.
Mastrandrea, R., Fournet, J., and Barrat, A. Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLOS ONE 10 (9): 1–26, 09, 2015.
Park, J. Y. Spatial visualization of cluster-specific covid-19 transmission network in south korea during the early epidemic phase. medRxiv , 2020.
Ponciano, J., Vezono, G., and Linhares, C. Simulating and visualizing infection spread dynamics with temporal networks. In Anais do XXXVI Simpósio Brasileiro de Bancos de Dados. SBC, Porto Alegre, RS, Brasil, pp. 37–48, 2021.
Ponciano, J. R., Linhares, C. D. G., Faria, E. R., and Travençolo, B. A. N. An online and nonuniform timeslicing method for network visualisation. Computers & Graphics vol. 97, pp. 170–182, 2021.
Ponciano, J. R., Linhares, C. D. G., Melo, S. L., Lima, L. V., and Travençolo, B. A. N. Visual analysis of contact patterns in school environments. Informatics in Education 19 (3): 455–472, 2020.
Ponciano, J. R., Linhares, C. D. G., Rocha, L. E. C., Faria, E. R., and Travençolo, B. A. N. Combining clutter reduction methods for temporal network visualization. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing. SAC ’22. Association for Computing Machinery, New York, NY, USA, pp. 1748–1755, 2022.
Ponciano, J. R., Linhares, C. D. G., Rocha, L. E. C., Faria, E. R., and Travençolo, B. A. N. A streaming edge sampling method for network visualization. Knowledge and Information Systems vol. 63, pp. 1717–1743, Apr, 2021.
Prakash, B. A., Vreeken, J., and Faloutsos, C. Efficiently spotting the starting points of an epidemic in a large graph. Knowledge and information systems 38 (1): 35–59, 2014.
Rocha, L. E. C. and Blondel, V. D. Bursts of vertex activation and epidemics in evolving networks. PLOS Computational Biology vol. 9, pp. 1–9, 2013.
Rosvall, M. and Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences 105 (4): 1118–1123, 2008.
So, M., Tiwari, A., Chu, A., Tsang, J., and Chan, J. Visualizing covid-19 pandemic risk through network connectedness. International Journal of Infectious Diseases vol. 96, pp. 558 – 561, 2020.
Tepper, J. G. and Thiébaut, D. Data visualization of agent-based simulation of an infectious spread. In INFOCOMP 2017, 2017.