Searching for Researchers: an Ontology-based NoSQL Database System Approach and Practical Implementation

Authors

  • Mariana D. A. Salgueiro Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • Veronica dos Santos Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • André L. C. Rêgo Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • Daniel S. Guimarães Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • Jefferson B. Santos Escola Brasileira de Administração Pública e de Empresas Fundação Getulio Vargas (FGV)
  • Edward H. Haeusler Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • Marcos V. Villas Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • Sérgio Lifschitz Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)

DOI:

https://doi.org/10.5753/jidm.2022.2601

Keywords:

JIDM, SBBD, template

Abstract

This work presents the design and implementation of two web-based search systems, Busc@NIMA and Quem@PUC. Both systems allow the identification of research and development projects, besides existing competencies in laboratories and departments involving professors and researchers at PUC-Rio University. Our applications are based on a list of search-related terms that are matched to the dataset composed of PUC-Rio’s Lattes CVs offered courses, information from administrative systems, and specific keywords that are input by the professors/researchers themselves. To integrate all the needed data, we consider multiple database and search technologies, such as XML, RDF, TripleStores, and Relational Databases. Search results include professor’s name, academic papers, teaching activities, contact links, keywords, and laboratories of those involved with the subject represented by the set of keywords input. We describe the main features that show how our systems work.

Downloads

Download data is not yet available.

References

Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., and Vrgoč, D. Foundations of Modern Query Languages for Graph Databases. ACM Computing Surveys 50 (5): 1–40, sep, 2018.

Baeza-Yates, R. A. and Ribeiro-Neto, B. A. Modern Information Retrieval. ACM Press / Addison-Wesley, 1999.

Husain, O., Salim, N., Alias, R. A., Abdelsalam, S., and Hassan, A. Expert finding systems: A systematic review. Applied Sciences 9 (20), 2019.

Klímek, J. and Škoda, P. Linkedpipes etl in use: Practical publication and consumption of linked data. In Proceedings of the 19th International Conference on Information Integration and Web-Based Applications & Services. iiWAS ’17. Association for Computing Machinery, New York, NY, USA, pp. 441–445, 2017.

Manning, C. D., Raghavan, P., and Schütze, H. Introduction to Information Retrieval. Cambridge University Press, 2008.

Salgueiro, M., dos Santos, V., Rêgo, A., Guimarães, D., Haeusler, E., dos Santos, J., Villas, M., and Lifschitz, S. Quem@puc - a tool to find researchers at puc-rio. In Anais Estendidos do XXXVI Simpósio Brasileiro de Bancos de Dados. SBC, Porto Alegre, RS, Brasil, pp. 93–98, 2021.

Ziegler, P. and Dittrich, K. R. Data integration – problems, approaches, and perspectives. In Conceptual Modelling in Information Systems Engineering, J. Krogstie, A. L. Opdahl, and S. Brinkkemper (Eds.). Springer, pp. 39–58, 2007.

Downloads

Published

2022-12-19

How to Cite

A. Salgueiro, M. D., dos Santos, V., C. Rêgo, A. L., Guimarães, D. S., Santos, J. B., H. Haeusler, E., V. Villas, M., & Lifschitz, S. (2022). Searching for Researchers: an Ontology-based NoSQL Database System Approach and Practical Implementation. Journal of Information and Data Management, 13(5). https://doi.org/10.5753/jidm.2022.2601

Issue

Section

SBBD Demonstrations 2021 - Extended Papers