Mining Temporal Rules from Heterogeneous Multivariate Time Series
DOI:
https://doi.org/10.5753/jidm.2023.3232Keywords:
Multivariate Temporal Rules, Time Series, Data Pre-processing, Data MiningAbstract
This paper presents TRUMiner (Temporal RUles Miner), an algorithm to mine temporal rules from multivariate time series considering pairs of variables. It provides extended multivariate temporal rules that point the occurrence of the mined patterns in the original time series. Furthermore, TRUMiner can be used with any discretization method and deals with missing data and heterogeneous time series datasets, including different number of variables per time series and distinct number of observations per variable. We evaluated the algorithm on international trade multivariate data from several sources. Results show the relevance of extended rules and the algorithm applicability to heterogeneous time series, simplifying data integration and pre-processing.
Downloads
References
Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules between sets of items in large databases. SIGMOD Rec., 22(2):207–216. DOI: 10.1145/170036.170072.
Amaral, T. and Sousa, E. (2019). Trier: A fast and scalable method for mining temporal exception rules. In XXXIV SBBD, pages 1–12. SBC.
Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
Buaton, R., Zarlis, M., Mawengkang, H., and Efendi, S. (2021). Find the best rule of time series data mining with cluster analysis. Journal of Physics: Conference Series, 1830(1):012020. DOI: 10.1088/1742-6596/1830/1/012020.
Chen, X. and Petrounias, I. (2000). Discovering temporal association rules: Algorithms, language and system. In 16th ICDE, pages 306–306. IEEE.
Das, G., Lin, K.-I., Mannila, H., Renganathan, G., and Smyth, P. (1998). Rule discovery from time series. In 4th ACM KDD, volume 98, pages 16–22.
de Oliveira, F. A., Costa, R. L., Goldschmidt, R. R., and Cavalcanti, M. C. (2017). Mineração de regras de associação multirrelação em grafos: Direcionando o processo de busca. In SBBD (Short Papers), pages 270–275.
Han, J., Kamber, M., and Pei, J. (2011). Data mining: Concepts and techniques. (3rd ed), Morgan Kauffman.
Harms, S. K. and Deogun, J. S. (2004). Sequential association rule mining with time lags. Journal of Intelligent Information Systems, 22(1):7–22.
Karasawa, E. and Sousa, E. (2022). Truminer: Mineração de regras temporais em bases de séries multivariadas e heterogêneas. In XXXVII SBBD, pages 403–408. SBC. DOI: 10.5753/sbbd.2022.226199.
Lin, J., Keogh, E., Lonardi, S., and Chiu, B. (2003). A symbolic representation of time series, with implications for streaming algorithms. In 8th ACM SIGMOD, DMKD ’03, page 2–11. DOI: 10.1145/882082.882086.
Mitsa, T. (2010). Temporal data mining. CRC Press.
Romani, L. A. S., de Avila, A. M. H., Zullo, J., Chbeir, R., Traina, C., and Traina, A. J. M. (2010). Clearminer: a new algorithm for mining association patterns on heterogeneous time series from climate data. In ACM, SAC ’10, page 900–905. DOI: 10.1145/1774088.1774275.
Schlüter, T. and Conrad, S. (2011). About the analysis of time series with temporal association rule mining. In 2011 IEEE CIDM, pages 325–332. IEEE.
Segura-Delgado, A., Gacto, M. J., Alcalá, R., and AlcaláFdez, J. (2020). Temporal association rule mining: An overview considering the time variable as an integral or implied component. WIREs Data Mining and Knowledge Discovery, 10(4):e1367.
Shokoohi-Yekta, M., Chen, Y., Campana, B., Hu, B., Zakaria, J., and Keogh, E. (2015). Discovery of meaningful rules in time series. In 21th ACM SIGKDD, KDD ’15, page 1085–1094. DOI: 10.1145/2783258.2783306.
Xue, R., Zhang, T., Chen, D., Le, J., and Lavassani, M. (2016). Sensor time series association
rule discovery based on modified discretization method. In 2016 First IEEE ICCCI, pages 196–202. DOI: 10.1109/CCI.2016.7778907.
Zarnowitz, V. and Ozyildirim, A. (2006). Time series decomposition and measurement of business cycles, trends and growth cycles. Journal of Monetary Economics, 53(7):1717–1739. DOI: https://doi.org/10.1016/j.jmoneco.2005.03.015.
Zhao, Y. and Zhang, T. (2017). Discovery of temporal association rules in multivariate time series. In International Conference on Mathematics, Modelling and Simulation Technologies and Applications, 2017, Xiamen, pages 294–300.