Analysis of Expenses from Brazilian Federal Deputies between 2015 and 2018

Authors

  • Felippe Pires Ferreira Universidade de São Paulo
  • Ilan S. G. de Figueiredo Universidade de São Paulo
  • Larissa R. Teixeira Universidade de São Paulo
  • William Zaniboni Silva Universidade de São Paulo
  • Caetano Traina Junior Universidade de São Paulo
  • Cristina Dutra de Aguiar Universidade de São Paulo
  • Robson L. F. Cordeiro Carnegie Mellon University

DOI:

https://doi.org/10.5753/jidm.2025.3383

Keywords:

Analysis of Expenses, Public Expenses, Brazilian Deputies, Outliers

Abstract

The analysis of public expenses is fundamental to foster the correct use of public resources, guaranteeing the application of the principles of publicity and efficiency. Within the scope of the Brazilian parliament, Parliamentary Quotas are also identified as public resources, therefore they need to be subject to the same control criteria. This research aims to carry out analyzes of parliamentary expenses related to Parliamentary Quotas, presenting the distribution of expenses related to the 55th Legislature (2015-2018) of Brazil, in addition to identifying anomalies in such expenses. Through a clustering-based analysis, the expenses were compared with the goal of finding similarities between the spending behavior of the federal deputies. This study, through data mining, presents the results obtained from analyzing different parliamentary expenses under the party or regional aspect of each deputy. The results obtained allowed us to answer questions related to the characteristics of the expenses involving Parliamentary Quotas, anomalous expenses, and similarity between parliamentary expenses, such as, the identification of expenditure patterns, which allow the verification of regional variability, as well as identifying some of the expenditures as possibly anomalous.

Downloads

Download data is not yet available.

References

Angiulli, F. and Pizzuti, C. (2002). Fast outlier detection in high dimensional spaces. In Elomaa, T., Mannila, H., and Toivonen, H., editors, Principles of Data Mining and Knowledge Discovery, pages 15–27, Berlin, Heidelberg. Springer Berlin Heidelberg.

Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J. (1999). Optics: Ordering points to identify the clustering structure. In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, SIGMOD’99, page 49–60, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/304182.304187.

Bellman, R. and Kalaba, R. (1959). On adaptive control processes. IRE Transactions on Automatic Control, 4(2):1–9. DOI: 10.1109/TAC.1959.1104847.

Bholowalia, P. and Kumar, A. (2014). Ebk-means: A clustering technique based on elbow method and k-means in wsn. International Journal of Computer Applications, 105(9).

Brasil (1988). Constituição da república federativa do brasil. Diário Oficial da República Federativa do Brasil.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). Lof: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD ’00, page 93–104, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/342009.335388.

Bueno, W. F. (2017). Analysis of Brazilian deputies expenses claims from 2013 to 2016. PhD thesis, Dublin, National College of Ireland.

da. Silva, E. F., Fragoso, G. A., Rodrigues, L. R., Freitas, N. C. A., and Vinuto, T. (2022). Exposer: Framework para detecção de anomalias em licitações públicas. Anais Estendidos do XXXVII Simpósio Brasileiro de Banco de Dados (SBBD Estendido 2022).

Dang, T. T., Ngan, H. Y., and Liu, W. (2015). Distance-based k-nearest neighbors outlier detection method in large-scale traffic data. In 2015 IEEE International Conference on Digital Signal Processing (DSP), pages 507–510. DOI: 10.1109/ICDSP.2015.7251924.

Esen, E. and Celik Kecili, M. (2022). Economic growth and health expenditure analysis for turkey: evidence from time series. Journal of the knowledge economy, 13(3):1786–1800.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD96, page 226–231. AAAI Press. DOI: 10.5555/3001460.3001507.

Han, J., Pei, J., and Tong, H. (2022). Data mining: concepts and techniques. Morgan Kaufmann.

Heiler, J. G., Viana, J. P. S. L., and Santos, R. D. d. (2016). O custo da política subnacional: a forma como o dinheiro é gasto importa? relação entre receita, despesas e sucesso eleitoral. Opinião Pública, 22:56–92.

Khol, B. (1992). Brazil: Summary of inflation indicators.

Kriegel, H.-P., Schubert, M., and Zimek, A. (2008). Angle-based outlier detection in high-dimensional data. Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, page 444–452. DOI: 10.1145/1401890.1401946.

Krishna, K. and Murty, M. N. (1999). Genetic k-means algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(3):433–439.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining, pages 413–422. IEEE.

Mueen, A. and Keogh, E. (2016). Extracting optimal performance from dynamic time warping. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 2129–2130.

Papadimitriou, S., Kitagawa, H., Gibbons, P., and Faloutsos, C. (2003). Loci: fast outlier detection using the local correlation integral. In Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405), pages 315–326. DOI: 10.1109/ICDE.2003.1260802.

Paranhos, R., Júnior, J. A. d. S., Filho, D. B. F., and Rocha, E. C. d. (2015). 513 deputados e um segredo: Cota para exercício de atividade parlamentar - ceará e paraíba. Revista Cadernos de Estudos Sociais e Políticos, 4(8).

Ravisankar, P., Ravi, V., Raghava Rao, G., and Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2):491–500. DOI: https://doi.org/10.1016/j.dss.2010.11.006.

Satopaa, V., Albrecht, J., Irwin, D., and Raghavan, B. (2011). Finding a ”kneedle” in a haystack: Detecting knee points in system behavior. In 2011 31st International Conference on Distributed Computing Systems Workshops, pages 166–171. DOI: 10.1109/ICDCSW.2011.20.

Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., Rußwurm, M., Kolar, K., and Woods, E. (2020). Tslearn, a machine learning toolkit for time series data. Journal of Machine Learning Research, 21(118):1–6.

Thiago Alencar Gomes, Rommel N. Carvalho, R. S. C. (2017). Identifying anomalies in parliamentary expenditures of brazilian chamber of deputies with deep autoencoders. 16th IEEE International Conference on Machine Learning and Applications.

Zhao, Y., Nasrullah, Z., and Li, Z. (2019). Pyod: A python toolbox for scalable outlier detection. Journal of Machine Learning Research, 20(96):1–7.

Downloads

Published

2025-01-14

How to Cite

Pires Ferreira, F., S. G. de Figueiredo, I., R. Teixeira, L., Zaniboni Silva, W., Traina Junior, C., Dutra de Aguiar, C., & L. F. Cordeiro, R. (2025). Analysis of Expenses from Brazilian Federal Deputies between 2015 and 2018. Journal of Information and Data Management, 16(1), 1–10. https://doi.org/10.5753/jidm.2025.3383

Issue

Section

Regular Papers