Exploratory Analysis of Microdata from the National High School Exam - Enem: Performance and Specificities of the Participants
DOI:
https://doi.org/10.5753/jidm.2025.3657Keywords:
ENEM, DISABILITY, EXPLORATORY DATA ANALYSIS, EDUCATION, PERFORMANCEAbstract
The National High School Exam (ENEM) is a significant test in Brazil that measures high school teaching quality and performance. It has also been used for evaluating undergraduate course candidates since 2004. ENEM has had a transformative impact on the education market, with schools now prioritizing exam preparation. However, there is a lack of comprehensive studies on the performance and characteristics of ENEM participants, particularly those with disabilities such as attention deficit or autism spectrum disorder. This article examines the challenges faced by these subgroups of participants considering the period between 2015 and 2019, and using analytical tools as clustering, heatmaps, and hypothesis testing to understand the main data patterns. The findings aim to support the development of more tailored and flexible study programs to meet the needs of participants. Our study reveals that individuals with certain disabilities, like Attention Deficit and Dyslexia, tend to achieve higher scores, while those with Mental disabilities and Deafness perform below the national average. Additionally, the results suggests that the grade disparity between students with and without disabilities may be influenced by socioeconomic factors.
Downloads
References
Ahmed, M., Seraj, R., and Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8). DOI: 10.3390/electronics9081295.
Arthur, D. and Vassilvitskii, S. (2007). k-means++: The Advantages of Careful Seeding. [link].
Barbosa, J. A. F. (2021). ENEM ANALYSIS. [link].
Barbosa, J. A. F. (2023). ENEM DATASET 2015 - 2019. [link].
Brazileducation (2023). ENEM in Brazil. [link].
Dados, M. (2021). Entenda o Algoritmo K-means e Saiba como Aplicar essa Técnica.
de Andrade, D. F. (2014). Você nunca vai tirar zero na prova do Enem, saiba por quê. [link].
de Oliveira, C. G., Barwaldt, R., and Lucca, G. (2020). Análise do desempenho de pessoas com deficiência que prestaram o exame nacional do ensino médio - enem. Revista de Educação, Ciência e Tecnologia, 9(1). DOI: 10.35819/tear.v9.n1.a4038.
de Souza, T. O. (2021). Análise de dados: Um estudo do perfil dos participantes do ENEM 2019. [link].
Faria, R. S. (2013). [link].
INEP (2022). Microdados do ENEM. [link].
Julião, A. (2021). Faltam pesquisas para embasar as políticas educacionais no Brasil, afirmam especialistas. [link].
Leria, L. d. A., Alves, G. d. S., Benitez, P., and Silva, F. J. F. d. (2023). Perspectivas de pessoas com deficiência visual sobre a acessibilidade no exame nacional do ensino médio (Enem). Revista Educação Especial, 36(1):e57/1–31. DOI: 10.5902/1984686X84416.
Lima, A. M. S., Florez, A. Y. C., Lescano, A. I. A., de Oliveira Novaes, J. V., de Fatima Martins, N., Junior, C. T., de Sousa, E. P. M., Junior, J. F. R., and Cordeiro,
R. L. F. (2020). Analysis of ENEM’s attendants between 2012 and 2017 using a clustering approach.
MEC (2022). Critérios da redação. [link].
O’Neill, L., Markward, M. J., and French, J. P. (2012). Predictors of graduation among college students with disabilities. The Journal of Postsecondary Education and Disability, 25:21–36.
Politize (2022). Novo Enem: quais são as novidades para 2024? [link].
Polyzou, A. and Karypis, G. (2019). Feature extraction for next-term prediction of poor student performance. IEEE Transactions on Learning Technologies, 12(2):237–248. DOI: 10.1109/TLT.2019.2913358.
Ragosta, M. and Wendler, C. (1992). Eligibility issues and comparable time limits for disabled and nondisabled sat® examinees. ETS Research Report Series, 1992(1):i–34. DOI: https://doi.org/10.1002/j.2333-8504.1992.tb01466.x.
Simon, A. and Cazella, S. (2017). Mineração de Dados Educacionais nos Resultados do ENEM de 2015. Congresso Brasileiro de Informática na Educação, page 754–763. Stearns, B., Rangel, F., Firmino, F., Rangel, F., and Oliveira,
J. (2017). Prevendo desempenho dos candidatos do enem através de dados socioeconômicos. In XXXVI Concurso de Trabalhos de Iniciação Científica da SBC. SBC.
Terra, K. (2019). Seleção de características para predição de notas no ENEM 2018. [link].
van Ewijk, R. and Sleegers, P. (2010). The effect of peer socioeconomic status on student achievement: A meta-analysis. Educational Research Review, 5(2):134–150. DOI: https://doi.org/10.1016/j.edurev.2010.02.001.
Viggiano, E. and Mattos, C. (2013). O desempenho de estudantes no Enem 2010 em diferentes regiões brasileiras. Revista Bras. de Estudos Pedagógicos, 94(237):417–438.
Zhang, D., Katsiyannis, A., and Kortering, L. J. (2007). Performance on exit exams by students with disabilities: A four-year analysis. Career Development for Exceptional Individuals, 30(1):48–57. DOI: 10.1177/08857288070300010601.

