A Robust Measure for Evaluating Representativeness of Summarized Trajectories with Multiple Aspects

Authors

  • Vanessa Lago Machado Universidade Federal de Santa Catarina (UFSC), Instituto Federal Sul-Rio-Grandense (IFSUL)
  • Tarlis Tortelli Portela Instituto Federal do Paraná (IFPR)
  • Lucas Vanini Instituto Federal Sul-Rio-Grandense (IFSUL)
  • Chiara Renso Consiglio Nazionale delle Ricerche (CNR) -ISTI
  • Ronaldo dos Santos Mello Universidade Federal de Santa Catarina (UFSC)

DOI:

https://doi.org/10.5753/jidm.2025.4082

Keywords:

Multiple aspect trajectory, representative trajectory, trajectory similarity, representativeness measure

Abstract

As trajectory datasets grow larger, summarization techniques become increasingly important. However, current methods often lack a suitable measure of representativeness, making evaluation a complex task. This is especially true in the context of multi-aspect trajectories, where evaluating summarization techniques is particularly challenging. To address this, we have developed a novel representativeness measure called RMMAT. This innovative method combines similarity metrics and covered information, offering adaptability to diverse data and analysis needs. With RMMAT, evaluating summarization techniques is simplified, and deeper insights can be gained from extensive trajectory data. Our evaluation of real-world trajectory datasets demonstrates that RMMAT is a robust Representativeness Measure for Summarized Trajectories with Multiple Aspects. This measure could help researchers and analysts to evaluate and empower them to make informed decisions about the quality and relevance of representative data for their analytical goals.

Downloads

Download data is not yet available.

References

Alvares, L. O. et al. (2007). A model for enriching trajectories with semantic geographical information. In 15th ACM International Symposium on Geographic Information Systems, ACM-GIS, page 22. ACM. DOI: 10.1145/1341012.1341041.

Ayhan, S. and Samet, H. (2015). Diclerge: Dividecluster-merge framework for clustering aircraft trajectories. In Proceedings of the 8th ACM SIGSPATIAL International Workshop on Computational Transportation Science, pages 7–14. DOI: 10.1145/2834882.2834887.

Erwig, M., Guting, R. H., Schneider, M., and Vazirgiannis, M. (1999). Spatio-temporal data types: An approach to modeling and querying moving objects in databases. GeoInformatica, 3(3):269–296. DOI: 10.1023/A:1009805532638.

Etienne, L., Devogele, T., Buchin, M., and McArdle, G. (2016). Trajectory box plot: A new pattern to summarize movements. Int. J. Geogr. Inf. Sci., 30(5):835–853. DOI: 10.1080/13658816.2015.1081205.

Gao, C., Zhao, Y., Wu, R., Yang, Q., and Shao, J. (2015). Data summarization techniques for big data—a survey. In Handbook on Data Centers, pages 1109–1152. Springer. DOI: 10.1007/978-1-4939-2092-1_38.

Gao, C., Zhao, Y., Wu, R., Yang, Q., and Shao, J. (2019). Semantic trajectory compression via multi-resolution synchronization-based clustering. Knowledge-Based Systems, 174:177–193. DOI: 10.1016/j.knosys.2019.03.006.

Lee, J.-G., Han, J., and Whang, K.-Y. (2007). Trajectory clustering: A partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD ’07, page 593–604, New York, NY, USA. Association for Computing Machinery (ACM). DOI: 10.1145/1247480.1247546.

Machado, V., Portela, T., de Lara Machado, A., Schreiner, G., and dos Santos Mello, R. (2023a). A method for computing representative data for multiple aspect trajectories based on data summarization. Proceedings of the Brazilian Symposium on GeoInformatics, pages 25–36.

Machado, V., Portela, T., Renso, C., and dos Santos Mello, R. (2023b). Towards a representativeness measure for summarized trajectories with multiple aspects. Proceedings of the Brazilian Symposium on GeoInformatics, pages 37–48.

Machado, V. L., Mello, R. d. S., and Bogorny, V. (2022). A method for summarizing trajectories with multiple aspects. In International Conference on Database and Expert Systems Applications, DEXA, pages 433–446. Springer. DOI: 10.1007/978-3-031-12423-5_33.

Martinez, D. et al. (2018). Smart data fusion: Probabilistic record linkage adapted to merge two trajectories from different sources. In Eighth Sesar Innovation Days.

Mello, R. d. S., Bogorny, V., Alvares, L. O., Santana, L. H. Z., Ferrero, C. A., Frozza, A. A., Schreiner, G. A., and Renso, C. (2019). MASTER: A multiple aspect view on trajectories. Trans. GIS, 23(4):805–822. DOI: 10.1111/tgis.12526.

Oladimeji, D., Gupta, K., Kose, N. A., Gundogan, K., Ge, L., and Liang, F. (2023). Smart transportation: an overview of technologies and applications. Sensors, 23(8):3880. DOI: 10.3390/s23083880.

Panagiotakis, C., Pelekis, N., Kopanakis, I., Ramasso, E., and Theodoridis, Y. (2012). Segmentation and sampling of moving object trajectories based on representativeness. IEEE Transactions on Knowledge and Data Engineering, 24(7):1328–1343. DOI: 10.1109/TKDE.2011.39.

Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M. L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., et al. (2013). Semantic trajectories modeling and analysis. ACM Comput. Surv., 45(4):42:1–42:32. DOI: 10.1145/2501654.2501656.

Petry, L. M., Ferrero, C. A., Alvares, L. O., Renso, C., and Bogorny, V. (2019). Towards semantic-aware multiple-aspect trajectory similarity measuring. Transactions in GIS, 23(5):960–975. DOI: 10.1111/tgis.12542.

Renso, C., Spaccapietra, S., and Zimányi, E., editors (2003). Mobility Data: Modeling, Management, and Understanding. Cambridge University Press.

Seep, J. and Vahrenhold, J. (2019). Inferring semantically enriched representative trajectories. In Int. Workshop on Computing with Multifaceted Movement Data, MOVE’19. DOI: 10.1145/3356392.3365220.

Downloads

Published

2025-01-14

How to Cite

Lago Machado, V., Tortelli Portela, T., Vanini, L., Renso, C., & dos Santos Mello, R. (2025). A Robust Measure for Evaluating Representativeness of Summarized Trajectories with Multiple Aspects. Journal of Information and Data Management, 16(1), 28–37. https://doi.org/10.5753/jidm.2025.4082

Issue

Section

GEOINFO 2023 - Extended Papers