Towards Data Summarization of Multi-Aspect Trajectories Based on Spatio-Temporal Segmentation
DOI:
https://doi.org/10.5753/jidm.2025.4110Keywords:
Multiple aspect trajectory, representative trajectory, trajectory summarizationAbstract
This paper presents a new method for summarizing multiple aspect trajectories (MATs). This kind of data holds several challenges in terms of analysis and extraction of meaningful insights due to their spatial, temporal, and semantic dimensions. In order to address them, our method leverages a combination of spatial grid-based segmentation and temporal sequence analysis. It segments the trajectory data into spatial cells using a grid-based approach. The spatial segmentation enables a finer-grained analysis of the trajectories within each cell. Next, we consider the temporal sequence of points within each cell to capture the temporal intervals of the trajectories. By combining spatial and temporal perspectives, the method identifies representative trajectories that capture the main behavior of semantically enriched object movements. We evaluated the utility of our method by applying two distinct strategies: (i) the RMMAT measure, assessing the quality of representative MAT in terms of similarity and coverage of information, and (ii) the Average Recall (AR) metric, measuring the ability of our representative MAT to capture essential data characteristics. Our evaluation demonstrates the effectiveness of MAT-SGT in summarizing MATs. The proposed method holds potential applications across diverse domains, including transportation planning, urban analytics, and human mobility analysis, where the concise representation of trajectories is crucial for decision-making and knowledge discovery.
Downloads
References
Ahmed, M. (2019). Data summarization: a survey. Knowledge and Information Systems, 58(2):249–273.
Buchin, K., Buchin, M., Van Kreveld, M., Löffler, M., Silveira, R. I., Wenk, C., and Wiratma, L. (2013). Median trajectories. Algorithmica, 66(3):595–614.
Buchin, M., Kilgus, B., and Kölzsch, A. (2019). Group diagrams for representing trajectories. International Journal of Geographical Information Science, 34(12):2401–2433.
Cho, E., Myers, S. A., and Leskovec, J. (2011). Friendship and mobility: User movement in location-based social networks. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1082–1090. DOI: 10.1145/2020408.2020579.
da SILVA, C., PETRY, L., and BOGORNY, V. (2019). A survey and comparison of trajectory classification methods. In 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), pages 788–793, Brazil. IEEE. DOI: 10.1109/BRACIS.2019.00141.
Ermakova, L., Cossu, J. V., and Mothe, J. (2019). A survey on evaluation of summarization methods. Information processing & management, 56(5):1794–1814.
Erwig, M., Schneider, M., Vazirgiannis, M., et al. (1999). Spatio-temporal data types: An approach to modeling and querying moving objects in databases. GeoInformatica, 3(3):269–296.
Etienne, L., Devogele, T., Buchin, M., and McArdle, G. (2016). Trajectory box plot: A new pattern to summarize movements. Int. J. Geogr. Inf. Sci., 30(5):835–853.
Fiore, M., Katsikouli, P., Zavou, E., Cunche, M., Fessant, F., Le Hello, D., Aivodji, U., Olivier, B., Quertier, T., and Stanica, R. (2020). Privacy in trajectory micro-data publishing: a survey. Transactions on Data Privacy, 13:91–149.
Gao, C., Zhao, Y., Wu, R., Yang, Q., and Shao, J. (2019). Semantic trajectory compression via multi-resolution synchronization-based clustering. Knowledge-Based Systems, 174:177–193.
Hesabi, Z. R., Tari, Z., Goscinski, A., Fahad, A., Khalil, I., and Queiroz, C. (2015). Data summarization techniques for big data—a survey. In Khan, S. U. and Zomaya, A. Y., editors, Handbook on Data Centers, pages 1109–1152. Springer, New York, United States.
Lee, J.-G., Han, J., and Whang, K.-Y. (2007). Trajectory clustering: A partition-and-group framework. In SIGMOD, page 593–604, New York, NY, USA. ACM.
Machado, V. L., Mello, R. d. S., and Bogorny, V. (2022). A method for summarizing trajectories with multiple aspects. In International Conference on Database and Expert Systems Applications, DEXA, pages 433–446. Springer.
Machado, V. L., Mello, R. d. S., Bogorny, V., and Schreiner, G. A. (2024). A survey on the computation of representative trajectories. GeoInformatica, pages 1–26.
Machado, V. L. et al. (2023a). A method for computing representative data for multiple aspect trajectories based on data summarization. In XXIV Brazilian Symposium on Geoinformatics, GEOINFO.
Machado, V. L. et al. (2023b). Towards a representativeness measure for summarized trajectories with multiple aspects. In XXIV Brazilian Symposium on Geoinformatics, GEOINFO.
Mello, R. d. S., Bogorny, V., Alvares, L. O., Santana, L. H. Z., Ferrero, C. A., Frozza, A. A., Schreiner, G. A., and Renso, C. (2019). MASTER: A multiple aspect view on trajectories. Trans. GIS, 23(4):805–822.
Panagiotakis, C., Pelekis, N., and Kopanakis, I. (2009). Trajectory voting and classification based on spatiotemporal similarity in moving object databases. In International Symposium on Intelligent Data Analysis, pages 131–142. Springer.
Petry, L. M. et al. (2019). Towards semantic-aware multiple-aspect trajectory similarity measuring. Transactions in GIS, 23(5):960–975.
Pugliese, C., Lettich, F., Pinelli, F., and Renso, C. (2023). Summarizing trajectories using semantically enriched geographical context. In Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems, pages 1–10.
Seep, J. and Vahrenhold, J. (2019). Inferring semantically enriched representative trajectories. In 1st ACM SIGSPATIAL Int. Workshop on Computing with Multifaceted Movement Data, MOVE’19, pages 1–4, New York, NY, USA. ACM.
Tortelli Portela, T., Tyska Carvalho, J., and Bogorny, V. (2022). Hipermovelets: high-performance movelet extraction for trajectory classification. International Journal of Geographical Information Science, 36(5):1012–1036.
Varlamis, I., Kontopoulos, I., Tserpes, K., Etemad, M., Soares, A., and Matwin, S. (2021). Building navigation networks from multi-vessel trajectory data. GeoInformatica, 25:69–97.
Varlamis, I., Tserpes, K., Etemad, M., Júnior, A. S., and Matwin, S. (2019). A network abstraction of multi-vessel trajectory data for detecting anomalies. In EDBT/ICDT Workshops, volume 2019.
Wang, S., Bao, Z., Culpepper, J. S., and Cong, G. (2021). A survey on trajectory data management, analytics, and learning. ACM Comput. Surv., 54(2).