Rural Properties Supported by the Carbon Storage and Sequestration Model in the area under the Biome

Authors

DOI:

https://doi.org/10.5753/jidm.2025.4170

Keywords:

Carbon Pools, Secondary Forest, Future Scenario, Model Carbon

Abstract

The carbon storage and sequestration are impacted by land use/land cover (LULC) changes, being an important ecosystem service, responsible for climate regulation. Through InVEST's Carbon Storage and Sequestration model, combined with LULC and declared areas in Cadastro Ambiental Rural (CAR) in Rondônia State, a current and two future scenarios of carbon pools with secondary forest of 5 and 80 years were created in the Amazon biome. The declared areas have a predominance of forest formation and pasture, and the pools with the highest gains in tons of carbon were aboveground and belowground biomass, with a total gain of 2% and 7%, respectively, concerning the current one. Thus, it emphasizes the importance of command-and-control tools and forest recovery incentives.

Downloads

Download data is not yet available.

References

Aguiar, A. P. D., Ometto, J. P., Nobre, C., Lapola, D. M., Almeida, C., Vieira, I. C., Soares, J. V., Alvala, R., Saatchi, S., Valeriano, D., et al. (2012). Modeling the spatial and temporal heterogeneity of deforestation-driven carbon emissions: the inpe-em framework applied to the brazilian amazon. Global Change Biology, 18(11):3346–3366.

Aguiar, A. P. D., Vieira, I. C. G., Assis, T. O., Dalla-Nora, E. L., Toledo, P. M., Oliveira Santos-Junior, R. A., Batistella, M., Coelho, A. S., Savaget, E. K., Aragão, L. E. O. C., et al. (2016). Land use change emission scenarios: anticipating a forest transition process in the brazilian amazon. Global change biology, 22(5):1821–1840.

Alliprandini, L. F., Abatti, C., Bertagnolli, P. F., Cavassim, J. E., Gabe, H. L., Kurek, A., Matsumoto, M. N., de Oliveira, M. A. R., Pitol, C., Prado, L. C., et al. (2009). Understanding soybean maturity groups in brazil: environment, cultivar classification, and stability. Crop science, 49(3):801–808.

Aragão, L. E., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., Silva, C. V., Silva Junior, C. H., Arai, E., Aguiar, A. P., et al. (2018). 21st century drought-related fires counteract the decline of amazon deforestation carbon emissions. Nature communications, 9(1):536.

Baccini, A., Goetz, S., Walker, W., Laporte, N., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P., Dubayah, R., Friedl, M., et al. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature climate change, 2(3):182–185.

Berenguer, E., Ferreira, J., Gardner, T. A., Aragão, L. E. O. C., De Camargo, P. B., Cerri, C. E., Durigan, M., Oliveira, R. C. D., Vieira, I. C. G., and Barlow, J. (2014). A large-scale field assessment of carbon stocks in human-modified tropical forests. Global change biology, 20(12):3713–3726.

Bonini, I., Marimon-Junior, B. H., Matricardi, E., Phillips, O., Petter, F., Oliveira, B., and Marimon, B. S. (2018). Collapse of ecosystem carbon stocks due to forest conversion to soybean plantations at the amazon-cerrado transition. Forest Ecology and Management, 414:64–73.

Brasco, M. and Carvalho, C. (2022). Territorial relations between deforestation and rural environmental registry (car) in the amazon biome using free software qgis/postgresql/postgis and data warehouse structure. In Proceedings of the XXIII GEOINFO, volume 1, pages 1–14, São José dos Campos, SP, Brazil.

BRASIL (2012). Lei 12.727 - altera a lei n° 12.651, de 25 de maio de 2012, que dispõe sobre a proteção da vegetação nativa; altera as leis n°s 6.938, de 31 de agosto de 1981, 9.393, de 19 de dezembro de 1996, e 11.428, de 22 de dezembro de 2006; e revoga as leis n°s 4. 1–11.

BRASIL (2021). Lei 14.119 - institui a política nacional de pagamento por serviços ambientais; e altera as leis n°s 8.212, de 24 de julho de 1991, 8.629, de 25 de fevereiro de 1993, e 6.015, de 31 de dezembro de 1973, para adequá-las à nova política. 1–13.

Bungenstab, D. J., Almeida, R. G. d., Laura, V. A., Balbino, L. C., and Ferreira, A. D. (2019). Ilpf lavoura, pecuária e floresta.

Bustamante, M. M., Silva, J. S., Scariot, A., Sampaio, A. B., Mascia, D. L., Garcia, E., Sano, E., Fernandes, G. W., Durigan, G., Roitman, I., et al. (2019). Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from brazil. Mitigation and Adaptation Strategies for Global Change, 24:1249–1270.

Cerri, C. E. P., Galdos, M. V., Carvalho, J. L. N., Feigl, B. J., and Cerri, C. C. (2013). Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view.

Chambers, J. Q., Higuchi, N., Schimel, J. P., Ferreira, L. V., and Melack, J. M. (2000). Decomposition and carbon cycling of dead trees in tropical forests of the central amazon. Oecologia, 122:380–388.

de Carvalho, P., Domiciano, L. F., Mombach, M. A., do Nascimento, H. L. B., Cabral, L. d. S., Sollenberger, L. E., Pereira, D. H., and Pedreira, B. C. (2019). Forage and animal production on palisadegrass pastures growing in monoculture or as a component of integrated crop-livestock–forestry systems. Grass and Forage Science, 74(4):650–660.

Domeher, D. and Abdulai, R. (2012). Access to credit in the developing world: does land registration matter? Third World Quarterly, 33(1):161–175.

FAO (2010). Global Forest Resources Assessment 2010: Main Report, volume 163 of FAO Forestry Paper. FAO, Rome, Italy.

Fearnside, P. M. (1997). Greenhouse gases from deforestation in brazilian amazonia: net committed emissions. Climatic Change, 35(3):321–360.

Fearnside, P. M. (2018). Brazil’s amazonian forest carbon: the key to southern amazonia’s significance for global climate. Regional Environmental Change, 18:47–61.

Fearnside, P. M. and Guimarães, W. M. (1996). Carbon uptake by secondary forests in brazilian amazonia. Forest Ecology and Management, 80(1-3):35–46. DOI: 10.1016/0378-1127(95)03699-7.

Ferreira, A. C. S., Pinheiro, É. F. M., Costa, E. M., and Ceddia, M. B. (2023). Predicting soil carbon stock in remote areas of the central amazon region using machine learning techniques. Geoderma Regional, 32:e00614.

Filoso, S., Bezerra, M. O., Weiss, K. C., and Palmer, M. A. (2017). Impacts of forest restoration on water yield: A systematic review. PloS one, 12(8):e0183210.

Heinrich, V. H., Dalagnol, R., Cassol, H. L., Rosan, T. M., de Almeida, C. T., Silva Junior, C. H., Campanharo, W. A., House, J. I., Sitch, S., Hales, T. C., et al. (2021). Large carbon sink potential of secondary forests in the brazilian amazon to mitigate climate change. Nature communications, 12(1):1785.

IBGE (2016). Mapa do bioma amazônia. Escala: 1:250.000.

IPCC (2006). Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use. Prepared by the National Greenhouse Gas Inventories Programme.

IPCC (2014). Climate Change 2014: Mitigation of Climate Change - Working Group III Contribution to the Fifth Assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Jung, S., Dyngeland, C., Rausch, L., and Rasmussen, L. V. (2022). Brazilian land registry impacts on land use conversion. American journal of agricultural economics, 104(1):340–363.

Jung, S., Rasmussen, L. V., Watkins, C., Newton, P., and Agrawal, A. (2017). Brazil’s national environmental registry of rural properties: implications for livelihoods. Ecological Economics, 136:53–61.

Kuyah, S., Dietz, J., Muthuri, C., Jamnadass, R., Mwangi, P., Coe, R., and Neufeldt, H. (2012). Allometric equations for estimating biomass in agricultural landscapes: Ii. below-ground biomass. Agriculture, ecosystems & environment, 158:225–234.

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. science, 304(5677):1623–1627.

Lemos, E. C. M., Vasconcelos, S. S., Santiago, W. R., de Oliveira Junior, M. C. M., and de A. Souza, C. (2016). The responses of soil, litter and root carbon stocks to the conversion of forest regrowth to crop and tree production systems used by smallholder farmers in eastern amazonia. Soil Use and Management, 32(4):504–514.

MAPA (2012). Plano setorial de mitigação e de adaptação às mudanças climáticas para a consolidação de uma economia de baixa emissão de carbono na agricultura.

Marques, G., Lourdes, M. D., and Santos, M. (2021). Soil organic carbon stock maps for brazil at 0-5, 5-15, 15-30, 30-60, 60-100 and 100-200 cm depth intervals with 90 m spatial resolution. Version 2021 – Technical Report.

Matos, F. A., Magnago, L. F., Aquila Chan Miranda, C., de Menezes, L. F., Gastauer, M., Safar, N. V., Schaefer, C. E., da Silva, M. P., Simonelli, M., Edwards, F. A., et al. (2020). Secondary forest fragments offer important carbon and biodiversity cobenefits. Global Change Biology, 26(2):509–522.

MCTI (2015). Terceiro inventário brasileiro de emissões e remoções antrópicas de gases de efeito estufa: Relatórios de referência - setor uso da terra, mudança do uso da terra e florestas.

Natural Capital Project (2024). InVEST 3.14.1. Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, Stockholm Resilience Centre, and the Royal Swedish Academy of Sciences. [link].

Nave, L. E., Walters, B. F., Hofmeister, K., Perry, C. H., Mishra, U., Domke, G. M., and Swanston, C. (2019). The role of reforestation in carbon sequestration. New Forests, 50(1):115–137.

Nelson, E., Polasky, S., Lewis, D. J., Plantinga, A. J., Lonsdorf, E., White, D., Bael, D., and Lawler, J. J. (2008). Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. Proceedings of the National Academy of Sciences, 105(28):9471–9476.

Nepstad, D., McGrath, D., Stickler, C., Alencar, A., Azevedo, A., Swette, B., Bezerra, T., DiGiano, M., Shimada, J., Seroa da Motta, R., et al. (2014). Slowing amazon deforestation through public policy and interventions in beef and soy supply chains. science, 344(6188):1118–1123.

Pavlis, J. and Jeník, J. (2000). Roots of pioneer trees in the amazonian rain forest. Trees, 14:442–455.

Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H., Broadbent, E. N., Chazdon, R. L., et al. (2016). Biomass resilience of neotropical secondary forests. Nature, 530(7589):211–214.

Saatchi, S. S., Houghton, R. A., Dos Santos Alvala, R., Soares, J. V., and Yu, Y. (2007). Distribution of above-ground live biomass in the amazon basin. Global change biology, 13(4):816–837.

Souza Junior, C. M., Shimbo, Z. J., Rosa, M. R., Parente, L. L., Alencar, A., Rudorff, B. F., and Azevedo, T. (2020). Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and earth engine. Remote Sensing, 12(17):2735. DOI: 10.3390/rs12172735.

Downloads

Published

2025-02-06

How to Cite

da Silva Soares, F., Henrique Sacramento, B. ., Luis Ferraz da Silveira, H., & Averna Valente, R. . (2025). Rural Properties Supported by the Carbon Storage and Sequestration Model in the area under the Biome. Journal of Information and Data Management, 16(1), 110–116. https://doi.org/10.5753/jidm.2025.4170

Issue

Section

GEOINFO 2023 - Extended Papers