An Unsupervised Method for Fault Detection in Transmission Lines Using Denial Constraints

Authors

  • Nicolas Tamalu Federal University of Paraná (UFPR)
  • Leandro Augusto Ensina Federal University of Paraná (UFPR) https://orcid.org/0000-0002-4412-7316
  • Eduardo Cunha de Almeida Federal University of Paraná (UFPR)
  • Eduardo Henrique Monteiro Pena Federal University of Technology - Paraná (UTFPR)
  • Luiz Eduardo Soares de Oliveira Federal University of Paraná (UFPR)

DOI:

https://doi.org/10.5753/jidm.2025.4293

Keywords:

Fault Diagnosis, Intelligent Systems, Power Transmission, Denial Constraint, Data Dependency Violation

Abstract

This paper presents a denial constraint (DC) discovery approach for detecting faults in utility companies' electric transmission lines. Transmission lines rely on a protection system that continually streams and stores waveform data with three-phase current and voltage information. Considering that those data are stored in a relational database, we use the high expressive power of DCs to capture the expected behavior of a transmission line, as they are ideal for representing rules in databases. Since defining DCs in our scenario requires expensive domain expertise and, worse, is an error-prone task, we use a state-of-the-art algorithm to discover reliable DCs. Unfortunately, the amount of data in the studied scenario makes state-of-the-art DC discovery algorithms impractical due to the long execution times. In response, we propose a novel DC discovery approach using streaming windows to address this issue. Our hypothesis is that DCs discovered in pre-fault windows significantly differ from those in post-fault windows and can be used as a fault detection approach. We use this intuition to detect faults without human intervention (i.e., an unsupervised method). The extensive experimental evaluation on a dataset with diversified fault events shows that our approach can detect faults with 100% accuracy.

Downloads

References

Abedjan, Z., Golab, L., and Naumann, F. (2015). Profiling relational data: A survey. The VLDB Journal, 24(4):557–581. DOI: 10.1007/s00778-015-0389-y.

Adly, A. R., Aleem, S. H. E. A., Algabalawy, M. A., Jurado, F., and Ali, Z. M. (2020). A novel protection scheme for multi-terminal transmission lines based on wavelet transform. Electric Power Systems Research, 183:106286. DOI: https://doi.org/10.1016/j.epsr.2020.106286.

Aleem, S. A., Shahid, N., and Naqvi, I. H. (2015). Methodologies in power systems fault detection and diagnosis. Energy Systems, 6(1):85–108. DOI: https://doi.org/10.1007/s12667-014-0129-1.

Asadi Majd, A., Samet, H., and Ghanbari, T. (2017). k-nn based fault detection and classification methods for power transmission systems. Protection and Control of Modern Power Systems, 2(32):1–11. DOI: 10.1186/s41601-017-0063-z.

Belagoune, S., Bali, N., Bakdi, A., Baadji, B., and Atif, K. (2021). Deep learning through lstm classification and regression for transmission line fault detection, diagnosis and location in large-scale multimachine power systems. Measurement, 177:109330. DOI: 10.1016/j.measurement.2021.109330.

Braverman, V. and Ostrovsky, R. (2010). Effective computations on sliding windows. SIAM J. Comput., 39(6):2113–2131.

Chen, K., Hu, J., and He, J. (2018). Detection and classification of transmission line faults based on unsupervised feature learning and convolutional sparse autoencoder. IEEE Transactions on Smart Grid, 9(3):1748–1758. DOI: https://doi.org/10.1109/TSG.2016.2598881.

Chu, X., Ilyas, I., and Papotti, P. (2013). Discovering denial constraints. PVLDB, 6:1498–1509. DOI: 10.14778/2536258.2536262. Coban, M. and Tezcan, S. S. (2021). Detection and classification of short-circuit faults on a transmission line using current signal. Bulletin of the Polish Academy of Sciences: Technical Sciences, 69(4). DOI: 10.24425/bpasts.2021.137630.

Ensina, L. A., Oliveira, L. E. S., Almeida, E. C., Santos, S. L. F., and Bernardino, L. S. (2022). Fault classification in transmission lines with generalization competence. In IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, pages 1–6. DOI: 10.1109/IECON49645.2022.9968993.

Ensina, L. A., Oliveira, L. E. S., Cruz, R. M. O., and Cavalcanti, G. D. C. (2024). Fault distance estimation for transmission lines with dynamic regressor selection. Neural Computing and Applications, 36:1741–1759. DOI: 10.1007/s00521-023-09155-y.

Ferreira, V. H., Zanghi, R., Fortes, M. Z., Gomes, S., and Alves da Silva, A. P. (2020). Probabilistic transmission line fault diagnosis using autonomous neural models. Electric Power Systems Research, 185:106360. DOI: https://doi.org/10.1016/j.epsr.2020.106360.

Ferreira, V. H., Zanghi, R., Fortes, M. Z., Sotelo, G. G., da Boa Morte Silva, R., de Souza, J. C. S., Guimarães, C. H. C., and Júnior, S. G. (2016). A survey on intelligent system application to fault diagnosis in electric power system transmission lines. Electric Power Systems Research, 136:135–153. DOI: https://doi.org/10.1016/j.epsr.2016.02.002.

Furse, C. M., Kafal, M., Razzaghi, R., and Shin, Y.-J. (2021). Fault diagnosis for electrical systems and power networks: A review. IEEE Sensors Journal, 21(2):888–906. DOI: https://doi.org/10.1109/JSEN.2020.2987321.

Gilbert, D. and Morrison, I. (1997). A statistical method for the detection of power system faults. International Journal of Electrical Power & Energy Systems, 19(4):269–275. DOI: https://doi.org/10.1016/S0142-0615(96)00049-X.

Grainger, J. J., Stevenson, W. D., and Chang, G. W. (2016). Power System Analysis. McGraw-Hill Education, 2 edition.

Høidalen, H. K., Prikler, L., and Peñaloza, F. (2019). ATPDraw version 7.0 for Windows - Users’ Manual. ATPDraw.

Kanwal, S. and Jiriwibhakorn, S. (2023). Artificial intelligence based faults identification, classification, and localization techniques in transmission lines-a review. IEEE Latin America Transactions, 21(12):1291–1305. DOI: 10.1109/TLA.2023.10305233.

Masood, B., Saleem, U., Anjum, M. N., and Arshad, U. (2017). Faults detection and diagnosis of transmission lines using wavelet transformed based technique. In 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pages 16. DOI: 10.1109/AEECT.2017.8257776.

Mishra, D. and Ray, P. (2018). Fault detection, location and classification of a transmission line. Neural Computing and Applications, 30:1377–1424. DOI: 10.1007/s00521-017-3295-y.

Pena, E. H. M., de Almeida, E. C., and Naumann, F. (2019). Discovery of approximate (and exact) denial constraints. PVLDB, 13(3):266–278. DOI: 10.14778/3368289.3368293.

Prasad, A., Belwin Edward, J., and Ravi, K. (2018). A review on fault classification methodologies in power transmission systems: Part—i. Journal of Electrical Systems and Information Technology, 5(1):48–60. DOI: https://doi.org/10.1016/j.jesit.2016.10.003.

Raza, A., Benrabah, A., Alquthami, T., and Akmal, M. (2020). A review of fault diagnosing methods in power transmission systems. Applied Sciences, 10(4):1–27. DOI: https://doi.org/10.3390/app10041312.

Shakiba, F. M., Azizi, S. M., Zhou, M., and Abusorrah, A. (2023). Application of machine learning methods in fault detection and classification of power transmission lines: a survey. Artificial Intelligence Review, 56(7):5799–5836. DOI: 10.1007/s10462-022-10296-0.

Singh, S. and Vishwakarma, D. N. (2015). Intelligent techniques for fault diagnosis in transmission lines — an overview. In International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), pages 280–285.

Tamalu, N., Ensina, L., de Almeida, E. C., Pena, E., and Oliveira, L. (2023). Fault detection in transmission lines: a denial constraint approach. In XXXVIII Simpósio Brasileiro de Bancos de Dados, pages 231–243, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/sbbd.2023.231718.

Yadav, A. and Dash, Y. (2014). An overview of transmission line protection by artificial neural network: Fault detection, fault classification, fault location, and fault direction discrimination. Advances in Artificial Neural Systems, 2014:1–20. DOI: https://doi.org/10.1155/2014/230382.

Downloads

Published

2025-02-13

How to Cite

Tamalu, N., Augusto Ensina, L., de Almeida, E. C., Pena, E. H. M., & de Oliveira, L. E. S. (2025). An Unsupervised Method for Fault Detection in Transmission Lines Using Denial Constraints. Journal of Information and Data Management, 16(1), 117–126. https://doi.org/10.5753/jidm.2025.4293

Issue

Section

SBBD 2023 Full papers - Extended papers