Frequent Genre Mining on Hit and Viral Songs
DOI:
https://doi.org/10.5753/jidm.2025.4676Keywords:
Musical Success, Viral Content, Musical Genres, Music Data Mining, Association RulesAbstract
Music is a dynamic cultural industry that has produced large volumes of data since the beginning of streaming services. Understanding such data provides valuable insights into music consumption, and helps identifying emerging trends and fostering creativity within the music industry. Nowadays, combining different genres has become a common practice to promote new music and reach new audiences. Given the diversity of combinations between all genres, predictive and descriptive analyses are very challenging. This work aims to explore the relationship between genre combinations and music popularity by mining frequent patterns in hit and viral songs across global and regional markets. We extend previous work by incorporating viral songs into the analysis, thus strengthening the comparative analysis of musical popularity's interconnected facets. We use the Apriori algorithm to mine genre patterns and association rules that reveal how music genres combine with each other in each market. Our findings reveal significant differences in popular genres across regions and highlight the dynamic nature of genre-blending in modern music. In addition, we are able to use such patterns to identify and recommend promising genre combinations for such markets through the association rules.
Downloads
References
Abel, F. et al. (2010). Analyzing the blogosphere for predicting the success of music and movie products. In ASONAM, pages 276–280, Odense, Denmark. DOI: 10.1109/ASONAM.2010.50.
Agrawal, R. et al. (1994). Fast algorithms for mining association rules. In VLDB, volume 1215, pages 487–499.
Amaral, T. and de Sousa, E. P. M. (2020). Mining temporal exception rules from multivariate time series using a new support measure. J. Inf. Data Manag., 11(3):228–246. DOI: 10.5753/jidm.2020.2020.
Araujo, C. V. S. et al. (2019). Predicting music popularity on streaming platforms. In SBCM, pages 141–148, São João del-Rei, Brazil. SBC. DOI: 10.5753/sbcm.2019.10436.
Bertoni, A. A. and Lemos, R. P. (2022). Using Musical and Statistical Analysis of the Predominant Melody of the Voice to Create datasets from a Database of Popular Brazilian Hit Songs. J. Inf. Data Manag., 13(1). DOI: 10.5753/jidm.2022.2336.
Calefato, F. et al. (2018). Collaboration success factors in an online music community. In ACM GROUP, Sanibel Island, USA. DOI: 10.1145/3148330.3148346.
Compte, D. L. and Klug, D. (2021). “it’s viral!” – A study of the behaviors, practices, and motivations of tiktok users and social activism. In CSCW Companion, pages 108–111, Online. ACM. DOI: 10.1145/3462204.3481741.
Cosimato, A. et al. (2019). The conundrum of success in music: Playing it or talking about it? IEEE Access, 7:123289–123298. DOI: 10.1109/ACCESS.2019.2937743.
Dhanaraj, R. and Logan, B. (2005). Automatic prediction of hit songs. In ISMIR, pages 488–491.
Fink, L. K. et al. (2021). Viral tunes: changes in musical behaviours and interest in coronamusic predict socio-emotional coping during COVID-19 lockdown. Humanities and Social Sciences Communications, 8(1). DOI: 10.1057/s41599-021-00858-y.
Fontes, S. G. et al. (2019). Association rules mining applied in the animal movement exploratory analysis. In KDMiLe, pages 1–8. SBC. DOI: 10.5753/kdmile.2019.8782.
Ghaffari, M., Khan, G. F., Singh, S. P., and Ferwerda, B. (2024). The impact of COVID-19 on online music listening behaviors in light of listeners’ social interactions. Multim. Tools Appl., 83(5):13197–13239. DOI: 10.1007/s11042-023-16079-1.
Gienapp, L. et al. (2021). Topological properties of music collaboration networks: The case of jazz and hip hop. Digit. Humanit. Q., 15(1). DOI: 10.5753/kdmile.2020.11971.
Guerini, M., Pepe, A., and Lepri, B. (2012). Do linguistic style and readability of scientific abstracts affect their virality? In ICWSM. The AAAI Press.
Guerini, M. et al. (2011). Exploring text virality in social networks. In ICWSM, pages 506–509, Barcelona, Spain. The AAAI Press. DOI: 10.1609/icwsm.v5i1.14169.
Iloga, S. et al. (2018). A sequential pattern mining approach to design taxonomies for hierarchical music genre recognition. Pattern Anal. Appl., 21(2):363–380. DOI: 10.1007/s10044-016-0582-7.
Kahl, C. and Albers, A. (2013). How to unleash the virus - social networks as a host for viral music marketing. In CBI, pages 47–54, Vienna, Austria. IEEE Computer Society. DOI: 10.1109/CBI.2013.16.
Ling, C. et al. (2022). Slapping cats, bopping heads, and oreo shakes: Understanding indicators of virality in tiktok short videos. In WebSci, pages 164–173, Barcelona, Spain. ACM. DOI: 10.1145/3501247.3531551.
Mayerl, M. et al. (2023). Pairwise learning to rank for hit song prediction. In BTW, volume P-331 of LNI, pages 555–565. Gesellschaft für Informatik e.V.. DOI: 10.18420/BTW2023-26.
Melo, E. et al. (2021). Combining Data Mining Techniques to Analyse Factors Associated with Allocation of Socioeconomic Resources at IFMG. In KDMiLe, pages 89–96. SBC. DOI: 10.5753/kdmile.2021.17465.
Oliveira, G. P., Barbosa, G. R. G., Melo, B. C., Botelho, J. E., Silva, M. O., Seufitelli, D. B., and Moro, M. M. (2022). Musical Success in the United States and Brazil: Novel Datasets and Temporal Analyses. J. Inf. Data Manag., 13(1). DOI: 10.5753/jidm.2022.2350.
Oliveira, G. P., da Silva, A. P. C., and Moro, M. M. (2024). What makes a viral song? Unraveling music virality factors. In WebSci, pages 181–190, New York, NY, USA. ACM. DOI: 10.1145/3614419.3644011.
Oliveira, G. P. and Moro, M. M. (2023). Mining exceptional genre patterns on hit songs. In KDMiLe, pages 97–104. SBC. DOI: 10.5753/kdmile.2023.232412.
Oliveira, G. P., Silva, M. O., Seufitelli, D. B., Lacerda, A., and Moro, M. M. (2020). Detecting collaboration profiles in success-based music genre networks. In ISMIR, pages 726–732.
Ordanini, A. et al. (2018). The featuring phenomenon in music: how combining artists of different genres increases a song’s popularity. Market. Letters, 29:485–499. DOI: 10.1007/s11002-018-9476-3.
Ren, J. and Kauffman, R. J. (2017). Understanding music track popularity in a social network. In ECIS, pages 374–388, Atlanta, GA, USA. AIS.
Rompré, L. et al. (2017). Using association rules mining for retrieving genre-specific music files. In FLAIRS Conference, pages 706–711. AAAI Press.
Seufitelli, D. B., Oliveira, G. P., Silva, M. O., and Moro, M. M. (2023a). MGD+: An Enhanced Music Genre Dataset with Success-based Networks. In Proceedings of the 5th Dataset Showcase Workshop, pages 36–47, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/dsw.2023.233826.
Seufitelli, D. B., Oliveira, G. P., Silva, M. O., Scofield, C., and Moro, M. M. (2023b). Hit song science: a comprehensive survey and research directions. J. New Music Res., 52(1):41–72. DOI: 10.1080/09298215.2023.2282999.
Shin, S. and Park, J. (2018). On-chart success dynamics of popular songs. Adv. in Comp. Systems, 21(3-4):1850008. DOI: 10.1142/S021952591850008X.
Silva, M. O., Oliveira, G. P., Seufitelli, D. B., Lacerda, A., and Moro, M. M. (2022). Collaboration as a driving factor for hit song classification. In WebMedia, pages 66–74. ACM. DOI: 10.1145/3539637.3556993.
Werber, N., Stein, D., Döring, J., Albrecht-Birkner, V., Gerlitz, C., Hecken, T., Paßmann, J., Schäfer, J., Schubert, C., and Venus, J. (2023). Getting Noticed by Many: On the Transformations of the Popular. Arts, 12(1). DOI: 10.3390/arts12010039.
Zaki, M. J. and Meira Jr., W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press.
Zangerle, E. et al. (2019). Hit song prediction: Leveraging low- and high-level audio features. In ISMIR, pages 319–326.

