Um Estudo de Mapeamento Sistemático Sobre o Padrão OSLC

Authors

  • Bruno Ferreira Unipampa
  • Rafael Torres
  • Fábio Basso
  • Diego Kreutz
  • Elder Rodrigues
  • Maicon Bernardino
  • Rafael Frantz

Keywords:

Open Services for Lifecycle Collaboration, OSLC, Tool Integration

Abstract

The software industry invests in modern tools throughout the software development lifecycle. However, there are challenges to achieve an end-to-end integrated environment such as data integration and artifact traceability. To mitigate these challenges, many approaches have been proposed for integration. In this context, Open Services for Lifecycle Collaboration (OSLC) is an open standard for tool interoperability, which allows data federation throughout Software Engineering (SE) application lifecycles. This study presents a systematic mapping study about OSLC, analyzing 59 primary studies and addressing integration issues.

Downloads

Download data is not yet available.

References

Aichernig, B. K., Hormaier, K., Lorber, F., Nickovic, D., Schlick, R., Simoneau, D., and ¨

Tiran, S. (2014). Integration of requirements engineering and test-case generation via

oslc. In 2014 14th International Conference on Quality Software, pages 117–126.

Alvarez-Rodr´ıguez, J., Mendieta, R., Vara, J., Fraga, A., and Llorens, J. (2018). Enabling system artefact exchange and selection through a linked data layer. Journal of

Universal Computer Science, 24(11):1536–1560. cited By 1.

Arnould, V. (2018). Using model-driven approach for engineering the system engineering

system. In 2018 13th Annual Conference on System of Systems Engineering (SoSE),

pages 608–614.

Baumgart, A. and Ellen, C. (2014). A recipe for tool interoperability. In 2014 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pages 300–308.

Biehl, M., El-Khoury, J., and Torngren, M. (2012). High-level specification and code ¨

generation for service-oriented tool adapters. In 2012 12th International Conference

on Computational Science and Its Applications, pages 35–42.

Biehl, M., Gu, W., and Loiret, F. (2012). Model-based service discovery and orchestration

for oslc services in tool chains. In Brambilla, M., Tokuda, T., and Tolksdorf, R., editors,

Web Engineering, pages 283–290, Berlin, Heidelberg. Springer Berlin Heidelberg.

Biehl, M., Sosa, J. D., Torngren, M., and D ¨ ´ıaz, O. (2013). Efficient construction of

presentation integration for web-based and desktop development tools. In 2013 IEEE

th Annual Computer Software and Applications Conference Workshops, pages 697–

Buffoni, L., Pop, A., and Mengist, A. (2017). Traceability and impact analysis in requirement verification. In Proceedings of the 8th International Workshop on EquationBased Object-Oriented Modeling Languages and Tools, EOOLT ’17, pages 95–98,

New York, NY, USA. ACM.

d. Martino, B., Esposito, A., Nacchia, S., and Maisto, S. A. (2016). Towards a uniform

semantic representation of business processes, uml artefacts and software assets. In

10th International Conference on Complex, Intelligent, and Software Intensive

Systems (CISIS), pages 543–548.

El-khoury, J. (2016). Lyo code generator: A model-based code generator for the development of oslc-compliant tool interfaces. SoftwareX, 5:190 – 194.

El-Khoury, J., Ekelin, C., and Ekholm, C. (2016). Supporting the linked data approach to

maintain coherence across rich emf models. In Wasowski, A. and Lonn, H., editors, ¨

Modelling Foundations and Applications, pages 36–47, Cham. Springer International

Publishing.Fitzgerald, B. and Stol, K.-J. (2017). Continuous software engineering: A roadmap and

agenda. Journal of Systems and Software, 123:176–189.

Gallina, B., Padira, K., and Nyberg, M. (2016). Towards an iso 26262-compliant oslcbased tool chain enabling continuous self-assessment. In 2016 10th International Conference on the Quality of Information and Communications Technology (QUATIC),

pages 199–204.

Gotel, O. and Mader, P. (2012). ¨ Acquiring Tool Support for Traceability, pages 43–68.

Springer London, London.

Gurd ¨ ur, D., Feljan], A. V., El-khoury, J., Mohalik], S. K., Badrinath, R., Mujumdar], ¨

A. P., and Fersman, E. (2018). Knowledge representation of cyber-physical systems

for monitoring purpose. Procedia CIRP, 72:468 – 473. 51st CIRP Conference on

Manufacturing Systems.

Lu, J., W ang, J., Chen, D., Wang, J., and ToRngren, M. (2018). A service-oriented tool- ¨

chain for model-based systems engineering of aero-engines. IEEE Access, 6:50443–

Mikkonen, T. and Taivalsaari, A. (2019). Software reuse in the era of opportunistic design.

IEEE Software, 36(3):105–111.

Mustafa, N. and Labiche, Y. (2017). Employing linked data in building a trace links

taxonomy. pages 186–198. cited By 2.

OSLC (2020). Open services for lifecycle collaboration primer web page. Accessed at

February 2020.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software

Technology, 64:1 – 18.

Regan, G., Biro, M., Flood, D., and McCaffery, F. (2015). Assessing traceability - practical experiences and lessons learned. Journal of Software: Evolution and Process,

(8):591–601. cited By 6.

Regan, G., Biro, M., Mc Caffery, F., Mc Daid, K., and Flood, D. (2014). A traceability

process assessment model for the medical device domain. In Barafort, B., O’Connor,

R. V., Poth, A., and Messnarz, R., editors, Systems, Software and Services Process

Improvement, pages 206–216, Berlin, Heidelberg. Springer Berlin Heidelberg.

Thomas, I. and Nejmeh, B. A. (1992). Definitions of tool integration for environments.

IEEE Software, 9(2):29–35.

Tuz¨ un, E., Tekinerdogan, B., Macit, Y., and ¨

˙Ince, K. (2019). Adopting integrated application lifecycle management within a large-scale software company: An action research

approach. Journal of Systems and Software, 149:63 – 82.

VanZandt, L. (2015). Enabling rational decision making with provenance-annotated oslc

relationships. In 2015 IEEE International Symposium on Systems Engineering (ISSE),

pages 346–352.

Wicks, M. N. and Dewar, R. G. (2007). Controversy corner: A new research agenda for

tool integration. J. Syst. Softw., 80(9):1569–1585.Wieringa, R., Maiden, N., Mead, N., and Rolland, C. (2005). Requirements engineering

paper classification and evaluation criteria: A proposal and a discussion. Requir. Eng.,

(1):102–107.

Zhang, W. and Møller-Pedersen, B. (2013). Establishing tool chains above the service

cloud with integration models. In 2013 IEEE 20th International Conference on Web

Services, pages 372–379.

Zhang, W. and Møller-Pedersen, B. (2014). Modeling of tool integration resources with

oslc support. In 2014 2nd International Conference on Model-Driven Engineering and

Software Development (MODELSWARD), pages 99–110

Published

2021-09-04

How to Cite

Ferreira, B., Torres, R., Basso, F., Kreutz, D., Rodrigues, E., Bernardino, M. ., & Frantz, R. (2021). Um Estudo de Mapeamento Sistemático Sobre o Padrão OSLC. Electronic Journal of Undergraduate Research on Computing, 19(3). Retrieved from https://journals-sol.sbc.org.br/index.php/reic/article/view/1905

Issue

Section

Full Papers