Otimização de Portfólio Futuro Baseado em Aprendizagem Profunda e Algoritmo Evolutivo Multiobjetivo
Abstract
The stock market is essential to economic growth since it provides investors the opportunity of rising heritage and provides financial resources to companies. However, its dynamic behavior is a challenge for both humans and algorithms. Thus, this work proposes a regression model using a deep neural network (LSTM) to discover patterns in historical stock data in order to predict future stock values. Afterwards, we optimize a portfolio using a multiobjective evolutionary algorithm named MOEA/D. This work used data from two famous indexes: S&P500 and Dow Jones. Results indicate that our model associated with the MOEA/D can suggest portfolios returning between 14% and 22% in the SP500 index. Also, between 4% and 10% in the Dow Jones. Both according to the risk that an investor is willing to face.
Downloads
References
Arevalo, A., Nino, J., Hernandez, G., e Sandoval, J. (2016). High-frequency trading strategy based on deep neural networks. volume 9773, pages 424–436.
Bjorklund, S. e Uhlin, T. (2017). Artificial neural networks for financial time series prediction and portfolio optimization. Master’s thesis, Department of Management and Engineering, Linkoping University, Link ¨ oping, Sweden.
Bovespa (2000). O mercado de capitais: Sua importancia para o desenvolvimento e os entraves com que se defronta no brasil. Tendencia - Consultoria Integrada.
Campelo, F., Batista, L., e Aranha, C. (2018). The MOEADr package - a componentbased framework for multiobjective evolutionary algorithms based on decomposition. Journal of Statistical Software.
Chan, L., Karceski, J., e Lakonishok, J. (1999). On portfolio optimization: Forecasting covariances and choosing the risk model. Review of Financial Studies, 12:937–74.
Chen, T.-L. e Chen, F.-Y. (2016). An intelligent pattern recognition model for supporting investment decisions in stock market. Information Sciences, 346-347:261 – 274.
Chiang, W.-C., Enke, D., Wu, T., e Wang, R. (2016). An adaptive stock index trading decision support system. Expert Systems with Applications, 59:195 – 207.
Chong, E., Han, C., e Park, F. C. (2017). Deep learning networks for stock market analysis and prediction. Expert Syst. Appl., 83(C):187–205.
Chourmouziadis, K. e Chatzoglou, P. D. (2016). An intelligent short term stock trading fuzzy system for assisting investors in portfolio management. Expert Systems with Applications, 43:298 – 311.
Deb, K., Pratap, A., Agarwal, S., e Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197.
Duffie, D. e Pan, J. (1997). An overview of value at risk. The Journal of Derivatives, 4(3):7–49.
Economatica (2015). Aumento da taxa dos pequenos investidos que entraram nas negociacões da bolsa.
Enke, D. e Mehdiyev, N. (2013). Stock market prediction using a combination of stepwise regression analysis, differential evolution-based fuzzy clustering, and a fuzzy inference neural network. Intelligent Automation and Soft Computing, 19.
Harper, D. R. (2019). An introduction to value at risk (var). https://www.investopedia.com/articles/04/092904.asp.
Heaton, J. B., Polson, N. G., e Witte, J. H. (2016). Deep learning for finance: deep portfolios: J. b. heaton, n. g. polson and j. h. witte. Applied Stochastic Models in Business and Industry, 33.
Hochreiter, S. e Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8):1735–1780.
Krokhmal, P., Palmquist, J., e Uryasev, S. (2003). Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk, 4.
Morettin, P. e Toloi, C. M. C. (2011). Analise de séries temporais. Edgard Blucher, ed Brasil, 3 edition.
Niaki, S. T. A. e Hoseinzade, S. (2013). Forecasting s&p 500 index using artificial neural networks and design of experiments. Journal of Industrial Engineering International, 9.
Nugent, C. (2018). S&p 500 stock data.
Patel, J., Shah, S., Thakkar, P., e Kotecha, K. (2015). Predicting stock market index using fusion of machine learning techniques. Expert Systems with Applications, 42(4):2162–2172.
Patterson, J. e Gibson, A. (2017). Deep Learning A Practitioner’s Approach. O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
Pereira, I. L., Crispim, S. F., e Savoia, J. R. F. (2013). Valor de mercado como indicador de competitividade: identificac¸ao de empresas brasileiras com alto desempenho no longo prazo. Revista das Faculdades Integradas Vianna Junior.
Qiu, M., Song, Y., e Akagi, F. (2016). Application of artificial neural network for the prediction of stock market returns: The case of the japanese stock market. Chaos, Solitons & Fractals, 85:1–7.
Sak, H., Senior, A., e Beaufays, F. (2014). Long short-term memory recurrent neural network architectures for large scale acoustic modeling. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, pages 338–342.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., e Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929–1958.
Weng, B. (2017). Application of machine learning techniques for stock market prediction. PhD thesis, Graduate Faculty of Auburn University, Auburn, Alabama.
Xiao, J., Li, J.-J., Hong, X.-X., Huang, M.-M., Hu, X.-M., Tang, Y., e Huang, C.-Q. (2018). An improved moea/d based on reference distance for software project portfolio optimization. Complexity, 2018:1–16.
Zhang, Q. e Li, H. (2008). Moea/d: A multiobjective evolutionary algorithm based on decomposition. Evolutionary Computation, IEEE Transactions on, 11:712 – 731.
Zhong, X. e Enke, D. (2017). Forecasting daily stock market return using dimensionality reduction. Expert Systems with Applications, 67:126 – 139.